Effect of Ba ion on phase formation, microstructure and Photocatalytic Properties of the CuAl2O4 Nanoparticle

Authors

  • Roumaih Roumaih Egyptian Atomic Energy Authority

DOI:

https://doi.org/10.14738/aivp.92.9963

Keywords:

Copper Barium Aluminate; CuBaAl10O17; Nanorods; Hexagonal Phase; Photocatalytic Activity; Ceramic Pigment and Humidity Sensors Application.

Abstract

The phase purity, microstructure, functional groups, optical and photocatalytic properties were studied for the Cu1-xBaxAl2O4 (x= 0.0, 0.1, and 0.3). The Cu1-xBaxAl2O4 was synthesis by the sol-gel method.  The XRD spectra of the parent sample showed a single-phase structure with the space group Fd-3m:2. At x=0.1, the CuAl2O4 structure formed along with CuBaAl10O17, while the BaAl2O4 and CuBaAl10O17 formed at x = 0.3. The analysis of FTIR spectra confirmed the formation of the hexagonal phase structure for x = 0.1 and 0.3. The images of HR-TEM show nanorods along with nanograins for the samples which contain Ba ions. The optical analysis proved the increasing trend in bandgap energy (Eg) with increasing Ba ion doping. The photodegradation was evaluated for the degradation of methylene blue and methyl orange dyes under visible light irradiation. The copper barium aluminate is colored materials so, may be used as a ceramic pigment, also they are useful for humidity sensors application. The novelty of this work, some physical properties of the compound CuBaAl10O17, which is very rarely studied in the literature, will be known.

References

References
[1] J. Ahmed, CK Blakely, J Prakash, SR Bruno, M Yu, Y Wu, VV Poltavets, Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications. J. of All. and Com. 591 (2014) 275–9.
[2] Š Zuzjaková, P Zeman, J Houška, R Čerstvý, J Musil, Thermal stability and transformation phenomena in magnetron sputtered Al–Cu–O films. Ceram. Int. 41 (2015) 6020–9. http://dx.doi.org/10.1016/j.ceramint.2015.01.045.
[3] PH Bolt, FHPM Habraken, JW Geus, Formation of nickel, cobalt, copper, and iron aluminates fromα- andγ-alumina-supported oxides: a comparative study. J Sol. Sta. Chem. 135 (1998) 59–69. http://dx.doi.org/10.1006/jssc.1997.7590.
[4] KT Jacob, CB Alcock, Thermodynamics of CuAlO2 and CuAl2O4, and phase equilibria in the system Cu2O-CuO-Al2O3. J. Am. Ceram. Soc. 58(1975)192–5.
[5] A. Troia, M. Pavese, F. Geobaldo, Ultrason. Sonochem. 16 (2009) 136.
[6] R. Katamreddy, R. Inman, G. Jursich, A. Soulet, C. Takoudis, Acta Mater. 56 (2008) 710.
[7] Mei Han, Zisheng Wang, Ye Xu, Rui Wu, Shihui Jiao, Yan Chen, Shouhua Feng, Physical properties of MgAl2O4, CoAl2O4, NiAl2O4, CuAl2O4, and ZnAl2O4 spinels synthesized by a solution combustion method, Materials Chemistry and Physics 215, (2018), 251-258.
[8] Arnab Mukherjee, Mrinal K. Adak, Prasanta Dhak, Debasis Dhak, A simple chemical method for the synthesis of Cu2+ engrafted MgAl2O4 nanoparticles: Efficient fluoride adsorbents, photocatalyst and latent fingerprint detection, J. ENVIR. SCIEN. 88 (2020) 301 – 315.
[9] Shifa Wang, Huajing Gao, Jinyu Li, Yong Wang, Chaoli Chen, Xianlun Yu, Shengnan Tang, Xinxin Zhao, Guangzhuang Sun, Dengfeng Li, Comparative study of the photoluminescence performance and photocatalytic activity of CeO2/MgAl2O4 composite materials with an n-n heterojunction prepared by one-step synthesis and two-step synthesis methods, J. Phy. and Chem. Of Sol. (2020). https://doi.org/10.1016/j.jpcs.2020.10989.
[10] Hong W-S, De Jonghe LC, Yang X, Rahaman MN, J. Am. Ceram. Soc. 78 (1995) 3217.
[11] T. Mimani, Instant synthesis of nanoscale spinel aluminates, J. of All. and Com. 315 (2001) 123–128.
[12] J. Praveen Kumar, G.K. Prasad, J.A. Allen, P.V.R.K. Ramacharyulu, K. Kadirvelu, Beer Singh, Synthesis of mesoporous metal aluminate nanoparticles and studies on the decontamination of sulfur mustard, J. of Alloys and Comp 662 (2016) 44-53.
[13] Z Chen, E Shi, W Li, Y Zheng, N Wu, W Zhong, J. Am. Ceram. Soc. 85 (2002) 2949.
[14] Yuanyuan Tang, Kaimin Shih, King Chan, Copper aluminate spinel in the stabilization and detoxification of simulated copper-laden sludge, Chemosphere 80 (2010) 375–380.
[15] Adak AK, Pathak A, Pramanik P J Mater Sci Lett 17 (1998) 559.
[16] J. Das, D.K. Mishra, V.V. Srinivasu, Spin canting and magnetism in nano-crystalline Zn1-xAlxO, J. of All. and Com. 704(2017)237-244.
[17] Masoud Salavati-Niasari, Fatemeh Davar, Masoud Farhadi, Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol-gel method, J Sol-Gel Sci Technol 51 (2009) 48–52.
[18] R. Thinesh Kumar, P. Suresh, N. Clament Sagaya Selvam, L. John Kennedy, J. Judith Vijaya, Comparative study of nano copper aluminate spinel prepared by sol-gel and modified sol-gel techniques: Structural, electrical, optical and catalytic studies, J. of All. and Com. 522 (2012) 39– 45.
[19] V. Elakkiyaa, Yash Agarwalb, Shanmugam Sumathi, Photocatalytic activity of divalent ion (copper, zinc, and magnesium) doped NiAl2O4, Sol. Sta. Sci. 82 (2018) 92–98.
[20] M. Ayvacikli, Characterization of a Green-Emitting Copper-Doped Barium Aluminate Phosphor, Spec. Lett., 47 (2014) 504–511. https://doi.org/10.1080/00387010.2013.818552
[21] W.S. Hong, L.C.D. Jonghe, Comment on “Effect of Al2O3 and Bi2O3 on the Formation Mechanism of Sn‐Doped Ba2Ti9O20, J. Am. Ceram. Soc. 78 (1995) 3217.
[22] L. Lutterotti, P. Scardi, Simultaneous structure and size-strain refinement by the Rietveld method, J. Appl. Cryst. 23 (1990) 246–252. http://maud.radiographema.eu
[23] M.R. Nasrabadi, Strontium molybdate nanostructures: synthesis of different shapes through a new approach and its photocatalyst application, J. Mater. Sci. Mater. Electron. 28 (2017) 2200–2205.
[24] J. Yanayan, L. Jinggang, S. Xiaotao, N. Guiling, W. Chengyu, G. Xiumei, CuAl2O4 powder synthesis by sol-gel method and its photodegradation property under visible light irradiation, J Sol-Gel Sci Technol 42 (2007) 41-45; DOI:10.1007/s10971-006-1525-3.
[25] S. Akbar Hosseini, Synthesis of CuAl2O4 nanostructures with the aid of different amino acids as a fuel and its photocatalyst application, J. Mater. Sci. Mater. Electron. 28 (2017) 3762–3767.
[26] Hugh St.C. O'Neill, Michael James, Wayne A. Dollase, Simon A. T. Redfern, Temperature dependence of the cation distribution in CuAl2O4 spinel, Euro. J. of Mine. 17 (4) (2005) 581-586.
[27] W. GUTAU and HK. MULLER-BUSCHB, β-Alumina Containing Tetrahedric Coordinated Cu2+: (Ba, Sr)CuA110O17 J. for Inor. and Gen. Chem., (1990) 581 (1), 21-24.
[28] Dulal C. Ghosh and Raka Biswas, Theoretical Calculation of Absolute Radii of Atoms and Ions, Int. J. Mol. Sci. 4 (2003) 379-407.
[29] H. Ryu, B.K. Singh, K.S. Bartwal, Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+, Physica B 403 (2008) 126–130.
[30] Qidi Xie, Bowen Li, Xin He, Mei Zhang, Yan Chen, and Qingguang Zeng, Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors, Materials 10 (2017) 1198; DOI:10.3390/ma10101198.
[31] J.J. Vijaya, L.J. Kennedy, G. Sekaran, K.S. Nagaraja, Synthesis, characterization, and humidity sensing properties of Cu–Sr–Al mixed metal oxide composites, Mater. Res. Bull. 43 (2008) 473.
[32] Ishii, HirofumiTsukasaki, EriTanaka & Shigeo Mori, A Fluctuating State in the Framework Compounds (Ba, Sr)Al2O4. Sci. Rep. 6 (2016) 19154.
DOI: 10.1038/srep19154.
[33] Z. Nian-bing, BAI Chen-Guang, MA Mang-yuan, LI Zhi-Ying, Preparation of BaAl2O4 by microwave sintering, Trans. Nonferrous Met Soc China 20 (2010) 2020-2025. DOI: 10.1016/S1003-6326(09)60411-8.
[34] B Cheng, L Fang, Z Zhang, Y Xiao, S Lei, BaAl2O4:Eu2+, Dy3+ nanotube synthesis by heating conversion of homogeneous coprecipitates and afterglow characteristics. J Phys Chem C 115 (2011) 1708-1713.
[35] N Suriyamurthy, BS Panigrahi, Luminescence of BaAl2O4:Mn2+, Ce3+ phosphor. J Lumin 127 (2007) 483-8.
[36] Zhengru Zhu, FeiyaLiu, and Wei Zhang, Fabricate, and characterization of Ag/BaAl2O4 and its photocatalytic performance towards oxidation of gaseous toluene studied by FTIR spectroscopy. Mat. Res. Bul. 64 (2015) 68-75. https://doi.org/10.1016/j.materresbull.2014.12.026
[37] Li-wu Zhang, Li Wang, and Yong-fa Zhu, Synthesis and Performance of BaAl2O4 with a Wide Spectral Range of Optical Absorption, Adv. Funct. Mater. 17 (2007) 3781–3790.
[38] Baochang Cheng, Liting Fang, Zhaodong Zhang, Yanhe Xiao, and Shuijin Lei, BaAl2O4:Eu2+, Dy3+ Nanotube Synthesis by Heating Conversion of Homogeneous Coprecipitates and Afterglow Characteristics, |J. Phys. Chem. C, 115 (2011) 1708–1713. dx.doi.org/10.1021/jp109796u.
[39] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, Journal of the American Chemical Society 60 (1938) 309–319.
[40] Martina M. Halmer, Limitations of FTIR Spectroscopy for Detection of Water in Spinel Group Minerals, Spectroscopy Letters, 39 (2006) 181.
[41] Zeynep Güven Özdemir, Mehmet Kılıç, Yaşar Karabul, Banu Süngü Mısırlıoğlu, Öznur Çakır, Naime Didem Kahya, A transition in the electrical conduction mechanism of CuO/CuFe2O4 nanocomposites, Journal of Electroceramics (2020) 44:1–15.
[42] C. G. Anchieta, L. Tochetto, H. B. Madalosso, R. D. Sulkovski, C. Serpa, M. A. Mazutti, A. R. F. de Almeida, A. Gündel, E. L. Foletto, Effect of thermal treatment on the synthesis of NiAl2O4 spinel oxide using chitosan as precursor, Cerâmica 61 (2015) 477-481. http://dx.doi.org/10.1590/0366-69132015613601925.
[43] Mahnaz Naderi, Armen Shamirian, Mohammad Edrisi, Synthesis, characterization, and photocatalytic properties of nanoparticles CuAl2O4 by Pechini method using Taguchi statistical design, J. Sol. Gel Sci. Technol. 58 (2011) 557–563.
[44] W. Lv, B. Liu, Q. Qiu, F. Wang, Z. Luo, P. Zhang, S. Wei, Synthesis, characterization, and photocatalytic properties of spinel CuAl2O4 nanoparticles by a sonochemical method, J. of Alloy. And Comp. 479 (2009) 480–483.
[45] A. Baykal, H. Güngüneş, H. Sözeri, M. Amir, I. Auwal, S. Asiri, S. Shirsath, A.D. Korkmaz, Magnetic properties and Mössbauer spectroscopy of Cu-Mn substituted BaFe12O19 hexaferrites. Ceram. Int. 43 (2017) 15486–15492
[46] J. Mathew, S. Kurian, M. Thomas, K.C. George, Structural and electrical properties of nano-sized magnesium aluminate, Indian J. Pure Appl. Phys. 42 (2004) 926.
[47] P. Kubelka, F.Z. Munk, Tech. Phys. 12 (1931) 593.
[48] V.S. Kirankumar, Shanmugam Sumathi, Structural, optical, magnetic, and photocatalytic properties of bismuth-doped copper aluminate nanoparticles, Materials Chemistry and Physics 197 (2017) 17-26.
[49] I. Mindru, D. Gingasu, L. Patron, G. Marinescu, J.M. Calderon-Moreno, S. Preda, O. Oprea, S. Nita, Copper aluminate spinel by soft chemical routes, Ceram. Int. 42 (2016) 154-164.
[50] Hadi Ghasemi Estarki, Simple synthesize of CuAl2O4 nanoparticles by a new morphological control method, characterization of its photocatalytic activity, J Mater Sci: Mater Electron (2017) 28:14584–14590. DOI 10.1007/s10854-017-7322-7.
[51] M. Madhukara Naik, H.S. Bhojya Naik, G. Nagaraju, M. Vinuth, K. Vinu, R. Viswanath, Green synthesis of zinc doped cobalt ferrite nanoparticles: Structural, optical, photocatalytic and antibacterial studies, Nano-Struc. & Nano-Obj 19 (2019) 100322.
[52] S. Wang, H. Gao, Y. Wei, Y. Li, X. Yang, L. Fang, Li. Lei, Insight into the optical, color, photoluminescence properties, and photocatalytic activity of the N–O and C–O functional groups decorating spinel-type magnesium aluminate, Cryst. Eng. Comm. 21(2019) 263–277.
[53] T.N. Ravishankar, T. Ramakrishnappa, G. Nagaraju, H. Rajanaika, Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies, ChemistryOpen 4 (2015) 146–154.
[54] N. Daneshvar, D. Salari, A. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, J. Photochem. Photobiol. Chem. 162 (2004) 317–322.
[55] S. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater. 141 (2007) 581–590.
[56] Caia C, Zhang Z, Liu J, Ni Shan, Hui Zhang, Dionysios D. Dionysiou, Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange II in water. Appl Catal B Environ (2016)182:456–468. https://doi.org/10.1016/j.apcatb.2015.09.056.
[57] Zhang D, Zhang L, Ultrasonic-assisted sol-gel synthesis of rugby-shaped SrFe2O4/reduced graphene oxide hybrid as versatile visible light photocatalyst. J Taiwan Inst Chem E (2016) 69:156–162.
[58] Zhu Z, Wang Z, J. Di, YumeiLong Weifeng, Enhanced visible-light photocatalytic properties of g-C3N4 by coupling with ZnAl2O4. Catal. Commun. (2016) 86:86–90. https://doi.org/10.1016/j.catcom.2016.08.017
[59] Cecilia Sanchez-Trinidad, Gloria del Angel, Gilberto Torres-Torres, Adrian Cervantes-Uribe, A. Abiu Silahua Pavon, Zenaida Guerra-Que, Juan Carlos Arevalo-Perez, and Fancisco J. Tzompantzi-Morales, Effect of the CuAl2O4 and CuAlO2 Phases in Catalytic Wet Air Oxidation of ETBE and TAME using CuO/γ-Al2O3 Catalysts, ChemistryOpen 2019, 8, 1143. DOI: 10.1002/open.201900080.
[60] Shifa Wang, Huajing Gao, Leiming Fang, Yong Wei, Yanwu Li, and Li Lei, Synthesis and Characterization of BaAl2O4 Catalyst and its Photocatalytic Activity Towards Degradation of Methylene Blue Dye, Z. Phys. Chem. 2018.
https://doi.org/10.1515/zpch-2018-1308
[61] Simranjit Singh, Monika Joshi, Preeti Panthari, Bhanu Malhotra, A.C. Kharkwal, Harsha Kharkwal, Citrulline rich structurally stable zinc oxide nanostructures for superior photocatalytic and optoelectronic applications: A green synthesis approach, Nano-Struct. Nano-Objects 11 (2017) 1–6.
[62] Radhika V. Nair, Venkata Siva Gummaluri, J. Neerthika, C. Vijayan, Efficient charge carrier separation and enhanced UV–visible photocatalytic activity in macroporous TiO2 decorated with V2O5 /Ag nanostructures, Nano-Struct. Nano-Objects 13 (2018) 67–73.
[63] G. Nagaraju, K. Karthik, M. Shashank, Ultrasound-assisted Ta2O5 nanoparticles and their photocatalytic and biological applications, Microchemical J. 147 (2019) 749–754.
[64] Mohsen Padervand, Gerhard Lammel, Alireza Bargahi, Hamid Mohammad-Shiri, Photochemical degradation of the environmental pollutants over the worm-like Nd2CuO4-Nd2O3 nanostructures, Nano-Struct. Nano-Objects 18 (2019) 100258–100266.
[65] Rohini Singh, Suman Dutta, The role of ph and nitrate concentration in the wet chemical growth of nano-rods shaped ZnO photocatalyst, Nano-Struct. Nano-Objects 18 (2019) 100250–100259.
[66] K. Karthik, M. Madhukara Naik, M. Shashank, M. Vinuth, V. Revathi, Microwave-assisted ZrO2 nanoparticles and its photocatalytic and antibacterial studies, J. Cluster Sci. 30 (2019) 311–318.
[67] Jithesh Kavil, Ahmed Alshahrie, Pradeepan Periyat, Cds sensitized TiO2 nano heterostructures as sunlight driven photocatalyst, Nano-Struct. Nano-Objects 16 (2018) 24–30.
[68] Wenhui Hu, Deqing Chu, Limin Wang, Xiangyu Chen, Huifang Yang, Jingjing Sun, Ultrasound-assisted synthesis of hexagonal cone-like Cu2O architectures with enhanced photocatalytic activity, Nano-Struct. Nano-Objects 12 (2017) 220–228.
[69] Zobia Noreen, Imran Ahmad, Fairha Siddiqui, A.B. Ziya, Tahir Abbas, Habib Bokhari, Size-dependent structural anti-bacterial and anti-biofilm properties of Er doped Li-Ni ferrites synthesized by the sol-gel auto-combustion route, Ceram. Int. 43 (14) (2017) 10784–10790.
[70] Vaishali N. Sonkusare, RatiramGomaji Chaudhary, Ganesh S. Bhusari, Alok R. Rai, Harjeet D. Juneja, Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 microflowers/novel γ-Bi2O3 microspindles, Nano-Struct. Nano-Objects 13 (2018) 121–131.
[71] U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, Journal of Hazardous Materials 170 (2009) 520–529.
[72] M. Sundararajan, V. Sailaja, L. John Kennedy, J. Judith Vijaya, Photocatalytic degradation of rhodamine b under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism, Ceram. Int. 43 (1) (2017) 540–548.

Downloads

Published

2021-04-19

How to Cite

Roumaih, R. (2021). Effect of Ba ion on phase formation, microstructure and Photocatalytic Properties of the CuAl2O4 Nanoparticle. European Journal of Applied Sciences, 9(2), 212–233. https://doi.org/10.14738/aivp.92.9963