The Overall assessment of the dynamics of dust load over the South-East European region

Authors

  • Edmond Lukaj PhD Student
  • Florian Mandija
  • Floran Vila

DOI:

https://doi.org/10.14738/aivp.92.9985

Keywords:

mineral dust, numerical models, southeast Europe

Abstract

This paper presents a general view of the aerosol presence over the southeastern region of Europe. Analyses are presented in terms of the aerosol optical depth and fraction areas covered by dust plumes.

The overall results show a relatively high dust load over the region, compared to the northern European regions. Almost similar results are obtained in the case of the other southern European regions, such is Iberian and Apennine Peninsulas.

However, the annual cycles also clarify the differences on AOD maxima over this region in relation with other southern regions. The southeastern region is more affected by the dust intrusions especially during spring season whilst the south-western region is affected with more intensity during the summer season.

References

[1]. Schepanski, K., Tegen, I., and Macke, A.: Saharan dust transport and deposition towards the tropical northern Atlantic, Atmos. Chem. Phys., 9, 1173–1189, https://doi.org/10.5194/acp-9-1173-2009, 2009.
[2]. Mandija, F. Sicard, M. Comerón, A. Alados-Arboledas, L. Guerrero-Rascado, J-L. Barragan, R. Bravo-Aranda, J-A. Granados-Muñoz, M-J. Lyamani, H. Muñoz-Porcar, C. Rocadenbosch, F. Rodríguez, A. Valenzuela, A. Garcia V. D. “Origin and pathways of the mineral dust transport to two Spanish EARLINET sites: Effect on the observed columnar and range-resolved dust optical properties”. Atmospheric Research 187, 69-83, 2017.
[3]. Mandija, F. Vila, F. Lukaj, E. Bushati. J. Desert dust episodes over Balkan Peninsula. Proceedings of the 10th Balkan Physical Union. American Institute of Physics. 2075, 130011 (2019); https://doi.org/10.1063/1.5091296.
[4]. Gkikas, A., et al. The regime of intense desert dust episodes in the Mediterranean based on contemporary satellite observations and ground measurements. Atmos.Chem.Phys., 13, 12135–12154, 2013.
[5]. Mandija, F. V. Chavez Perez, R. Nieto, M. Sicard, V. Danylevsky, J-A. Anel Cabanelas, L. Gimeno. The climatology of dust events over European continent using data of the Dust Regional Atmospheric Model. Atmospheric Research. 209. 144-162. 2018.
[6]. Weinzierl, B., A. Ansmann, J. Prospero, D. Althausen, N. Benker, F. Chouza, M. Dollner, D. Farrell, W. Fomba, V. Freudenthaler, J. Gasteiger, S. Groß, M. Haarig, B. Heinold, K. Kandler, T. Kristensen, O. Mayol-Bracero, T. Müller, O. Reitebuch, D. Sauer, A. Schäfler, K. Schepanski, A. Spanu, I. Tegen, C. Toledano, and A. Walser, The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE): overview and selected highlights, Bull. Amer. Meteor. Soc., 98(7), 1-25, doi:10.1175/BAMS-D-15-00142.1, 2017.
[7]. Mandija, F. Ahmetaga, Sh. Vila, F. Atmospheric monitoring on Adriatic seashore, Proceedings of the 7th Balkan Union Conf., American Inst. of Phys. 117 (2010)
[8]. Mandija, F. Markowicz, M. Zawadzka. O. “Characterization of aerosol events using synergistically column integrated optical aerosol properties and polarimetric measurements”. Journal of Atmospheric and Solar-Terrestrial Physics. 150. 9-20. 2016a.
[9]. Mandija, F. Guerrero-Rascado, J. L. Lyamani, H.Granados-Muñoz, M. J. Alados-Arboledas. L. “Synergic estimation of columnar integrated aerosol properties and their vertical resolved profiles in respect to the scenarios of dust intrusions over Granada”. Atmospheric Envornment, 145, 439-454, 2016b.
[10]. Guieu C, Dulac F, Desboeufs K, Wagener T, Pulido-Villena E, Grisoni JM, Louis F, Ridame C, Blain S, Brunet C, Nguyen EB, Tran S, Labiadh M, Dominici J.M. Large clean mesocosms and simulated dust deposition: a new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs. Biogeosciences 7:2765–2784. doi:10.5194/bg-7-2765-2010, 2010.
[11]. Papadimas, C. D. Hatzianastassiou, N. Matsoukas, C. Kanakidou, M. Mihalopoulos, N. and Vardavas, I. Atmos. Chem. Phys., 12, 7165–7185, 2012.
[12]. Chiodo, G. R. García-Herrera, N. Calvo, J. M. Vaquero, J. A. Añel, D. Barriopedro, K. Matthes, Environ. Res. Lett. 11 034015, 2016.
[13]. Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys., 40, 1002, doi:10.1029/2000RG000095, 2002.
[14]. Middleton, N. J. and Goudie, A. S.: Saharan dust: sources and trajectories, Trans. Inst. Br. Geogr., 26, 165–181, 2001.
[15]. Goudie, A. S. and Middleton, N. J.: Saharan dust storms: nature and consequences, Earth-Sci. Rev., 56, 179–204, 2001.
[16]. Washington, R., Todd, M., Middleton, N. J., and Goudie, A. S.: Dust-Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations, Ann. Assoc. Am. Geogr., 93, 297–313, 2003.
[17]. Romero, O. E., Lange, C. B., Swap, R., and Wefer, G.: Eolian transported freshwater diatoms and phytoliths across the equatioral Atlantic: Temporal changes in Saharan dust transport patterns, J. Geophys. Res., 104, 3211–3222, 1999.
[18]. Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., & Smirnov, A. (1998). AERONET - A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1), 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5.
[19]. Kaufman, Y.J., Tanre, D., Boucher, O. A satellite view of aerosols inthe climate system. Nature 419, 215–223, 2002.
[20]. Eck, T. F., Holben, B. N., Dubovik, O., Smirnov, A., Goloub, P., Chen, H. B., Chatenet, B., Gomes, L., Zhang, X. Y., Tsay, S. C., Ji, Q., Giles, D., and Slutsker, I.: Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J. Geophys. Res., 110, D06202, doi:10.1029/2004JD005274, 2005.
[21]. Nickovic, S., Kallos, G., Papadopoulos, A., Kakaliagou, O., 2001. A model for prediction of desert dust cycle in the atmosphere. J. Geophys. Res. 106, 18 113–18 130.
[22]. Pérez, C. Haustein, Janjic, K., Jorba, Z., Huneeus, O., Baldasano, N., Black, J.M., Basart, T., Nickovic, S., Miller, S., Perlwitz, R.L., Schulz, J.P., Thomson, M., 2011. Atmospheric dust modeling from meso to global scales with the online NMMB/BSCDust model – Part 1: Model description, annual simulations and evaluation. Atmos. Chem. Phys. 11, 13001–13027.
[23]. Basart, S., C. Pérez, S. Nickovic, E. Cuevas, and J.M. Baldasano, 2012: Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East. Tellus B, 64, 18539, doi:10.3402/tellusb.v64i0.18539.
[24]. Acker J. G. and Leptoukh, G. “Online Analysis Enhances Use of NASA Earth Science Data”, Eos, Trans. AGU, Vol. 88, No. 2 (9 January 2007), pages 14 and 17.

Downloads

Published

2021-04-19

How to Cite

Lukaj, E., Mandija, F., & Vila, F. (2021). The Overall assessment of the dynamics of dust load over the South-East European region. European Journal of Applied Sciences, 9(2), 204–211. https://doi.org/10.14738/aivp.92.9985