Vibrational (Infrared, Raman) and Thermogravimetric Study of Copper Ore from the Deposit at Tchirozerine, Agadez (Niger)

Authors

  • Ali SANDA BAWA University of Agadez

DOI:

https://doi.org/10.14738/aivp.103.12495

Keywords:

Agadez, Copper ores, Infrared, Raman, X-rays and TGA

Abstract

Agadez is the mining region of the republic of Niger in which all kinds of ore are found. Copper would have been exploited and refined in Niger in the 15th century in the province of Azelik, region of Agadez. In this context, it is important to use mew techniques to characterize the mineralogical variability of copper ore. The collected sample was analyzed by X-ray diffraction, Thermogravimetric analysis and spectroscopies (infrared and Raman). The results of the X-ray diffraction of the ore show that the sample corresponds to an association between brochantite and biotite, dominated by brochantite. The thermogravimetric analysis indicates that the sample was stable up to 200°C and above this temperature, the solid decomposed in a series of three decomposition stages. Raman and infrared spectroscopies show the fundamental vibration of sulfate ion which functioning as a unidentate because the effective symmetry is lowered to C3v.

 

References

. Silpa Sweta Jena, Mousumi Gharai, N. R. Mandre, R. Venugopal., Mineralogical Characterization and Gravity Separation of Lean Grade Mixed Copper Ore of Malanjkhand Deposit.Trans Indian Inst Met, (2019).72: p.245-255.

. G. Fowles., A study of the basic copper sulphates. J. Chem. Soc, (1926): p.1845-1858.

. W.E. Richmond, C.W. Wolfe., Crystallography of dolerophanite. Amer. Min, (1940).25: p.606-610.

. H. Ungemach., Antlerite. Bull. Soc. Franc. Min, (1624).47: p.124-129.

. J.J. Finney, T. Araki., Refinement of the Crystal Structure of Antlerite. Nature (1963).70: p. 197.

. T. Araki., Crystal structure of antlerite. Mineralogy Journal (Tokyo) (1961).3: p.233-235.

. M. Helliwell, J.V. Smith., Brochantite. Acta Cryst. C53, (1997): p.1369-1371.

. A.M. Pollard, R.G. Thomas, P.A. Williams., Mineralogical changes arising from the use of aqueous sodium carbonate solutions for the treatment of archaeological copper objects. Stud. Conserv (1990).35: p.148-152.

. W. Krause, H. Taeuber., Zum Kenntnisstand der Minerale Serpierit, Orthoserpierit und Devillin. Aufschluss (1992).43: p.1-25.

. Antoine FRANCONL Julien JOO' et Iddé ZIBO, plan minéral de la république du Niger : ÉTUDE SPÉCIFIQUE DES PRINCIPALES SUBSTANCES MINÉRALES ET LEUR CONTEXTE GÉOLOGIQUE. Tome IV, Volume 2.

. William John Hawker., A novel low-energy process route for primary copper production utilising synergistic hydro- and pyro-metallurgical processes, A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland (2015): p.162.

. Prasad and al., thermal analysis, x-ray diffraction and infrared spectroscopic study of synthetic brochantite. Journal of Thermal Analysis. (1985).30: p.603-609.

Buzgar N., Buzatu A., Sanislav I.V., The Raman study on certain sulfates. Anal. St. Univ. “Al. I. Cuza” Iaúi,Geologie LV(2009): p.5-23.

. Juraj Majzlan and al. X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. Chemical Geology (2011). 284: p.296–305.

R.L. Frost et al., Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy (2014).127: p.349–354.

. Adler, H.H. and Kerr, P.F., Variations in infrared spectra, molecular symmetry, and site symmetry of sulfate minerals. American Mineralogist (1965).50: p.132-147.

. Etalo A. Secco., Spectroscopic properties of SO4 (and OH) in different molecular and crystalline environments. I. Infrared spectra of Cu3SO4(OH)4, Cu4SO4(OH)6 Cu4(OH)4OSO4. Can. J. Chem (1988).66: p.329.

. Herzberg, G., Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules (1945). Nostrand, New York.

. Sara Valadas, Rita V. Freire, Ana Cardoso, José Mirão, Cristina B. Dias, Peter Vandenabeele and António Candeias., On the Use of the Unusual Green Pigment Brochantite (Cu4(SO4)(OH)6) in the 16th-Century Portuguese-Flemish Paintings Attributed to The Master Frei Carlos Workshop. Microsc. Microanal (2015).21: p.518–525.

Frezzotti M. L., Tecce F., Casagli A., Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration (2012).112: p.1-20.

W. Martens, R.L. Frost, J.T. Kloprogge, P.A. Williams., Raman spectroscopic study of the basic copper sulphates-implications for copper corrosion and ‘bronze disease. J. Raman Spectrosc. (2003).34: p145.

R. L. Frost, J. T. Kloprogge, P.A. Williams, P. Leverett., Raman microscopy of some natural pseudo‐alums: halotrichite, apjohnite and wupatkiite, at 298 and 77 K. J. Raman Spectrosc. (2000).31: p.1083-1087.

G. Renaudin, R. Segni, D. Mentel, J. M. Nedelec, F. Leroux, C. Taviot-Gueho., A Raman study of the sulfated cement hydrates: ettringite and monosulfoaluminate. J. Adv. Concr. Technol. (2007).5: p.299-312.

Bouchard-Abouchacra M. PhD Thesis, 2001 from Museum National D’Histoire Naturelle Laboratoire de Minéralogie.

Downloads

Published

2022-06-24

How to Cite

SANDA BAWA, A. (2022). Vibrational (Infrared, Raman) and Thermogravimetric Study of Copper Ore from the Deposit at Tchirozerine, Agadez (Niger). European Journal of Applied Sciences, 10(3), 617–628. https://doi.org/10.14738/aivp.103.12495