HIV and the Antiviral Role of Mushroom Nutraceuticals

Authors

  • Prof Dr Tito FERNANDES CIISA, FMV, University of Lisbon
  • Eusébio Chaquisse Departamento de Saúde da Comunidade, Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique
  • Jorge Ferrão Universidade Pedagógica de Maputo, Rua João Carlos Raposo Beirão 135, Maputo, Mozambique

DOI:

https://doi.org/10.14738/aivp.83.8650

Keywords:

mushrooms; HIV; immunoceuticals; antiviral activity; bioactive compounds

Abstract

Mushrooms, environment and human health are interconnected. Mushrooms’ essential role in the environment and bioremediation have attracted market attention because they are also a potential source of bioactive compounds able to perform several functions in organisms with benefits for the health of the consumer. The HIV/AIDS epidemic poses an inescapable challenge to the world at large and to Africa in particular and more specifically in Mozambique. A brief outline of the historical background discusses the present knowledge of mushrooms containing antiviral factors. Antiviral factors generally do not destroy their target pathogen; rather, they inhibit the development or reproduction of the virus. Administration of mushrooms, also used as dietary supplement extracts or biomass, supplies active immunoceuticals that may block virus cell-to-cell infection, modify viral receptors, prevent the adhesion of the virus to lymphocytes and stimulate interferon which has a general antiviral effect production and may inhibit HIV infection. Current strategies in the therapy of AIDS include antiretroviral drugs and complementary nutritional support considered beneficial. Nutrition is a fundamental part of a comprehensive package of care for people living with HIV/AIDS and mushrooms supply known bioactive molecules that may help HIV positive patients.

References

(1) UNAIDS. Global HIV & AIDS Statistics. 2018 Fact Sheet [Internet]. Geneva: Joint United Nations Programme on HIV/AIDS; 2018. Available from: http://www.unaids.org/en/resources/fact-sheet

(2) Vorster H (Esté) H. The link between poverty and malnutrition: A South African perspective. Heal SA Gesondheid [Internet]. 2010 [cited 2020 Mar 11];15(1). Available from: http://www.hsag.co.zahealthsagesondheidhttp//www.hsag.co.za

(3) Kinyoki DK, Osgood-Zimmerman AE, Pickering B V., Schaeffer LE, Marczak LB, Lazzar-Atwood A, et al. Mapping child growth failure across low- and middle-income countries. Nature. 2020;577(7789):231–4.

(4) Bourke CD, Berkley JA, Prendergast AJ. Immune Dysfunction as a Cause and Consequence of Malnutrition. Trends Immunol [Internet]. 2016;37(6):386–98. Available from: http://dx.doi.org/10.1016/j.it.2016.04.003

(5) Ruck C, Reikie BA, Marchant A, Kollmann TR, Kakkar F. Linking susceptibility to infectious diseases to immune system abnormalities among HIV-exposed uninfected infants. Front Immunol [Internet]. 2016 [cited 2020 Mar 11];7(AUG):1–12. Available from: www.frontiersin.org

(6) Weiss RA, Dalgleish AG, Loveday C, Pillay D. Human Immunodeficiency Viruses [Internet]. Principles and Practice of Clinical Virology. 2004. p. 721–57. (Wiley Online Books). Available from: https://doi.org/10.1002/0470020970.ch25

(7) U.S. Department of Health & Human Services. Global Statistics | HIV.gov [Internet]. 2017. 2017 [cited 2020 Apr 20]. p. 1. Available from: https://www.hiv.gov/hiv-basics/overview/data-and-trends/global-statistics

(8) Ivers LCC, Cullen KAA, Freedberg KAA, Block S, Coates J, Webb P. HIV/AIDS, Undernutrition, and Food Insecurity. Clin Infect Dis. 2009;49(7):1096–102.

(9) Wright D. Nutrition and Hospital Mortality, Morbidity and Health Outcomes. In 2019.

(10) UNAIDS. Global HIV and AIDS statistics 2019 Fact sheet. Glob HIV AIDs ststistics, World AIDS day 2019 Fact Sheet. 2019;1(June):1–6.

(11) Sato H, Adachi E, Lim LA, Koga M, Koibuchi T, Tsutsumi T, et al. CD4/CD8 ratio predicts the cellular immune response to acute hepatitis C in HIV-coinfected adults. J Infect Chemother [Internet]. 2019 Aug 1;25(8):646–8.

Available from: https://doi.org/10.1016/j.jiac.2019.04.001

(12) Farzin L, Shamsipur M, Samandari L, Sheibani S. HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies. Vol. 206, Talanta. Elsevier B.V.; 2020. p. 120201.

(13) Chaquisse E, Fraga S, Meireles P, Macassa G, Soares J, Mbofana F, et al. Sexual and physical intimate partner violence among women using antenatal care in Nampula, Mozambique. J Public Health Africa. 2018 Jul 6;9.

(14) INS. Ronda de Vigilância Epidemiológica do HIV e Sífilis em Moçambique , 2011 Principais Resultados. Maputo; 2013.

(15) Ezechi OC hukwujekw., Kalejaiye OO lufel., Gab-Okafor CV ivia., Oladele DA yol., Oke BO ludar., Musa ZA desol., et al. Sero-prevalence and factors associated with Hepatitis B and C co-infection in pregnant Nigerian women living with HIV infection. Pan Afr Med J. 2014;17:197.

(16) Tessema B, Yismaw G, Kassu A, Amsalu A, Mulu A, Emmrich F, et al. Seroprevalence of HIV, HBV, HCV and syphilis infections among blood donors at Gondar University Teaching Hospital, Northwest Ethiopia: Declining trends over a period of five years. BMC Infect Dis. 2010;10.

(17) Young PW, Mahomed M, Horth RZ, Shiraishi RW, Jani I V. Routine data from prevention of mother-to-child transmission (PMTCT) HIV testing not yet ready for HIV surveillance in Mozambique: a retrospective analysis of matched test results. BMC Infect Dis [Internet]. 2013;13(1):96. Available from: https://doi.org/10.1186/1471-2334-

-96

(18) Fedatto M da S. The AIDS epidemic and the mozambican society of medicines: An analysis of Brazilian cooperation. Cienc e Saude Coletiva. 2017;22(7):2295–304.

(19) Gelderblom HR. Structure and Classification of Viruses. In: Baron S, editor. Medical Microbiology [Internet]. 4th editio. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Available from:

http://login.research4life.org/tacsgr1www_ncbi_nlm_nih_gov/books/NBK8174/%0A

(20) Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature [Internet]. 1999;397(6718):436–41. Available from: https://doi.org/10.1038/17130

(21) Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol [Internet]. 2018 Dec 13;9(1):207–99. Available from: https://pubmed.ncbi.nlm.nih.gov/30549020

(22) Miceli MC, Parnes JR. Role of CD4 and CD8 in T Cell Activation and Differentiation. In: Dixon FJBT-A in I, editor. Advances in Immunology [Internet]. Academic Press; 1993. p. 59–122. Available from: http://www.sciencedirect.com/science/article/pii/S0065277608604988

(23) Santos-Costa Q, Lopes MM, Calado M, Azevedo-Pereira JM. HIV-2 interaction with cell coreceptors: amino acids within the V1/V2 region of viral envelope are determinant for CCR8, CCR5 and CXCR4 usage. Retrovirology [Internet]. 2014 Nov 25;11:99. Available from: https://pubmed.ncbi.nlm.nih.gov/25421818

(24) Jaffar S, Wilkins A, Ngom PT, Sabally S, Corrah T, Bangali JE, et al. Rate of Decline of Percentage CD4+ Cells Is Faster in HIV-1 Than in HIV-2 Infection. JAIDS J Acquir Immune Defic Syndr [Internet]. 1997;16(5). Available from: https://journals.lww.com/jaids/Fulltext/1997/12150/Rate_of_Decline_of_Percentage_CD4__Cells_Is_Faster.3.aspx

(25) Moir S, Fauci AS. B cells in HIV infection and disease. Nat Rev Immunol [Internet]. 2009;9(4):235–45. Available from: https://doi.org/10.1038/nri2524

(26) Manches O, Frleta D, Bhardwaj N. Dendritic cells in progression and pathology of HIV infection. Trends Immunol [Internet]. 2014;35(3):114–22. Available from: http://www.sciencedirect.com/science/article/pii/S1471490613001567

(27) Neimark J. The End of AIDS: Beyond the drug cocktail. Beyond a vaccine. Scientists are talking about total cure. Discover Magazine [Internet]. 2011; Available from: https://www.discovermagazine.com/health/the-end-of-aids

(28) Moelling K, Broecker F. Viruses and Evolution – Viruses First? A Personal Perspective. Front Microbiol [Internet]. 2019;10:523. Available from: https://www.frontiersin.org/article/10.3389/fmicb.2019.00523

(29) Elbahesh H, Gerlach T, Saletti G, Rimmelzwaan GF. Response Modifiers: Tweaking the Immune Response Against Influenza A Virus [Internet]. Vol. 10, Frontiers in Immunology. 2019. p. 809. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2019.00809

(30) Tang Y, George AM, Petrechko O, Nouvet FJ, Sweet SD, Tanaka Y, et al. Pseudotyping of HIV-1 with Human T-Lymphotropic Virus 1 (HTLV-1) Envelope Glycoprotein during HIV-1–HTLV-1 Coinfection Facilitates Direct HIV-1 Infection of Female Genital Epithelial Cells: Implications for Sexual Transmission of HIV-1. Fernandez-Sesma A, editor. mSphere [Internet]. 2018 Apr 25;3(2):e00038-18. Available from: http://msphere.asm.org/content/3/2/e00038-18.abstract

(31) Laher AE, Ebrahim O. HTLV-1, ATLL, severe hypercalcaemia and HIV-1 co-infection: an overview. Pan Afr Med J [Internet]. 2018 May 28;30:61. Available from: https://pubmed.ncbi.nlm.nih.gov/30344845

(32) Abreu CM, Veenhuis RT, Avalos CR, Graham S, Queen SE, Shirk EN, et al. Infectious Virus Persists in CD4<sup>+</sup> T Cells and Macrophages in Antiretroviral Therapy-Suppressed Simian Immunodeficiency Virus-Infected Macaques. Silvestri G, editor. J Virol [Internet]. 2019 Aug 1;93(15):e00065-19. Available from: http://jvi.asm.org/content/93/15/e00065-19.abstract

(33) Agas A, Schuetz H, Mishra V, Szlachetka AM, Haorah J. Antiretroviral drug-S for a possible HIV elimination. Int J Physiol Pathophysiol Pharmacol [Internet]. 2019 Aug 15;11(4):149–62. Available from: https://pubmed.ncbi.nlm.nih.gov/31523362

(34) Saez-Cirion A, Jacquelin B, Barré-Sinoussi F, Müller-Trutwin M. Immune responses during spontaneous control of HIV and AIDS: what is the hope for a cure? Philos Trans R Soc B Biol Sci [Internet]. 2014 Jun 19;369(1645):20130436. Available from: https://doi.org/10.1098/rstb.2013.0436

(35) Guha D, Ayyavoo V. Innate Immune Evasion Strategies by Human Immunodeficiency Virus Type 1. Isrn Aids. 2013;2013:1–10.

(36) Gargan S, Ahmed S, Mahony R, Bannan C, Napoletano S, O’Farrelly C, et al. HIV-1 Promotes the Degradation of Components of the Type 1 IFN JAK/STAT Pathway and Blocks Anti-viral ISG Induction. EBioMedicine [Internet]. 2018;30:203–16. Available from: http://www.sciencedirect.com/science/article/pii/S2352396418300902

(37) Beachboard DC, Horner SM. Innate immune evasion strategies of DNA and RNA viruses. Curr Opin Microbiol [Internet]. 2016;32:113–9. Available from: http://www.sciencedirect.com/science/article/pii/S1369527416300704

(38) Bracq L, Xie M, Benichou S, Bouchet J. Mechanisms for Cell-to-Cell Transmission of HIV-1 [Internet]. Vol. 9, Frontiers in Immunology . 2018. p. 260. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2018.00260

(39) Vanhamel J, Bruggemans A, Debyser Z. Establishment of latent HIV-1 reservoirs: what do we really know? J virus Erad [Internet]. 2019 Jan 1;5(1):3–9. Available from: https://pubmed.ncbi.nlm.nih.gov/30800420

(40) Nelemans T, Kikkert M. Viral Innate Immune Evasion and the Pathogenesis of Emerging RNA Virus Infections. Viruses [Internet]. 2019 Oct 18;11(10):961. Available from: https://pubmed.ncbi.nlm.nih.gov/31635238

(41) Barrios E. Soil biota, ecosystem services and land productivity. Ecol Econ [Internet]. 2007;64(2):269–85. Available from: http://www.sciencedirect.com/science/article/pii/S0921800907001693

(42) Global Edible Mushrooms Market-Industry Trends, Opportunities and Forecasts to 2023 | Orbis Research [Internet]. Knowledge Sourcing Intelligence. 2017 [cited 2020 Apr 23]. p. 85. Available from: https://www.orbisresearch.com/reports/index/global-edible-mushrooms-market-industry-trends-opportunities-and-forecasts-to-2023

(43) Blagodatski A, Yatsunskaya M, Mikhailova V, Tiasto V, Kagansky A, Katanaev VL. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget [Internet]. 2018 Jun 26;9(49):29259–74. Available from: https://pubmed.ncbi.nlm.nih.gov/30018750

(44) Chang ST, Wasser SP. The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. Int J Med Mushrooms. 2012;14(2):95–134.

(45) Jayachandran M, Xiao J, Xu B. A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota. Int J Mol Sci [Internet]. 2017 Sep 8;18(9):1934. Available from: https://pubmed.ncbi.nlm.nih.gov/28885559

(46) Sharma D, Singh V, Singh DN. A Review on Phytochemistry and Pharmacology of Medicinal as well as Poisonous Mushrooms. Mini-Reviews Med Chem. 2017 Sep 27;17.

(47) Chang ST, Wasser SP. Current and future research trends in agricultural and biomedical applications of medicinal mushrooms and mushroom products (Review). Vol. 20, International Journal of Medicinal Mushrooms. Begell House Inc.; 2018. p. 1121–33.

(48) Rahi DK, Malik D. Diversity of Mushrooms and Their Metabolites of Nutraceutical and Therapeutic Significance. Juvvadi PR, editor. J Mycol [Internet]. 2016 [cited 2020 Mar 12];2016:7654123. Available from: https://doi.org/10.1155/2016/7654123

(49) Ferrão J, Bell V, Calabrese V, Pimentel L, Pintado M, T.H. F. Impact of Mushroom Nutrition on Microbiota and Potential for Preventative Health. J Food Nutr Res. 2017;5(4):226–33.

(50) Gupta S, Summuna B, Gupta M, Annepu SK. Edible Mushrooms: Cultivation, Bioactive Molecules, and Health Benefits. In: Mérillon J-M, Ramawat KG, editors. Bioactive Molecules in Food [Internet]. Cham: Springer International Publishing; 2018. p. 1–33. Available from: https://doi.org/10.1007/978-3-319-54528-8_86-1

(51) Raja HA, Miller AN, Pearce CJ, Oberlies NH. Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. J Nat Prod [Internet]. 2017/02/15. 2017 Mar 24;80(3):756–70. Available from: https://pubmed.ncbi.nlm.nih.gov/28199101

(52) Daletos G, Ebrahim W, Ancheeva E, El-Neketi M, Song W, Proksch* WL and P. Natural Products from Deep-Sea-Derived Fungi ̶ A New Source of Novel Bioactive Compounds? [Internet]. Vol. 25, Current Medicinal Chemistry. 2018. p. 186–207. Available from: http://www.eurekaselect.com/node/150872/article

(53) Overy DP, Rämä T, Oosterhuis R, Walker AK, Pang K-L. The Neglected Marine Fungi, Sensu stricto, and Their Isolation for Natural Products’ Discovery. Mar Drugs [Internet]. 2019 Jan 10;17(1):42. Available from: https://pubmed.ncbi.nlm.nih.gov/30634599

(54) Nakamichi N, Nakayama K, Ishimoto T, Masuo Y, Wakayama T, Sekiguchi H, et al. Food-derived hydrophilic antioxidant ergothioneine is distributed to the brain and exerts antidepressant effect in mice. Brain Behav [Internet]. 2016 Apr 22;6(6):e00477–e00477. Available from: https://pubmed.ncbi.nlm.nih.gov/27134772

(55) Beelman RB, Kalaras MD, Richie JP. Micronutrients and Bioactive Compounds in Mushrooms: A Recipe for Healthy Aging? Nutr Today. 2019 Jan 1;54(1):16–22.

(56) Praphruet R, Charerntantanakul W. Rapid identification of poisonous mushroom species by Real-time PCR-

based technique. J Agric Res Ext. 2014;31(3):45–53.

(57) Figueira MS, Sá LA, Vasconcelos AS, Moreira DR, Laurindo PS, Ribeiro DR, et al. Nutritional Supplementation with the Mushroom Agaricus sylvaticus Reduces Oxidative Stress in Children with HIV. Can J Infect Dis Med Microbiol [Internet]. 2014;25(5):257–64. Available from: http://10.0.4.131/2014/609016

(58) Al-Obaidi JR. Proteomics of edible mushrooms: A mini-review. Electrophoresis [Internet]. 2016 May 1;37(10):1257–63. Available from: https://doi.org/10.1002/elps.201600031

(59) Zhang M, Cui SW, Cheung PCK, Wang Q. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol [Internet].

;18(1):4–19. Available from: http://www.sciencedirect.com/science/article/pii/S0924224406002470

(60) Ferreira ICFR, Vaz JA, Martins MHV and A, C.F.R. Ferreira I, A. Vaz J, Vasconcelos MH, et al. Compounds from Wild Mushrooms with Antitumor Potential. Anticancer Agents Med Chem [Internet]. 2010;10(5):424–36. Available from: http://www.eurekaselect.com/node/71869/article

(61) Stier H, Ebbeskotte V, Gruenwald J. Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr J. 2014;13(1):1–9.

(62) Ferreira I, Barros L, Abreu R. Antioxidants in Wild Mushrooms. Curr Med Chem. 2009;16(12):1543–60.

(63) Nowacka N, Nowak R, Drozd M, Olech M, Los R, Malm A. Antibacterial, antiradical potential and phenolic compounds of thirty-one polish mushrooms. PLoS One. 2015;10(10):1–13.

(64) Guillamón E, García-Lafuente A, Lozano M, D´Arrigo M, Rostagno MA, Villares A, et al. Edible mushrooms: Role in the prevention of cardiovascular diseases. Fitoterapia [Internet]. 2010;81(7):715–23. Available from: http://www.sciencedirect.com/science/article/pii/S0367326X10001358

(65) Keong CY. Medicinal Values of Selected Mushrooms with Special Reference to Anti-Hypercholesterolemia. In: Hypercholesterolemia [Internet]. InTech; 2015. Available from: http://10.0.22.140/59424

(66) Teplyakova T V., Kosogova TA. Antiviral effect of agaricomycetes mushrooms (Review). Vol. 18, International Journal of Medicinal Mushrooms. Begell House Inc.; 2016. p. 375–86.

(67) Kosanić M, Ranković B, Dašić M. Mushrooms as possible antioxidant and antimicrobial agents. Iran J Pharm Res. 2012;11(4):1095–102.

(68) Ademola IO, Odeniran PO. Novel trypanocide from an extract of pleurotus sajor-caju against trypanosoma congolense. Pharm Biol [Internet]. 2017;55(1):132–8. Available from: http://dx.doi.org/10.1080/13880209.2016.1230878

(69) Alves MJ, Ferreira ICFR, Dias J, Teixeira V, Martins A, Pintado M. A review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds. Curr Top Med Chem. 2013;13(21):2648–59.

(70) Merdivan S, Lindequist U. Medicinal Mushrooms with Antiallergic Activities. In: Agrawal DC, Tsay H-S, Shyur L-F, Wu Y-C, Wang S-Y, editors. Medicinal Plants and Fungi: Recent Advances in Research and Development [Internet]. Singapore: Springer Singapore; 2017. p. 93–110. Available from: https://doi.org/10.1007/978-981-10-5978-0_4

(71) Wasser SP, Weis AL. General Description of the Most Important Medicinal Higher Basidiomycetes Mushrooms. 1. Int J Med Mushrooms [Internet]. 1999;1(4):351–70. Available from: http://dl.begellhouse.com/journals/708ae68d64b17c52,541026cc01c467e3,328c742819c58be6.html

(72) Taofiq O, Heleno SA, Calhelha RC, Alves MJ, Barros L, Barreiro MF, et al. Development of Mushroom-Based Cosmeceutical Formulations with Anti-Inflammatory, Anti-Tyrosinase, Antioxidant, and Antibacterial Properties. Molecules. 2016 Oct;21(10).

(73) Li B, Lee D-S, Kang Y, Yao N-Q, An R-B, Kim Y-C. Protective effect of ganodermanondiol isolated from the Lingzhi mushroom against tert-butyl hydroperoxide-induced hepatotoxicity through Nrf2-mediated antioxidant enzymes. Food Chem Toxicol. 2013 Mar;53:317–24.

(74) Soares AA, De Sá-Nakanishi BA, Bracht A, Da Costa MS, Koehnlein AE, De Souza GC, et al. Hepatoprotective Effects of Mushrooms. Vol. 18, Molecules . 2013.

(75) Kanagasabapathy G, Kuppusamy UR, Abd Malek SN, Abdulla MA, Chua K-H, Sabaratnam V. Glucan-rich polysaccharides from Pleurotus sajor-caju (Fr.) Singer prevents glucose intolerance, insulin resistance and inflammation in C57BL/6J mice fed a high-fat diet. BMC Complement Altern Med [Internet]. 2012;12(1):261. Available from: https://doi.org/10.1186/1472-6882-12-261

(76) Ng SH, Mohd Zain MS, Zakaria F, Wan Ishak WR, Wan Ahmad WAN. Hypoglycemic and Antidiabetic Effect of Pleurotus sajor-caju Aqueous Extract in Normal and Streptozotocin-Induced Diabetic Rats. Papatheodorou K, editor. Biomed Res Int [Internet]. 2015;2015:214918. Available from: https://doi.org/10.1155/2015/214918

(77) Silva Couto J, Pereira da Silva D. Evaluation of the Efficacy of Coriolus versicolor Supplementation in HPV Lesions (LSIL). In: Poster presented at the 20th European Congress of Obstetrics and Gynecology, Lisbon, Portugal March. Lisbon; 2008.

(78) Stojkovic D, Ferreria I, Sokovic M. Editorial (Thematic Issue: Medicinal Chemistry from Fungi and Back: Discovery of Novel Anti-Fungal Drugs and Mycotherapy of Cancer and Other Diseases with Fungal Metabolites). Curr Top Med Chem. 2013;13(21):2647–2647.

(79) Smith J, Rowan N, Sullivan R. Medicinal mushrooms: their therapeutic properties and current medical usage with special emphasis on cancer treatments [Internet]. London: Cancer Research UK London; 2002. 256 p. Available from: http://www.davidmoore.org.uk/Assets/Printed_documents/2002_Smith_etal_Medicinal_Mushrooms_complete.pdf

(80) Guggenheim AG, Wright KM, Zwickey HL. Immune Modulation From Five Major Mushrooms: Application to Integrative Oncology. Integr Med (Encinitas) [Internet]. 2014 Feb;13(1):32–44. Available from: https://pubmed.ncbi.nlm.nih.gov/26770080

(81) Maldonado S, Fitzgerald-Bocarsly P. Antifungal Activity of Plasmacytoid Dendritic Cells and the Impact of Chronic HIV Infection. Front Immunol [Internet]. 2017;8(DEC):1705. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2017.01705

(82) Ayeka PA. Potential of Mushroom Compounds as Immunomodulators in Cancer Immunotherapy: A Review. Cabral C, editor. Evidence-Based Complement Altern Med [Internet]. 2018;2018:7271509. Available from: https://doi.org/10.1155/2018/7271509

(83) Tochikura TS, Nakashima H, Ohashi Y, Yamamoto N. Inhibition (in vitro) of replication and of the cytopathic effect of human immunodeficiency virus by an extract of the culture medium of Lentinus edodes mycelia. Med Microbiol Immunol [Internet]. 1988;177(5):235–44. Available from: https://doi.org/10.1007/BF00189409

(84) Lull C, Wichers HJ, Savelkoul HFJ. Antiinflammatory and immunomodulating properties of fungal metabolites. Mediators Inflamm. 2005;2005(2):63–80.

(85) Rodríguez-valentín M, López S, Rivera M, Ríos-Olivares E, Cubano L, Boukli NM. Naturally Derived Anti-HIV Polysaccharide Peptide (PSP) Triggers a Toll-Like Receptor 4-Dependent Antiviral Immune Response. Conlon M, editor. J Immunol Res [Internet]. 2018;2018:8741698. Available from: https://doi.org/10.1155/2018/8741698

(86) Zied DC, Pardo-Giménez A. Edible and medicinal mushrooms: technology and applications. John Wiley & Sons; 2017.

(87) Cör D, Knez Ž, Hrnčič MK. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma Lucidum terpenoids and polysaccharides: A review. Molecules. 2018;23(3):1–21.

(88) Gordon M, Bihari B, Goosby E, Gorter R, Greco M, Guralnik M, et al. A placebo-controlled trial of the immune modulator, lentinan, in HIV-positive patients: a phase I/II trial. J Med [Internet]. 1998;29(5–6):305—330. Available from: http://europepmc.org/abstract/MED/10503166

(89) Gao Y, Tang W, Gao H, Chan E, Lan J, Li X, et al. Antimicrobial Activity of the Medicinal Mushroom Ganoderma. Food Rev Int [Internet]. 2005 Apr 1;21(2):211–29. Available from: https://doi.org/10.1081/FRI-200051893

(90) Min B, Nakamura N, Miyashiro H, Bae K, Hattori M. ChemInform Abstract: Triterpenes from the Spores of Ganoderma lucidum and Their Inhibitory Activity Against HIV-1 Protease. Chem Pharm Bull (Tokyo). 2010 Apr 13;46:1607–12.

(91) Barton C, Vigor K, Scott R, Jones P, Lentfer H, Bax HJ, et al. Beta-glucan contamination of pharmaceutical products: How much should we accept? Cancer Immunol Immunother [Internet]. 2016;65(11):1289–301. Available from: https://doi.org/10.1007/s00262-016-1875-9

(92) Linnakoski R, Reshamwala D, Veteli P, Cortina-Escribano M, Vanhanen H, Marjomäki V. Antiviral agents from fungi: Diversity, mechanisms and potential applications. Front Microbiol. 2018;9(OCT).

(93) Lindequist U, Niedermeyer THJ, Jülich WD. The pharmacological potential of mushrooms. Evidence-based Complement Altern Med. 2005;2(3):285–99.

(94) Ruthes AC, Smiderle FR, Iacomini M. Mushroom heteropolysaccharides: A review on their sources, structure and biological effects. Carbohydr Polym [Internet]. 2016;136:358–75. Available from: http://www.sciencedirect.com/science/article/pii/S0144861715008024

(95) Che X-Q, Li S-P, Zhao J. [Ganoderma triterpenoids from aqueous extract of Ganoderma lucidum]. Zhongguo Zhong Yao Za Zhi [Internet]. 2017;42(10):1908—1915. Available from: https://doi.org/10.19540/j.cnki.cjcmm.20170412.001

(96) Chang TS, Chiang CM, Kao YH, Wu JY, Wu YW, Wang TY. A new triterpenoid glucoside from a novel acidic glycosylation of ganoderic acid a via recombinant glycosyltransferase of bacillus subtilis. Molecules. 2019;24(19):1–12.

(97) Hoffmann C, Sabranski M, Esser S. HIV-Associated Kaposi’s Sarcoma. Oncol Res Treat [Internet]. 2017;40(3):94–8. Available from: https://www.karger.com/DOI/10.1159/000455971

(98) Okamoto T, Kodoi R, Nonaka Y, Fukuda I, Hashimoto T, Kanazawa K, et al. Lentinan from shiitake mushroom (Lentinus edodes) suppresses expression of cytochrome P450 1A subfamily in the mouse liver. BioFactors [Internet]. 2004 Jan 1;21(1‐4):407–9. Available from: https://doi.org/10.1002/biof.552210180

(99) Ina K, Kataoka T, Ando T. The Use of Lentinan for Treating Gastric Cancer. Anticancer Agents Med Chem. 2013;13(5):681–8.

(100) Saleh MH, Rashedi I, Keating A. Immunomodulatory properties of coriolus versicolor: The role of polysaccharopeptide. Front Immunol. 2017;8(SEP):1–12.

(101) Fritz H, Kennedy DA, Ishii M, Fergusson D, Fernandes R, Cooley K, et al. Polysaccharide K and Coriolus versicolor Extracts for Lung Cancer: A Systematic Review. Integr Cancer Ther. 2015;14(3):201–11.

(102) Niimoto M, Hattori T, Tamada R, Sugimachi K, Inokuchi K, Ogawa N. Postoperative adjuvant immunochemotherapy with mitomycin C, futraful and PSK for gastric cancer. An analysis of data on 579 patients followed for five years. Jpn J Surg [Internet]. 1988;18(6):681–6. Available from: https://doi.org/10.1007/BF02471530

(103) Nakazato H, Koike A, Saji S, Ogawa N, Sakamoto J, Nakazato H, et al. Efficacy of immunochemotherapy as adjuvant treatment after curative resection of gastric cancer. Lancet [Internet]. 1994;343(8906):1122–6. Available from: http://www.sciencedirect.com/science/article/pii/S014067369490233X

(104) Shiu WCT, Leung TWT, Tao M. A clinical study of PSP on peripheral blood counts during chemotherapy. Phyther Res [Internet]. 1992 Jul 1;6(4):217–8. Available from: https://doi.org/10.1002/ptr.2650060410

(105) Brandt CR, Piraino F. Mushroom antivirals. Recent Res Dev Antimicrob Agents Chemother. 2000;4(1):11–26.

(106) Lee K-H, Morris-Natschke SL, Yang X, Huang R, Zhou T, Wu S-F, et al. Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine. J Tradit Complement Med [Internet]. 2012;2(2):1–12. Available from: http://www.sciencedirect.com/science/article/pii/S2225411016300815

(107) Chihara G, Maeda Y, Hamuro J, Sasaki T, Fukuoka F. Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) sing. Nature. 1969;222(5194):687–8.

(108) Bharadwaj S, Lee KE, Dwivedi VD, Yadava U, Panwar A, Lucas SJ, et al. Discovery of Ganoderma lucidum triterpenoids as potential inhibitors against Dengue virus NS2B-NS3 protease. Sci Rep [Internet]. 2019 Dec 13;9(1):19059. Available from: https://pubmed.ncbi.nlm.nih.gov/31836806

(109) OKAZAKI M, ADACHI Y, OHNO N, YADOMAE T. Structure-Activity Relationship of (1→3)-β-D-Glucans in the Induction of Cytokine Production from Macrophages, in Vitro. Biol Pharm Bull. 1995;18(10):1320–7.

(110) 110. Gu Y-H, Belury MA. Selective induction of apoptosis in murine skin carcinoma cells (CH72) by an ethanol extract of Lentinula edodes. Cancer Lett [Internet]. 2005;220(1):21–8. Available from: http://www.sciencedirect.com/science/article/pii/S0304383504004732

(111) Bisen PS, Baghel RK, Sanodiya BS, Prasad GST and GBKS. Lentinus edodes: A Macrofungus with Pharmacological Activities [Internet]. Vol. 17, Current Medicinal Chemistry. 2010. p. 2419–30. Available from: http://www.eurekaselect.com/node/71856/article

(112) Takehara M, Kuida K, Mori K. Antiviral activity of virus-like particles from Lentinus edodes (Shiitake). Brief report. Arch Virol. 1979;59(3):269–74.

(113) Isaacs A, Lindenmann J, Andrewes CH. Virus interference. I. The interferon. Proc R Soc London Ser B - Biol Sci [Internet]. 1957 Sep 12;147(927):258–67. Available from: https://doi.org/10.1098/rspb.1957.0048

(114) Samuel CE. Antiviral Actions of Interferons. Clin Microbiol Rev [Internet]. 2001 Oct 1;14(4):778 LP – 809. Available from: http://cmr.asm.org/content/14/4/778.abstract

(115) Boasso A. Type I Interferon at the Interface of Antiviral Immunity and Immune Regulation: The Curious Case of HIV-1. Scientifica (Cairo). 2013;2013:580968.

(116) Soper A, Kimura I, Nagaoka S, Konno Y, Yamamoto K, Koyanagi Y, et al. Type I interferon responses by HIV-1 infection: Association with disease progression and control. Front Immunol. 2018;8(JAN):1–11.

(117) Phan C-W, Wang J-K, Cheah S-C, Naidu M, David P, Sabaratnam V. A review on the nucleic acid constituents in mushrooms: nucleobases, nucleosides and nucleotides. Crit Rev Biotechnol. 2018 Aug;38(5):762–77.

(118) Pisetsky DS. The central role of nucleic acids in the pathogenesis of systemic lupus erythematosus. F1000Research [Internet]. 2019 Apr 3;8:F1000 Faculty Rev-368. Available from: https://pubmed.ncbi.nlm.nih.gov/31001416

(119) Suzuki F, Suzuki C, Shimomura E, Maeda H, Fujii T, Ishida N. Antiviral and interferon-inducing activities of a new peptidomannan, KS-2, extracted from culture mycelia of Lentinus edodes. J Antibiot (Tokyo). 1979 Dec;32(12):1336–45.

(120) Friedman M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods (Basel, Switzerland). 2016 Nov;5(4).

(121) Kuroki T, Lee S, Hirohama M, Taku T, Kumakura M, Haruyama T, et al. Inhibition of Influenza Virus Infection by Lentinus edodes Mycelia Extract Through Its Direct Action and Immunopotentiating Activity. Front Microbiol. 2018;9:1164.

(122) Aoki T. Editorial: Murine type-C RNA viruses: a proposed reclassification, other possible pathogenicities, and a new immunologic function. J Natl Cancer Inst. 1974 Apr;52(4):1029–34.

(123) Gordon M, Guralnik M, Kaneko Y, Mimura T, Goodgame J, DeMarzo C, et al. A phase II controlled study of a combination of the immune modulator, lentinan, with didanosine (ddI) in HIV patients with CD4 cells of 200-500/mm3. J Med [Internet]. 1995;26(5–6):193—207. Available from: http://europepmc.org/abstract/MED/8721897

(124) Oluwole SF, Ali AO, Shafaee Z, DePaz HA. Breast cancer in women with HIV/AIDS: report of five cases with a review of the literature. J Surg Oncol. 2005 Jan;89(1):23–7.

(125) Palan M, Shousha S, Krell J, Stebbing J. Breast Cancer in the Setting of HIV. Vol. 2011, Pathology research

international. 2011. p. 925712.

(126) Aoki T. Abstracts of the Third International Conference on Immunopharmacology. Florence, Italy, 6-9 May 1985. Int J Immunopharmacol. 1985;7(3):293–422.

(127) Wang H, Cai Y, Zheng Y, Bai Q, Xie D, Yu J. Efficacy of biological response modifier lentinan with chemotherapy for advanced cancer: a meta-analysis. Cancer Med. 2017 Oct;6(10):2222–33.

(128) Ren G, Xu L, Lu T, Yin J. Structural characterization and antiviral activity of lentinan from Lentinus edodes mycelia against infectious hematopoietic necrosis virus. Int J Biol Macromol. 2018 Aug;115:1202–10.

(129) Perdomo-Celis F, Taborda NA, Rugeles MT. CD8+ T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy [Internet]. Vol. 10, Frontiers in Immunology . 2019. p. 1896. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2019.01896

(130) Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan;373(6510):123–6.

(131) Sengupta S, Siliciano RF. Targeting the Latent Reservoir for HIV-1. Immunity. 2018 May;48(5):872–95.

(132) Azevedo-Pereira JM, Pedro C, Marta C, Quirina SC, Pedro B. Inhibition of HIV Replication by Host Cellular Factors. Trends Basic Ther Options HIV Infect Towar a Funct Cure. 2015;75.

(133) Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007 Jun;35(4):495–516.

(134) Fulda S, Gorman AM, Hori O, Samali A. Cellular stress responses: cell survival and cell death. Int J Cell Biol. 2010;2010:214074.

(135) Röling MD, Stoszko M, Mahmoudi T. Molecular mechanisms controlling HIV transcription and latency-implications for therapeutic viral reactivation. Adv Mol Retrovirology InTech. 2016;45–105.

(136) Vidya Vijayan KK, Karthigeyan KP, Tripathi SP, Hanna LE. Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front Immunol. 2017;8:580.

(137) D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019 Jun;43(6):582–92.

(138) Yam-Puc JC, Zhang L, Zhang Y, Toellner K-M. Role of B-cell receptors for B-cell development and antigen-induced differentiation. F1000Research. 2018;7:429.

(139) Burini RC, Moreto F, Yu Y-M. Chapter 15 - HIV-Positive Patients Respond to Dietary Supplementation with Cysteine or Glutamine. In: Watson RRBT-H of HIVIP, editor. Health of HIV Infected People [Internet]. Boston: Academic Press; 2015. p. 245–69. Available from:

http://www.sciencedirect.com/science/article/pii/B9780128007679000157

(140) Jiang S, Yan W, Wang SE. MicroRNA Let-7 in B lymphocyte activation. Vol. 11, Aging. United States; 2019. p. 2547–8.

(141) Kedia-Mehta N, Finlay DK. Competition for nutrients and its role in controlling immune responses. Nat Commun [Internet]. 2019;10(1):2123. Available from: https://doi.org/10.1038/s41467-019-10015-4

(142) Eisenreich W, Rudel T, Heesemann J, Goebel W. How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Front Cell Infect Microbiol [Internet]. 2019 Mar 4;9:42. Available from: https://pubmed.ncbi.nlm.nih.gov/30886834

(143) Clerc I, Abba Moussa D, Vahlas Z, Tardito S, Oburoglu L, Hope TJ, et al. Entry of glucose- and glutamine-derived carbons into the citric acid cycle supports early steps of HIV-1 infection in CD4 T cells. Nat Metab

[Internet]. 2019;1(7):717–30. Available from: https://doi.org/10.1038/s42255-019-0084-1

(144) Hegedus A, Kavanagh Williamson M, Khan MB, Dias Zeidler J, Da Poian AT, El-Bacha T, et al. Evidence for Altered Glutamine Metabolism in Human Immunodeficiency Virus Type 1 Infected Primary Human CD4+ T Cells. AIDS Res Hum Retroviruses [Internet]. 2017 Aug 26;33(12):1236–47. Available from: https://doi.org/10.1089/aid.2017.0165

(145) Mayer KA, Stöckl J, Zlabinger GJ, Gualdoni GA. Hijacking the Supplies: Metabolism as a Novel Facet of Virus-Host Interaction [Internet]. Vol. 10, Frontiers in Immunology . 2019. p. 1533. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2019.01533

(146) Abbas W, Herbein G. T-Cell Signaling in HIV-1 Infection. Open Virol J [Internet]. 2013 Jul 26;7:57–71. Available from: https://pubmed.ncbi.nlm.nih.gov/23986795

(147) Alcover A, Di Bartolo V, Roda-Navarro P. Editorial: Molecular Dynamics at the Immunological Synapse [Internet]. Vol. 7, Frontiers in Immunology . 2016. p. 632. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2016.00632

(148) Mazalovska M, Kouokam JC. Lectins as Promising Therapeutics for the Prevention and Treatment of HIV and Other Potential Coinfections. Iannetta M, editor. Biomed Res Int [Internet]. 2018;2018:3750646. Available from: https://doi.org/10.1155/2018/3750646

(149) Hassan AM, Rouf R, Tiralongo E, May WT, Tiralongo J. Mushroom Lectins: Specificity, Structure and Bioactivity Relevant to Human Disease. Vol. 16, International Journal of Molecular Sciences . 2015.

(150) Singh RS, Kaur HP, Kanwar JR. Mushroom Lectins as Promising Anticancer Substances. Curr Protein Pept Sci. 2016;17(8):797–807.

(151) Mitchell CA, Ramessar K, O’Keefe BR. Antiviral lectins: Selective inhibitors of viral entry. Antiviral Res [Internet]. 2017;142:37–54. Available from: http://www.sciencedirect.com/science/article/pii/S0166354216307999

(152) Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD, et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol. 2014;192(8):3626–36.

(153) Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC, Steinhauser ML, et al. Amino Acids Rather than Glucose Account for the Majority of Cell Mass in Proliferating Mammalian Cells. Dev Cell [Internet]. 2016;36(5):540–9. Available from: http://www.sciencedirect.com/science/article/pii/S1534580716300363

(154) Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Vol. 10, Nutrients . 2018.

(155) Buck MD, O’Sullivan D, Pearce EL. T cell metabolism drives immunity. J Exp Med [Internet]. 2015 Aug 10;212(9):1345–60. Available from: https://doi.org/10.1084/jem.20151159

(156) Klimpel GR. Immune defenses. In: Medical Microbiology 4th edition. University of Texas Medical Branch at Galveston; 1996.

(157) Ma W-T, Yao X-T, Peng Q, Chen D-K. The protective and pathogenic roles of IL-17 in viral infections: friend or foe? Open Biol. 2019 Jul;9(7):190109.

(158) Lillehoj H, Liu Y, Calsamiglia S, Fernandez-Miyakawa ME, Chi F, Cravens RL, et al. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet Res. 2018 Jul;49(1):76.

(159) Kothari D, Patel S, Kim S-K. Anticancer and other therapeutic relevance of mushroom polysaccharides: A holistic appraisal. Biomed Pharmacother [Internet]. 2018;105:377–94. Available from: http://www.sciencedirect.com/science/article/pii/S0753332218324934

(160) Wu D, Lewis ED, Pae M, Meydani SN. Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Front Immunol. 2019;10(JAN):1–19.

(161) Rathee S, Rathee D, Rathee D, Kumar V, Rathee P. Mushrooms as therapeutic agents. Brazilian J Pharmacogn. 2012;22(2):459–74.

(162) Krupodorova T, Rybalko S, Barshteyn V. Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture. Virol Sin [Internet]. 2014;29(5):284–90. Available from: https://doi.org/10.1007/s12250-014-3486-y

(163) Stamets PE, Naeger NL, Evans JD, Han JO, Hopkins BK, Lopez D, et al. Extracts of Polypore Mushroom Mycelia Reduce Viruses in Honey Bees. Sci Rep [Internet]. 2018;8(1):13936. Available from: https://doi.org/10.1038/s41598-018-32194-8

(164) El-Mekkawy S, Meselhy MR, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N, et al. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma Lucidum. Phytochemistry [Internet]. 1998;49(6):1651–7. Available from: http://www.sciencedirect.com/science/article/pii/S0031942298002544

(165) Heaton SM. Harnessing host-virus evolution in antiviral therapy and immunotherapy. Clin Transl Immunol [Internet]. 2019 Jul 8;8(7):e1067–e1067. Available from: https://pubmed.ncbi.nlm.nih.gov/31312450

(166) Teplyakova T V, Psurtseva N V, Kosogova TA, Mazurkova NA, Khanin VA, Vlasenko VA. Antiviral activity of polyporoid mushrooms (higher Basidiomycetes) from Altai Mountains (Russia). Int J Med Mushrooms. 2012;14(1):37–45.

(167) Ma G, Yang W, Zhao L, Pei F, Fang D, Hu Q. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci Hum Wellness [Internet]. 2018;7(2):125–33. Available from: http://www.sciencedirect.com/science/article/pii/S2213453018300478

(168) Li C, Liu J, Zhang X, Wei S, Huang X, Huang Y, et al. Fish autophagy protein 5 exerts negative regulation on antiviral immune response against iridovirus and nodavirus. Front Immunol. 2019;10(MAR):1–13.

(169) Latgé J-P. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol [Internet]. 2007 Oct 1;66(2):279–90. Available from: https://doi.org/10.1111/j.1365-2958.2007.05872.x

(170) Gow N, Munro CA, Latge J-P. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol Spectr. 2017;5(3):1–25.

(171) Shcherba V V, Babitskaya VG, Kurchenko VP, Ikonnikova N V, Kukulyanskaya TA. Antioxidant properties of fungal melanin pigments. Appl Biochem Microbiol [Internet]. 2000;36(5):491–5. Available from: https://doi.org/10.1007/BF02731896

(172) Teplyakova T V., Kosogova TA. Antiviral Effect of Agaricomycetes Mushrooms (Review). Int J Med Mushrooms [Internet]. 2016 [cited 2020 Mar 12];18(5):375–86. Available from: http://www.dl.begellhouse.com/journals/708ae68d64b17c52,0cbef6a12a779453,5cf87a496f7a63d4.html

(173) ElObeid AS, Kamal-Eldin A, Abdelhalim MAK, Haseeb AM. Pharmacological Properties of Melanin and its Function in Health. Basic Clin Pharmacol Toxicol. 2017;120(6):515–22.

(174) Eyer L, Nencka R, de Clercq E, Seley-Radtke K, Růžek D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir Chem Chemother [Internet]. 2018;26:2040206618761299–2040206618761299. Available from: https://pubmed.ncbi.nlm.nih.gov/29534608

(175) Rahi DK, Malik D. Diversity of Mushrooms and Their Metabolites of Nutraceutical and Therapeutic Significance. Juvvadi PR, editor. J Mycol [Internet]. 2016;2016:7654123. Available from:

https://doi.org/10.1155/2016/7654123

(176) Zhang B-B, Guan Y-Y, Hu P-F, Chen L, Xu G-R, Liu L, et al. Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: recent advances and future development. Crit Rev Biotechnol [Internet]. 2019 May 19;39(4):541–54. Available from: https://doi.org/10.1080/07388551.2019.1577798

(177) Chunchao H, Guo J-Y. A Hypothesis: Supplementation with Mushroom-Derived Active Compound Modulates Immunity and Increases Survival in Response to Influenza Virus (H1N1) Infection. Evid Based Complement Alternat Med [Internet]. 2011/03/20. 2011;2011:252501. Available from: https://pubmed.ncbi.nlm.nih.gov/21660092

(178) Teplyakova T, Kosogova T. Fungal Bioactive Compounds with Antiviral Effect Tamara Teplyakova. J Pharm Pharmacol. 2015 Aug 28;3.

(179) Novikova S. Enzyme Preparations from Higher Basidiomycetes Mushrooms for Making Polymer Materials with Thromboresistant Features. Int J Med Mushrooms. 2001 Jan 1;3(1):5.

(180) Rathore H, Prasad S, Sharma S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition [Internet]. 2017;5(2):35–46. Available from: http://www.sciencedirect.com/science/article/pii/S2213434417300051

(181) Ahmed A, Siman-Tov G, Hall G, Bhalla N, Narayanan A. Human Antimicrobial Peptides as Therapeutics for Viral Infections. Viruses [Internet]. 2019 Aug 1;11(8):704. Available from: https://pubmed.ncbi.nlm.nih.gov/31374901

(182) Pylaeva E, Lang S, Jablonska J. The Essential Role of Type I Interferons in Differentiation and Activation of Tumor-Associated Neutrophils. Front Immunol [Internet]. 2016 Dec 21;7:629. Available from: https://pubmed.ncbi.nlm.nih.gov/28066438

(183) Law LMJ, Razooky BS, Li MMH, You S, Jurado A, Rice CM, et al. ZAP’s stress granule localization is correlated with its antiviral activity and induced by virus replication. PLoS Pathog [Internet]. 2019 May 22;15(5):e1007798–e1007798. Available from: https://pubmed.ncbi.nlm.nih.gov/31116799

(184) Kang X, Kirui A, Muszyński A, Widanage MCD, Chen A, Azadi P, et al. Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat Commun [Internet]. 2018 Jul 16;9(1):2747. Available from: https://pubmed.ncbi.nlm.nih.gov/30013106

(185) Stamets P. Mycelium running: how mushrooms can help save the world. Random House Digital, Inc.; 2005. 339 p.

(186) Ellan K, Thayan R, Raman J, Hidari KIPJ, Ismail N, Sabaratnam V. Anti-viral activity of culinary and medicinal mushroom extracts against dengue virus serotype 2: an in-vitro study. BMC Complement Altern Med [Internet]. 2019;19(1):260. Available from: https://doi.org/10.1186/s12906-019-2629-y

(187) Ryu E, Son M, Lee M, Lee K, Cho JY, Cho S, et al. Cordycepin is a novel chemical suppressor of Epstein-Barr virus replication. Oncoscience [Internet]. 2014 Dec 18;1(12):866–81. Available from: https://pubmed.ncbi.nlm.nih.gov/25621301

(188) Diling C, Chaoqun Z, Jian Y, Jian L, Jiyan S, Yizhen X, et al. Immunomodulatory Activities of a Fungal Protein Extracted from Hericium erinaceus through Regulating the Gut Microbiota [Internet]. Vol. 8, Frontiers in Immunology . 2017. p. 666. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2017.00666

(189) Ramesh S, Majrashi M, Almaghrabi M, Govindarajulu M, Fahoury E, Fadan M, et al. Overview of Therapeutic Efficacy of Mushrooms BT - Medicinal Mushrooms: Recent Progress in Research and Development. In: Agrawal DC, Dhanasekaran M, editors. Singapore: Springer Singapore; 2019. p. 103–41. Available from: https://doi.org/10.1007/978-981-13-6382-5_3

(190) Burk W. Puffball usages among North American Indians. J Ethnobiol. 1983;3(May):55–62.

(191) Rivière C, Hilbert J-L. Trends in natural product research: PSE young scientists’ meeting Lille 2017. Phytochem Rev [Internet]. 2018;17(5):947–9. Available from: https://doi.org/10.1007/s11101-018-9587-8

(192) Læssøe T, Spooner B. The uses of ‘Gasteromycetes.’ Top Catal. 1994;8(4):154–9.

(193) Cochran KW, Nishikawa T, Beneke ES. Botanical sources of influenza inhibitors. Antimicrob Agents Chemother. 1966;6:515–20.

(194) Breene WM. Nutritional and medicinal value of specialty mushrooms. J Food Prot. 1990;53(10):883–94.

(195) Hassan SA, Cochran KW. Orbivirus and Reovirus Infections. Bacteriol Rev. 1966;42:115.

(196) Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011 Sep;1(1):a006841.

(197) Rai M, Tidke G, Wasser SP. Therapeutic potential of mushrooms. 2005;

(198) Wasser SP. Medicinal Mushrooms in Human Clinical Studies. Part I. Anticancer, Oncoimmunological, and Immunomodulatory Activities: A Review. Int J Med Mushrooms. 2017;19(4):279–317.

(199) Inouye M, Inouye S. msDNA and bacterial reverse transcriptase. Annu Rev Microbiol. 1991;45:163–86.

(200) Baryshev PB, Bogachev V V, Gashnikova NM. HIV-1 genetic diversity in Russia: CRF63_02A1, a new HIV type 1 genetic variant spreading in Siberia. AIDS Res Hum Retroviruses. 2014 Jun;30(6):592–7.

(201) Mothana RAA, Awadh Ali NA, Jansen R, Wegner U, Mentel R, Lindequist U. Antiviral lanostanoid triterpenes from the fungus Ganoderma pfeifferi. Fitoterapia. 2003 Feb;74(1–2):177–80.

(202) Tochikura TS, Nakashima H, Kaneko Y, Kobayashi N, Yamamoto N. Suppression of human immunodeficiency virus replication by 3’-azido-3’-deoxythymidine in various human hematopoietic cell lines in vitro: augmentation of the effect by lentinan. Jpn J Cancer Res. 1987 Jun;78(6):583–9.

(203) WHO. Report of a WHO informal consultation on traditional medicine and AIDS : in vitro screening for anti-HIV activity, Geneva, 6-8 February 1989 [Internet]. 1989 [cited 2020 Apr 20]. Available from:

https://apps.who.int/iris/bitstream/handle/10665/59664/WHO_GPA_BMR_89.5.pdf

(204) Kurapati KR V, Atluri VS, Samikkannu T, Garcia G, Nair MPN. Natural Products as Anti-HIV Agents and Role in HIV-Associated Neurocognitive Disorders (HAND): A Brief Overview [Internet]. Vol. 6, Frontiers in Microbiology . 2016. p. 1444. Available from: https://www.frontiersin.org/article/10.3389/fmicb.2015.01444

(205) Salehi B, Kumar NVA, Şener B, Sharifi-Rad M, Kılıç M, Mahady GB, et al. Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus. Int J Mol Sci. 2018 May;19(5).

(206) Mosanya CH, Isaacs JD. Tolerising cellular therapies: what is their promise for autoimmune disease? Ann Rheum Dis. 2019 Mar;78(3):297–310.

(207) Fernandes TH, Calabrese V. Link between Herpes Simplex Virus and Alzheimer ´ s Disease Potential Role of Mushroom Nutrition Supplementation in Prevention. Clin J Mycol [Internet]. 2013;4:10–2. Available from: https://www.mycologyresearch.com/articles/newsletters/clinical-journal-of-mycology-vol-4

(208) Santos Arteiro JM, Martins MR, Salvador C, Candeias MF, Karmali A, Caldeira AT. Protein-polysaccharides of Trametes versicolor: Production and biological activities. Med Chem Res. 2012 Jun;21(6):937–43.

(209) Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med. 2012 Aug;2(8).

(210) Venuti A, Pastori C, Lopalco L. The Role of Natural Antibodies to CC Chemokine Receptor 5 in HIV Infection. Front Immunol. 2017;8:1358.

(211) Liang C-J, Lee C-W, Sung H-C, Chen Y-H, Chiang Y-C, Hsu H-Y, et al. Ganoderma lucidum Polysaccharides Reduce Lipopolysaccharide-Induced Interleukin-1 β Expression in Cultured Smooth Muscle Cells and in Thoracic Aortas in Mice. Evid Based Complement Alternat Med. 2014;2014:305149.

(212) MIN B-S, NAKAMURA N, MIYASHIRO H, BAE K-W, HATTORI M. Triterpenes from the Spores of Ganoderma lucidum and Their Inhibitory Activity against HIV-1 Protease. Chem Pharm Bull (Tokyo). 1998;46(10):1607–12.

(213) Min BS, Gao JJ, Hattori M, Lee HK, Kim YH. Anticomplement activity of terpenoids from the spores of Ganoderma lucidum. Planta Med. 2001 Dec;67(9):811–4.

(214) Dharmananda S. Medicinal Mushrooms. Bestways. 1988;July:54–8.

(215) KIM BK, KIM HW, CHOI EC. Anti-HIV activities of Ganoderma lucidum. In: The 5th International Symppsium on Ganoderma lucidum. Seol, Korea; 1993. p. 67–69.

(216) Bain CC, Schridde A. Origin, Differentiation, and Function of Intestinal Macrophages. Front Immunol. 2018;9:2733.

(217) Mayell M. Maitake extracts and their therapeutic potential. Altern Med Rev. 2001 Feb;6(1):48–60.

(218) Masuda Y, Nawa D, Nakayama Y, Konishi M, Nanba H. Soluble β-glucan from Grifola frondosa induces tumor regression in synergy with TLR9 agonist via dendritic cell-mediated immunity. J Leukoc Biol. 2015 Dec;98(6):1015–25.

(219) Harding K, Bergman N, Smith A, Lindley S, Szivek A, Milner R, et al. Response rate to a single dose of vinblastine administered to dogs with treatment-naive multicentric lymphoma. Vet Comp Oncol. 2018 Dec;16(4):636–41.

(220) Anlauf M, Hein L, Hense H-W, Kobberling J, Lasek R, Leidl R, et al. Complementary and alternative drug therapy versus science-oriented medicine. Ger Med Sci. 2015;13:Doc05.

(221) Mordeniz CME-C. Introductory Chapter: Traditional and Complementary Medicine. In Rijeka: IntechOpen; 2019. p. Ch. 1. Available from: https://doi.org/10.5772/intechopen.86373

(222) Orne-Gliemann J, Becquet R, Ekouevi DK, Leroy V, Perez F, Dabis F. Children and HIV/AIDS: from research to policy and action in resource-limited settings. Vol. 22, AIDS (London, England). England; 2008. p. 797–805.

(223) Duggan J, Peterson WS, Schutz M, Khuder S, Charkraborty J. Use of complementary and alternative therapies in HIV-infected patients. AIDS Patient Care STDS. 2001 Mar;15(3):159–67.

(224) Chang BL, van Servellen G, Lombardi E. Factors associated with complementary therapy use in people living with HIV/AIDS receiving antiretroviral therapy. J Altern Complement Med. 2003 Oct;9(5):695–710.

(225) Oche OM, Sadiq UA, Oladigbolu RA, Chinna K. Prevalence and factors associated with the use of traditional medicines among human immunodeficiency virus and acquired immunodeficiency syndrome patients in Sokoto, Nigeria. Ann Afr Med. 2018;17(3):125–32.

(226) Wachtel-Galo S, Benzie IFF. Herbal Medicine: An Introduction to Its History, Usage, Regulation, Current Trends, and Research Needs. In: Benzie I, Wachtel-Galor S, editors. Herbal Medicine: Biomolecular and Clinical Aspects [Internet]. 2nd editio. Boca Raton (FL): CRC Press/Taylor & Francis; 2011. Available from: https://www.ncbi.nlm.nih.gov/books/NBK92773/

(227) Baars EW, Zoen EB, Breitkreuz T, Martin D, Matthes H, Schoen-Angerer T von, et al. The Contribution of Complementary and Alternative Medicine to Reduce Antibiotic Use: A Narrative Review of Health Concepts, Prevention, and Treatment Strategies. Kim YC, editor. Evidence-Based Complement Altern Med [Internet]. 2019;2019:5365608. Available from: https://doi.org/10.1155/2019/5365608

(228) Avigan MI, Mozersky RP, Seeff LB. Scientific and Regulatory Perspectives in Herbal and Dietary Supplement Associated Hepatotoxicity in the United States. Int J Mol Sci. 2016 Mar;17(3):331.

(229) Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety [Internet]. Vol. 4, Frontiers in Pharmacology . 2014. p. 177. Available from: https://www.frontiersin.org/article/10.3389/fphar.2013.00177

(230) EFSA. Scientific topic: Food supplements | European Food Safety Authority [Internet]. 2018 [cited 2020 Apr 21]. Available from: https://www.efsa.europa.eu/en/topics/topic/food-supplements

(231) Chen Y, Peng G-F, Han X-Z, Wang W, Zhang G-Q, Li X. Apoptosis prediction via inhibition of AKT signaling pathway by neogrifolin. Int J Clin Exp Pathol. 2015;8(2):1154–64.

(232) Ren G, Zhao Y, Yang L, Fu C. Anti-proliferative effect of clitocine from the mushroom Leucopaxillus giganteus on human cervical cancer HeLa cells by inducing apoptosis. Cancer Lett. 2008 Apr;262(2):190–200.

(233) Gorelick-Ashkenazi A, Weiss R, Sapozhnikov L, Florentin A, Tarayrah-Ibraheim L, Dweik D, et al. Caspases maintain tissue integrity by an apoptosis-independent inhibition of cell migration and invasion. Nat Commun. 2018 Jul;9(1):2806.

(234) Hapuarachchi K, Wen T-C, Jeewon R, XL W, JC K. Mycosphere Essays 15. Ganoderma lucidum - Are the beneficial medical properties substantiated? 2016 Nov 8;7.

(235) Xu L, Wang H, Ng T. A laccase with HIV-1 reverse transcriptase inhibitory activity from the broth of mycelial culture of the mushroom Lentinus tigrinus. J Biomed Biotechnol. 2012;2012:536725.

(236) Durmus S, Ulgen KO. Comparative interactomics for virus-human protein-protein interactions: DNA viruses versus RNA viruses. FEBS Open Bio. 2017 Jan;7(1):96–107.

(237) Campbell EM, Hope TJ. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat Rev Microbiol. 2015 Aug;13(8):471–83.

(238) Lindequist U, Niedermeyer THJ, Jülich W-D. The pharmacological potential of mushrooms. Evid Based Complement Alternat Med [Internet]. 2005 Sep;2(3):285–99. Available from: https://pubmed.ncbi.nlm.nih.gov/16136207

(239) Gao L, Sun Y, Si J, Liu J, Sun G, Sun X, et al. Cryptoporus volvatus extract inhibits influenza virus replication in vitro and in vivo. PLoS One [Internet]. 2014 Dec 1;9(12):e113604–e113604. Available from: https://pubmed.ncbi.nlm.nih.gov/25437846

(240) Wong JH, Ng TB. Mushroom proteins with antibacterial, antifungal, antiviral, anti-parasite and anti-insect activities. In 2014. p. 199–208.

(241) Collins RA, Ng TB. Polysaccharopeptide from Coriolus versicolor has potential for use against human immunodeficiency virus type 1 infection. Life Sci. 1997;60(25):PL383-7.

(242) Vadthanarat S, Lumyong S, Raspé O. First record of Albatrellus (Russulales, Albatrellaceae) from Thailand. Phytotaxa. 2017 Aug 15;317:104.

(243) Cohen JI. Vaccine Development for Epstein-Barr Virus. Adv Exp Med Biol. 2018;1045:477–93.

(244) Barros AB, Ferrao J, Fernandes T. A safety assessment of Coriolus versicolor biomass as a food supplement. Food Nutr Res. 2016;60:29953.

(245) Ng TB. A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae). Gen Pharmacol. 1998 Jan;30(1):1–4.

(246) Vermeire K, Schols D. Anti-HIV agents targeting the interaction of gp120 with the cellular CD4 receptor.

Expert Opin Investig Drugs. 2005 Oct;14(10):1199–212.

(247) Holman CM, Minssen T, Solovy EM. Patentability Standards for Follow-On Pharmaceutical Innovation. Biotechnol Law Rep [Internet]. 2018 Jun 1;37(3):131–61. Available from: https://doi.org/10.1089/blr.2018.29073.cmh

(248) Roupas P, Keogh J, Noakes M, Margetts C, Taylor P. The role of edible mushrooms in health: Evaluation of the evidence. J Funct Foods [Internet]. 2012;4(4):687–709. Available from: http://www.sciencedirect.com/science/article/pii/S1756464612000746

(249) Saleh MH, Rashedi I, Keating A. Immunomodulatory Properties of Coriolus versicolor: The Role of Polysaccharopeptide. Front Immunol. 2017;8:1087.

(250) Chang Y, Zhang M, Jiang Y, Liu Y, Luo H, Hao C, et al. Preclinical and clinical studies of Coriolus versicolor

polysaccharopeptide as an immunotherapeutic in China. Discov Med. 2017 Apr;23(127):207–19.

(251) Connell BJ, Lortat-Jacob H. Human immunodeficiency virus and heparan sulfate: from attachment to entry inhibition. Front Immunol. 2013 Nov;4:385.

(252) Woodham AW, Skeate JG, Sanna AM, Taylor JR, Da Silva DM, Cannon PM, et al. Human Immunodeficiency Virus Immune Cell Receptors, Coreceptors, and Cofactors: Implications for Prevention and Treatment. AIDS Patient Care STDS. 2016 Jul;30(7):291–306.

(253) Hirose K, Hakozaki M, Kakuchi J, Matsunaga K, Yoshikumi C, Takahashi M, et al. A biological response modifier, PSK, inhibits reverse transcriptase in vitro. Biochem Biophys Res Commun. 1987 Dec;149(2):562–7.

(254) Powell M. Medicinal Mushrooms-A Clinical Guide. Mycology Press; 2015.

(255) Painter GR, Almond MR, Mao S, Liotta DC. Biochemical and mechanistic basis for the activity of nucleoside analogue inhibitors of HIV reverse transcriptase. Curr Top Med Chem. 2004;4(10):1035–44.

(256) Arts EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med. 2012 Apr;2(4):a007161.

(257) Akanbi MO, Scarsi KK, Taiwo B, Murphy RL. Combination nucleoside/nucleotide reverse transcriptase inhibitors for treatment of HIV infection. Expert Opin Pharmacother. 2012 Jan;13(1):65–79.

(258) Lanman T, Letendre S, Ma Q, Bang A, Ellis R. CNS Neurotoxicity of Antiretrovirals. J Neuroimmune Pharmacol. 2019 Dec;

(259) Tochikura TS, Nakashima H, Hirose K, Yamamoto N. A biological response modifier, PSK, inhibits human immunodeficiency virus infection in vitro. Biochem Biophys Res Commun. 1987 Oct;148(2):726–33.

(260) Rodriguez-Valentin M, Lopez S, Rivera M, Rios-Olivares E, Cubano L, Boukli NM. Naturally Derived Anti-HIV Polysaccharide Peptide (PSP) Triggers a Toll-Like Receptor 4-Dependent Antiviral Immune Response. J Immunol Res. 2018;2018:8741698.

(261) Barski MS, Minnell JJ, Maertens GN. Inhibition of HTLV-1 Infection by HIV-1 First- and Second-Generation Integrase Strand Transfer Inhibitors. Front Microbiol. 2019;10:1877.

(262) Wang HX, Ng TB. A laccase from the medicinal mushroom Ganoderma lucidum. Appl Microbiol Biotechnol. 2006 Sep;72(3):508–13.

(263) Kumar A, Herbein G. The macrophage: a therapeutic target in HIV-1 infection. Mol Cell Ther. 2014;2:10.

(264) Jones RB, Walker BD. HIV-specific CD8(+) T cells and HIV eradication. J Clin Invest. 2016 Feb;126(2):455–

(265) Javaid N, Yasmeen F, Choi S. Toll-Like Receptors and Relevant Emerging Therapeutics with Reference to Delivery Methods. Pharmaceutics. 2019 Sep;11(9).

(266) Chen S, Yong T, Zhang Y, Su J, Jiao C, Xie Y. Anti-tumor and Anti-angiogenic Ergosterols from Ganoderma lucidum. Front Chem. 2017;5:85.

(267) Selders GS, Fetz AE, Radic MZ, Bowlin GL. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater. 2017 Feb;4(1):55–68.

(268) FLÓREZ-SAMPEDRO L, ZAPATA W, OROZCO LP, MEJÍA AI, ARBOLEDA C, RUGELES MT. IN VITRO ANTI-HIV-1 ACTIVITY OF THE ENZYMATIC EXTRACT ENRICHED WITH LACCASE PRODUCED BY THE FUNGI GANODERMA SP. AND LENTINUS SP. . Vol. 23, Vitae . scieloco ; 2016. p. 109–18.

(269) Rossi P, Difrancia R, Quagliariello V, Savino E, Tralongo P, Randazzo CL, et al. B-glucans from Grifola frondosa and Ganoderma lucidum in breast cancer: an example of complementary and integrative medicine.

Oncotarget. 2018 May;9(37):24837–56.

(270) Mocchetti I, Campbell LA, Harry GJ, Avdoshina V. When human immunodeficiency virus meets chemokines and microglia: neuroprotection or neurodegeneration? J Neuroimmune Pharmacol. 2013 Mar;8(1):118–31.

(271) Inoue A, Kodama N, Nanba H. Effect of maitake (Grifola frondosa) D-fraction on the control of the T lymph node Th-1/Th-2 proportion. Biol Pharm Bull. 2002 Apr;25(4):536–40.

(272) Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017 Jun;8(23):38022–43.

(273) Kuhlmann A-S, Peterson CW, Kiem H-P. Chimeric antigen receptor T-cell approaches to HIV cure. Curr Opin HIV AIDS. 2018 Sep;13(5):446–53.

(274) Liu B, Zhang W, Zhang H. Development of CAR-T cells for long-term eradication and surveillance of HIV-1 reservoir. Curr Opin Virol. 2019 Oct;38:21–30.

(275) Ina K, Kataoka T, Ando T. The use of lentinan for treating gastric cancer. Anticancer Agents Med Chem. 2013 Jun;13(5):681–8.

(276) Anwar H, Suchodolski JS, Ullah MI, Hussain G, Shabbir MZ, Mustafa I, et al. Shiitake Culinary-Medicinal Mushroom, Lentinus edodes (Agaricomycetes), Supplementation Alters Gut Microbiome and Corrects Dyslipidemia in Rats. Int J Med Mushrooms. 2019;21(1):79–88.

(277) Ngai PHK, Ng TB. Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells.

Life Sci. 2003 Nov;73(26):3363–74.

(278) Nisar J, Mustafa I, Anwar H, Sohail MU, Hussain G, Ullah MI, et al. Shiitake Culinary-Medicinal Mushroom, Lentinus edodes (Agaricomycetes): A Species with Antioxidant, Immunomodulatory, and Hepatoprotective Activities in Hypercholesterolemic Rats. Int J Med Mushrooms. 2017;19(11):981–90.

(279) Chihara G. Recent progress in immunopharmacology and therapeutic effects of polysaccharides. Dev Biol Stand. 1992;77:191–7.

(280) Suknikhom W, Lertkhachonsuk R, Manchana T. The Effects of Active Hexose Correlated Compound (AHCC) on Levels of CD4+ and CD8+ in Patients with Epithelial Ovarian Cancer or Peritoneal Cancer Receiving Platinum Based Chemotherapy. Asian Pac J Cancer Prev. 2017 Mar;18(3):633–8.

(281) Gery A, Dubreule C, Andre V, Rioult J-P, Bouchart V, Heutte N, et al. Chaga ( Inonotus obliquus), a Future Potential Medicinal Fungus in Oncology? A Chemical Study and a Comparison of the Cytotoxicity Against Human Lung Adenocarcinoma Cells (A549) and Human Bronchial Epithelial Cells (BEAS-2B). Integr Cancer Ther. 2018

Sep;17(3):832–43.

(282) Li Y, Zhang G, Ng TB, Wang H. A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceum. J Biomed Biotechnol. 2010;2010:716515.

(283) Lv H, Kong Y, Yao Q, Zhang B, Leng F-W, Bian H-J, et al. Nebrodeolysin, a novel hemolytic protein from mushroom Pleurotus nebrodensis with apoptosis-inducing and anti-HIV-1 effects. Phytomedicine. 2009 Mar;16(2–3):198–205.

(284) Golak-Siwulska I, Kałużewicz A, Spiżewski T, Siwulski M, Sobieralski K. Bioactive compounds and medicinal properties of Oyster mushrooms (Pleurotus sp.). Folia Hortic [Internet]. 2018;30(2):191–201. Available

from: https://content.sciendo.com/view/journals/fhort/30/2/article-p191.xml

(285) Pirano FF. Emerging antiviral drugs from medicinal mushrooms. Int J Med Mushrooms. 2006;8(2):101–14.

(286) Ivanova TS, Krupodorova TA, Barshteyn VY, Artamonova AB, Shlyakhovenko VA. Anticancer substances of mushroom origin. Exp Oncol. 2014 Jun;36(2):58–66.

(287) Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT, et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers [Internet]. 2019;97(1):1–136. Available from: https://doi.org/10.1007/s13225-019-00430-9

(288) Briskin DP. Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol. 2000 Oct;124(2):507–14.

(289) Gilani AH, Rahman A. Trends in ethnopharmocology. J Ethnopharmacol. 2005 Aug;100(1–2):43–9.

(290) Ivanov A V, Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, et al. Oxidative Stress during HIV Infection: Mechanisms and Consequences. Oxid Med Cell Longev. 2016;2016:8910396.

(291) Figueira MS, Sá LA, Vasconcelos AS, Moreira DR, Laurindo PS, Ribeiro DR, et al. Nutritional supplementation with the mushroom Agaricus sylvaticus reduces oxidative stress in children with HIV. Can J Infect Dis Med Microbiol = J Can des Mal Infect la Microbiol medicale [Internet]. 2014 Sep;25(5):257–64. Available

from: https://pubmed.ncbi.nlm.nih.gov/25371688

(292) Feeney MJ, Dwyer J, Hasler-Lewis CM, Milner JA, Noakes M, Rowe S, et al. Mushrooms and Health Summit proceedings. J Nutr. 2014 Jul;144(7):1128S-36S.

(293) Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrovic P, et al. Antioxidants of Edible Mushrooms. Molecules. 2015 Oct;20(10):19489–525.

Downloads

Published

2020-06-30

How to Cite

FERNANDES, P. D. T., Chaquisse, E. ., & Ferrão, J. . (2020). HIV and the Antiviral Role of Mushroom Nutraceuticals. European Journal of Applied Sciences, 8(3), 64–100. https://doi.org/10.14738/aivp.83.8650