Artificial Bee Colonies Solution for Load Sharing in a Cloud RAN

Authors

  • DEUSSOM DJOMADJI Eric Michel University of Buea
  • NDJE BIHOLONG Evelyne Noelle
  • Pr.

DOI:

https://doi.org/10.14738/aivp.102.11935

Keywords:

Cloud RAN, BBU pool, load-balancing, ABC (Artificial Bees Colony) algorithm, LBMM algorithm.

Abstract

The integration of the cloud in the access network architecture, through the Cloud RAN, allows to increase the network capacity thanks to the virtualization of the base station and the sharing of cloud resources. The great innovation of this concept is the BBU Pool present in the architecture. It is the pool that allows the term "centralized" to be used. The processing that is carried out there is critical for the operation of the entire network.  Indeed, in a cloud based environment such as the C-RAN, it is important that the resources are used optimally. This is where load-balancing comes in, which is defined as a technique used to evenly distribute workloads across multiple servers or other computing resources to optimize network performance, reliability and capacity. This paper proposes a load balancing algorithm in the BBU pool of a C-RAN. It is based on the artificial bee colony metaheuristic (ABC algorithm) and on the Load Balanced Min-Min Algorithm (LBMM). All this is done to improve network performance by guaranteeing high availability of centralized and shared resources. Its effectiveness in terms of performance and execution time against Round Robin and MIN MIN algorithms is studied and the results are appreciable.

References

«5g fifth generation of mobile technologies,» [En ligne]. Available: www.itu.int/fr/mediacentre/backgrounders/Pages/5G-fifth-generation-of-mobile-technologies.aspx. [Accès le 10 October 2021].

H. TOUATI, Allocation de Ressources et Partage de Charge adaptés aux architectures de réseaux d’accès basées sur le cloud, Evry, 2020.

K. T et A. Dr. D.I. George , «Load Balanced Min-Min Algorithm for Static Meta-Task Scheduling in Grid Computing,» International Journal of Computer Applications, pp. 45-47, 2011.

T. S. et B. Z, «A new approach for scheduling jobs in cloud computing environment,» Cumhur. Sci. J., p. 2499–2506 , 2015.

S. Sowmya, C. Jaishri Chourasia et R. Sonam, «Load Balancing in Computational Grids Using Ant Colony Optimization Algorithm,» International Journal of Computer & Communication Technology (IJCCT), 2012.

G. Manish et S. Govind, «An Efficient Modified Artificial Bee Colony Algorithm for Job Scheduling Problem,» International Journal of Soft Computing and Engineering (IJSCE), pp. 2231-2307, 2012.

K. T et A. Dr. D.I. George, «Memory Constrained Ant Colony System For Task Scheduling In Grid Computing,» International Journal of Grid Computing & Applications (IJGCA), 2012.

K. M et M. A, «Application of Selective Algorithm for Effective Resource Provisioning in Cloud Computing Environment,» Int. J. Cloud Comput. Serv. Archit, pp. 1-10, 2014.

B. S et M. D, «An Improved Task Scheduling Algorithm based on Max-min for Cloud Computing,» Int. J. Innov. Res., pp. 84-88, 2015.

N. M, H. B, G. M et B. M, «2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),» pp. 375-379, 2014.

P. S. J. et B. U. R, «Improved Priority Based Job Scheduling Algorithm in Cloud Computing Using Iterative Method,» 2014 Fourth International Conference on Advances in Computing and Communications, pp. 199-202, 2014.

T. A, K. G et J. R. V, «Credit Based Scheduling Algorithm in Cloud Computing Environment,» Procedia Comput. Sci, pp. 913-920, 2015.

Himani et S. H. S , «Cost-Deadline Based Task Scheduling in Cloud Computing,» 2015 Second International Conference on Advances in Computing and Communication Engineering, pp. 273-279, 2015.

Z. T, Z. S, G. X, Z. Y et N. Z, «A Cooperative Scheduling Scheme of Local Cloud and Internet Cloud for Delay-Aware Mobile Cloud Computing,» 2015 IEEE Globecom Workshops (GC Wkshps), pp. 1-6, 2015.

D. Karaboga, An idea based on honey bee swarm for numerical optimization, 2005.

D. Karaboga et Basturk, «On the Performance of Artificial Bee Colony (ABC) algorithm,» Applied soft computing, pp. 687-697, 2008.

Microsoft, «Natural algorithms use bee colony algorithms to solve impossible problems,» [En ligne]. Available: https://docs.microsoft.com/fr-fr/archive/msdn-magazine/2011/april/msdn-magazine-natural-algorithms-use-bee-colony-algorithms-to-solve-impossible-problems#synth%C3%A8se. [Accès le 9 August 2021].

L. Peio, Amélioration des métaheuristiques d’optimisation à l’aide de l’analyse de sensibilité, 2016.

F. HARFOUCHI, Contribution à l'optimisation par colonies d'abeilles: Application à la conception des systèmes intelligents, Boumerdes, 2019.

«Load Balancing,» [En ligne]. Available: https://www.lemagit.fr/definition/Load-balancer-repartition-de-charge. [Accès le 18 October 2021].

O. Chabbouh, Gestion Des Ressources Des Réseaux Cloud RAN Dans Un Contexte 5G, Tunis, 2017.

R. Saumendu, H. Dr. Md. Alam, K. Sujit, H. Nazmul et R. Md. Al Asif, «Measuring the Performance on Load Balancing Algorithms,» Global Journal of Computer Science and Technology: B, vol. 19, p. 47, 2019.

Downloads

Published

2022-03-08

How to Cite

Eric Michel, D. D., NDJE BIHOLONG Evelyne Noelle, & TONYE Emmanuel. (2022). Artificial Bee Colonies Solution for Load Sharing in a Cloud RAN. European Journal of Applied Sciences, 10(2), 33–50. https://doi.org/10.14738/aivp.102.11935

Most read articles by the same author(s)