Litho Stabilization of Silty Sands by Crushed Basalt Stones for Their Use in the Base Layers of Pavements


  • Gouafo Casimir University of Dschang Cameroon
  • Jules Hermann Keyangue Tchouata University of Gaoundere Cameroon
  • Ndongo Barthelemy University of Dschang Cameroon
  • Boris Merlain Djousse Kanouo University of Dschang Cameroon
  • M. Zoyem Gouafo Mathurin University of Dschang Cameroon



Litho stabilization, Base layer, pavement, CBR index, silty sand.


This study shows the improvement of the clayey sand of Maka in center Cameroon. This improvement is made with crushed basalt stone of class 0/31.5 mm, for its use in road construction according to the CEBTP of standard. The validation of this litho stabilization method was carried out in determining the plastic index, the optimum water content, the dry densities and the CBR index of the various mixtures. The results of the mixtures made in the laboratory with the choices of the following percentages: 90% silt sand + 10% crushed basalt stones, 85% silt sand + 15% crushed basalt stones, 80% silt sand + 20% of basalt crushed stone and 70% silt sand + 30% crushed basalt stones meets the criteria of the Practical Guide to Pavement Design for Tropical Countries (CEBTP) for the base course of flexible pavements. In fact CBR at 95% OPM has increased from 23% for loamy sand to 47%; 55%; 58% and 64% respectively for the same mixtures. Optimal Proctor water content decreased from 10.1% for silty sand to 10.08%; 10%; 9.60% and 8.0 % respectively for the same mixtures. The plastic index went from 9.8 % for silty sand to 9.6 %; 9.4 %; 8.9 % and 5.8 % respectively for the same mixtures, these values above indicates weakly clayey mixtures according to Guide of road earthworks (GTR). Moreover, we were able to observe that the granulometric curves of the mixtures of clayey sands with basaltic gravels extend beyond the reference spindles. These mixtures cannot be used as a base course for rigid pavements. Stabilization must be improved with at least 1% cement for rigid pavements. The increase in dry density from 1.75 to 2.024, more than compensates for the relative loss of optimal water content and thus allows the mixture to have a better bearing capacity for compaction than non-silt sand improved, all these properties are greater than those of natural clay sand. This confirms that the addition of crushed basalt makes clayey sand more rigid and dense.


Trenter et Thomas, Earthworks: a guide. Thomas Telford Publishing, 2001. doi: 10.1680/

K. Michael, « Countries at the Crossroads 2007 - Burkina Faso ». 2017. Accessed on: May 25, 2022. [Online]. Available on:

M. Thilloux et R. Requirand, «Road tahoua-arlit niger - pavement materials”, studies, 1983, Accessed on: May 25, 2022. [Online]. Available on:

N. C. Consoli, D. Párraga Morales, et R. B. Saldanha, « A new approach for stabilization of lateritic soil with Portland cement and sand: strength and durability », Acta Geotech., vol. 16, no 5, p. 1473‑1486, mai 2021, doi: 10.1007/s11440-020-01136-y.

A. Ebrahim Abu El-Maaty Behiry, « Utilization of cement treated recycled concrete aggregates as base or subbase layer in Egypt », Ain Shams Eng. J., vol. 4, no 4, p. 661‑673, déc. 2013, doi: 10.1016/j.asej.2013.02.005.

A. F. Cabalar et W. S. Mustafa, « Behaviour of sand–clay mixtures for road pavement subgrade », Int. J. Pavement Eng., vol. 18, no 8, p. 714‑726, août 2017, doi: 10.1080/10298436.2015.1121782.

K. C. Niangoran, C. Kouadio, et Kouakou Blikan Serge André1, « Contribution to the Improvement of a Natural Lateritic G3 Gravel by the Litho-Stabilization Method”, 2020, [En ligne]. Disponible sur:

Babaliye, K. A. Houanou, et A. Vianou, « litho stabilization of the lateritic gravelly by granite crushed for their use in flexible pavement in benin », 2020, doi: DOI: 10.21474/IJAR01/10871.

M. Souley Issiakou, N. Saiyouri, Y. Anguy, C. Gaborieau, et R. Fabre, « study of lateritic materials used in road construction in niger: method of improvement. », Bayonne, France, May 2015. Consulted on: May 25, 2022. [Online]. Available on:

CEBTP, « The Practical Guide to Pavement Design for Tropical Countries », 1984.

NF P18-553, « Aggregates. Micro-DEVAL attrition test”. 1978. Accessed: May 25, 2022. [Online]. Available on:

NF P94-050, « Soils: investigation and testing. Determination of moisture content. Oven drying method. », Afnor Editions, 1995. (consulté le 25 mai 2022).

NF P94-093, « Soils : investigation and testing - Determination of the compaction reference values of a soil type - Standard proctor test - Modified proctor test ». 2014. Consulté le: 25 mai 2022. [En ligne]. Disponible sur:

NF EN 933-1, « Tests for geometrical properties of aggregates - Part 1 : determination of particle size distribution - Sieving method ». 2012. Consulté le: 25 mai 2022. [En ligne]. Disponible sur:

NF P94-056, «Soils: reconnaissance and tests - Particle size analysis - Method by dry sieving after washing. » 1996. Accessed on: May 25, 2022. [Online]. Available on r:

NF P18-540, « Aggregates. Definitions, conformity, specifications. » 1997. Consulté le: 25 mai 2022. [En ligne]. Disponible sur:

NF P94-078, « Soils : investigation and tests. CBR after immersion. Immediate CBR. Immediate bearing ratio. Measurement on sample compacted in CBR mould. » 1997. Consulté le: 25 mai 2022. [En ligne]. Disponible sur:

NF P94-051, « Soil : inverstigation and testing. Determination of Atterberg’s limits. Liquid limit test using cassagrande apparatus. Plastic limit test on rolled thread ». 1993. Consulté le: 25 mai 2022. [En ligne]. Disponible sur:




How to Cite

Casimir, G., Keyangue Tchouata, J. H. ., Barthelemy , N., Djousse Kanouo, B. M. ., & Mathurin, M. Z. G. . (2022). Litho Stabilization of Silty Sands by Crushed Basalt Stones for Their Use in the Base Layers of Pavements. European Journal of Applied Sciences, 10(4), 111–135.