Kombucha Bacterial Cellulose Synthesized by Liquid Fermentation on Black Tea (Camellia sinensis): Effect of the Sucrose


  • Natanael Victoriano Huerta Centro de Investigación en Dispositivos Semiconductores Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
  • Salvador Alcántara Iniesta Centro de Investigación en Dispositivos Semiconductores Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
  • Blanca Susana Soto Cruz Centro de Investigación en Dispositivos Semiconductores Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
  • Placido Zaca Morán Instituto de Ciencias, Ecocampus Valsequillo Benemérita Universidad Autónoma de Puebla, Puebla, México
  • Abdu Orduña Díaz Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Tlaxcala, México
  • Leslie Susana Arcila Lozano Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Tlaxcala, México
  • Marlon Rojas Lopez Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Tlaxcala, México




Bacterial Cellulose, Structural properties, Total Crystallinity Index, Lateral Order Index, Hydrogen Bond Intensity, Fourier transform infrared spectroscopy


Bacterial cellulose membranes were synthesized by liquid fermentation of the Kombucha strain into black tea (Camellia sinensis) at different concentrations of sucrose. Structural properties of bacterial cellulose Kombucha, such as lateral order index (LOI), total crystallinity index (TCI), hydrogen bond intensity (HBI), fraction (fa), as well as their dependence on sucrose content were evaluated by Fourier transform infrared spectroscopy, using different absorption bands of the vibrational spectrum. It was thus observed that sucrose tends to crystallize bacterial cellulose, due to the increase in the total index of crystallinity and lateral order, as well as the fraction (fa), while the index of hydrogen bonds decreased. The addition of organic cocoa (Theobroma cacao) in the culture medium prior to fermentation produced membranes with properties very similar to those prepared only with black tea. Obtaining type I cellulose and crystallization controlled by this process could contribute to obtaining high crystallinity membranes for biomedical and bioelectronic applications.                    


C. Zhu, F. Li, X. Zhou, L. Lin, T. Zhang, Kombucha-synthesized bacterial cellulose: Preparation, characterization, and biocompatibility evaluation, Journal of Biomedical Materials Research Part A. 102 (2014) 1548–1557. https://doi.org/10.1002/jbm.a.34796.

J. Domskiene, F. Sederaviciute, J. Simonaityte, Kombucha bacterial cellulose for sustainable fashion, International Journal of Clothing Science and Technology. 31 (2019) 644–652. https://doi.org/10.1108/IJCST-02-2019-0010.

C. Angela, J. Young, S. Kordayanti, P. Virgina Partha Devanthi,. K., Isolation and Screening of Microbial Isolates from Kombucha Culture for Bacterial Cellulose Production in Sugarcane Molasses Medium, KnE Life Sciences. 2020 (2020) 111–127. https://doi.org/10.18502/kls.v5i2.6444.

T.A. Mukadam, K. Punjabi, S.D. Deshpande, S.P. Vaidya, A.S. Chowdhary, Isolation and Characterization of Bacteria and Yeast from Kombucha Tea, International Journal of Current Microbiology and Applied Sciences. 5 (2016) 32–41. https://doi.org/10.20546/ijcmas.2016.506.004.

T. Kaewkod, S. Bovonsombut, Y. Tragoolpua, Efficacy of kombucha obtained from green, oolongand black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line, Microorganisms. 7 (2019). https://doi.org/10.3390/MICROORGANISMS7120700.

J.M. Leal, L.V. Suárez, R. Jayabalan, J.H. Oros, A. Escalante-Aburto, A review on health benefits of kombucha nutritional compounds and metabolites, Http://Mc.Manuscriptcentral.Com/Tcyt. 16 (2018) 390–399. https://doi.org/10.1080/19476337.2017.1410499.

V. Revin, E. Liyaskina, M. Nazarkina, A. Bogatyreva, M. Shchankin, Cost-effective production of bacterial cellulose using acidic food industry by-products, Brazilian Journal of Microbiology. 49 (2018) 151–159. https://doi.org/10.1016/J.BJM.2017.12.012.

P. Jacek, F.A.G.S. da Silva, F. Dourado, S. Bielecki, M. Gama, Optimization and characterization of bacterial nanocellulose produced by Komagataeibacter rhaeticus K3, Carbohydrate Polymer Technologies and Applications. 2 (2021) 100022. https://doi.org/10.1016/J.CARPTA.2020.100022.

L. Popa, M.V. Ghica, E.E. Tudoroiu, D.G. Ionescu, C.E. Dinu-Pîrvu, Bacterial Cellulose—A Remarkable Polymer as a Source for Biomaterials Tailoring, Materials 2022, Vol. 15, Page 1054. 15 (2022) 1054. https://doi.org/10.3390/MA15031054.

E. Bardone, A. Marzocchella, T. Keshavarz, V.M. Vasconcellos, C.S. Farinas, The Effect of the Drying Process on the Properties of Bacterial Cellulose Films from Gluconacetobacter hansenii, in: CHEMICAL ENGINEERING TRANSACTIONS, 2018. https://doi.org/10.3303/CET1864025.

D.R. Ruka, G.P. Simon, K.M. Dean, Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose, Carbohydrate Polymers. 89 (2012) 613–622. https://doi.org/10.1016/J.CARBPOL.2012.03.059.

F. Esa, S.M. Tasirin, N.A. Rahman, Overview of Bacterial Cellulose Production and Application, Agriculture and Agricultural Science Procedia. 2 (2014) 113–119. https://doi.org/10.1016/j.aaspro.2014.11.017.

Indriyati, Y. Irmawati, T. Puspitasari, Comparative study of bacterial cellulose film dried using microwave and air convection heating, Journal of Engineering and Technological Sciences. 51 (2019) 121–132. https://doi.org/10.5614/j.eng.technol.sci.2019.51.1.8.

M.L. Nelson, R.T. O’Connor, Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type . Part II . A New Infrared Ratio for Estimation of Crystallinity in Celluloses I and II *, Journal of Applied Polymer Science. 8 (1964) 1325–1341.

N. Kruer-Zerhusen, B. Cantero-Tubilla, D.B. Wilson, Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR), Cellulose 2017 25:1. 25 (2017) 37–48. https://doi.org/10.1007/S10570-017-1542-0.

A.A.M.A. Nada, S. Kamel, M. El-Sakhawy, Thermal behaviour and infrared spectroscopy of cellulose carbamates, Polymer Degradation and Stability. 70 (2000) 347–355. https://doi.org/10.1016/S0141-3910(00)00119-1.

F.G. Hurtubise, H. KrÄSSIG, Classification of Fine Structural Characteristics in Cellulose by Infrared Spectroscopy Use of Potassium Bromide Pellet Technique, Analytical Chemistry. 32 (1960) 177–181. https://doi.org/10.1021/ac60158a010.

Y. Kataoka, T. Kondo, Quantitative analysis for the cellulose Iα crystalline phase in developing wood cell walls, International Journal of Biological Macromolecules. 24 (1999) 37–41. https://doi.org/10.1016/S0141-8130(98)00065-8.

A. Żywicka, A.F. Junka, P. Szymczyk, G. Chodaczek, J. Grzesiak, P.P. Sedghizadeh, K. Fijałkowski, Bacterial cellulose yield increased over 500% by supplementation of medium with vegetable oil, Carbohydrate Polymers. 199 (2018) 294–303. https://doi.org/10.1016/j.carbpol.2018.06.126.

X. Zeng, J. Liu, J. Chen, Q. Wang, Z. Li, H. Wang, Screening of the common culture conditions affecting crystallinity of bacterial cellulose, Journal of Industrial Microbiology and Biotechnology. 38 (2011) 1993–1999. https://doi.org/10.1007/s10295-011-0989-5.

K. Aswini, N.O. Gopal, S. Uthandi, Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1, BMC Biotechnology. 20 (2020) 1–16. https://doi.org/10.1186/S12896-020-00639-6/TABLES/4.

P.K. Kulkarni, S. Anil Dixit, U.B. Singh, Evaluation of bacterial cellulose produced form Acetobacter xylinum as pharmaceutical excipient, American Journal of Drug Discovery and Development. 2 (2012) 72–86. https://doi.org/10.3923/AJDD.2012.72.86.

O.L. Saavedra-Sanabria, D. Durán, J. Cabezas, I. Hernández, C. Blanco-Tirado, M.Y. Combariza, Cellulose biosynthesis using simple sugars available in residual cacao mucilage exudate, Carbohydrate Polymers. 274 (2021) 118645. https://doi.org/10.1016/J.CARBPOL.2021.118645.

W. Zhang, X. Wang, X. Qi, L. Ren, T. Qiang, Isolation and identification of a bacterial cellulose synthesizing strain from kombucha in different conditions: Gluconacetobacter xylinus ZHCJ618, Food Science and Biotechnology. 27 (2018) 705–713. https://doi.org/10.1007/S10068-018-0303-7.

C. Babac, T. Kutsal, Production and Characterization of Biodegradable Bacterial Cellulose Membranes, International Journal of Natural and Engineering Sciences. 3 (2009) 1–2. www.nobel.gen.tr.

N. Atykyan, V. Revin, V. Shutova, Raman and FT-IR Spectroscopy investigation the cellulose structural differences from bacteria Gluconacetobacter sucrofermentans during the different regimes of cultivation on a molasses media, AMB Express. 10 (2020). https://doi.org/10.1186/S13568-020-01020-8.

M. Schwanninger, J.C. Rodrigues, H. Pereira, B. Hinterstoisser, Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose, Vib Spectrosc. 36 (2004) 23–40. https://doi.org/10.1016/J.VIBSPEC.2004.02.003.

M.L. Nelson, R.T. O’Connor, Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose, Journal of Applied Polymer Science. 8 (1964) 1311–1324. https://doi.org/10.1002/app.1964.070080322.

S.Y. Oh, D. il Yoo, Y. Shin, G. Seo, FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide, Carbohydrate Research. 340 (2005) 417–428. https://doi.org/10.1016/J.CARRES.2004.11.027.

J. Široký, R.S. Blackburn, T. Bechtold, J. Taylor, P. White, Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide, Cellulose 2009 17:1. 17 (2009) 103–115. https://doi.org/10.1007/S10570-009-9378-X.




How to Cite

Huerta, N. V., Iniesta, S. A., Cruz, B. S. S., Morán, P. Z., Díaz, A. O., Lozano, L. S. A., & Lopez, M. R. (2022). Kombucha Bacterial Cellulose Synthesized by Liquid Fermentation on Black Tea (Camellia sinensis): Effect of the Sucrose. European Journal of Applied Sciences, 10(4), 639–648. https://doi.org/10.14738/aivp.104.12869