Method of Hardware Selection of Characteristic Features Based on Radon Transformation and not Sensitive to Rotation, Shifting and Scale of the Input Images
DOI:
https://doi.org/10.14738/aivp.24.392Keywords:
Cellular automata, Radon transform, Image recognition, Hexagonal coverageAbstract
In this paper considered by the method of the organization of cellular automata to extract characteristic features of images based on the Radon transform. Cellular automata are constructed using a hexagonal surface. This increases the efficiency of image recognition. This made it possible to implement the Radon transform on the six directions. This cellular automata was simulated in the software environment of Active-HDL, and also was created his software model. Experimental studies for both models showed high results of recognition for the different levels of noise that are present in the image.References
. Radon J. K. A., Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten, Berichte Sachsische Akademie der Wissenschaften, Leipzig, Mathematisch-Physikalische Klasse, 1917. 69: p. 262–277.
. Toft P., The Radon Transform: Theory and Implementation. PhD thesis, Dept. of Math. Modelling Section for Digital Signal Processing, Technical Univ. of Denmark, 1996. p. 326.
. Левин Г.Г., Вишняков Г.Н., “Оптическая томография”, Радио и связь, 1989. p. 224.
. Грузман И.С., “Математические задачи компьютерной томографии”. Соросовский образовательный журнал, 2001. 7(5).
. Отдыхов Р.Х., Вершок Д.А., Алгоритм выделения информативных признаков на основе преобразования Радона в системе распознавания рукописных признаков. Известия НАН Беларуси. Сер. физ.-техн. Наук, 1998. (3): p. 103-107.
. Bаранов В.Г., Храмов А.Г., Дискретное веерное преобразование Радона в задаче выделения центров ветвей сетчатых структур. Институт систем обработки изображений РАН “Компьютерная оптика”, 2002. (23): p. 44-47.
. Кобасяр М.І., Русин B. П., Детектування кривих з бінарних зображень за допомогою перетворення Радона. Вісник Національного університету “Львівська політехніка” “Радіоелектроніка та телекомунікації”, 2001. (428): p. 6-9.
. Волегов Д. B., Гусев В. В., Юрин Д. В., Обнаружение прямых линий на изображениях на основе преобразования Хартли. Быстрое преобразование Хафа. 16-я международная конференция по компьютерной графике и ее приложениям, (ГрафиКон2006), Россия, Новосибирск, Академгородок, 2006. с. 182−191.
. Kadyrov A., Petrou M., The Trace Transform and Its Applications. IEEE Ransactions On Pattern Analysis And Machine Intelligence, 2001. 23(8): p. 811-828.
. Von Neumann J., Theory of Self-Reproducing Automata: Edited and completed by A. Burks., University of Illinois Press, 1966.
. Zuse K., Calculating Space. Translated from German. – Tech. Transl. AZT-70-64- GEMIT. – MIT Project MAC, 1970.
. Ulam S., Random Processes and Transformations. Procedings Int. Congr. Mathem, 1952. (2): p. 264-275.
. Blanchard F., et al., Topological and Measure-Theoretic Properties of One-Dimensional Cellular Automata. Physica D: Nonlinear Phenomena, 1997. 103(1-4): p. 86-99.
. Belan S., Specialized cellular structures for image contour analysis, Cybernetics and Systems Analysis, 2011. 47(5): p. 695-704.
. Belan S., and Motornyuk R., Extraction of characteristic features of images with the help of the radon transform and its hardware implementation in terms of cellular automata. Cybernetics and Systems Analysis, 2013. 49(1): p. 7-14.
. Wolfram S., Cellular Automata. Los Alamos Science, 1983. 9: p. 2-21.
. Nicoladie D. Tam., Hexagonal pixel-array for efficient spatial computation for motion-detection pre-processing of visual scenes, Advances in image and video processing, 2014. 2(2): p. 26-36.
. Wolfram S., Random Sequence Generation by Cellular Automata. Advances in Applied Mathematics, 1986. 7: p. 429 – 432.