Lipophilicity and Interactions Properties of a Group of Thirteen Manzamenones in Comparison with Artemisinin and Quinine Using Quantum Chemical Methods: ONIOM and DFT (B3LYP)

Authors

  • Soleymane KONE Laboratoire de Constitution et de Réaction de la matière de L’UFR SSMT Université Félix Houphouët Boigny 22 BP 582 Abidjan 22
  • Adepo Jacques ATSE Laboratoire de Constitution et de Réaction de la matière de L’UFR SSMT Université Félix Houphouët Boigny 22 BP 582 Abidjan 22
  • Sékou DIOMANDE UFR Agriculture, Ressources Halieutiques et Agro-industrie, Université de San Pedro
  • El-Hadji Sawaliho BAMBA Laboratoire de Constitution et de Réaction de la matière de L’UFR SSMT Université Félix Houphouët Boigny 22 BP 582 Abidjan 22

DOI:

https://doi.org/10.14738/aivp.103.12352

Keywords:

Manzamenone, Artemisinin, Quinine, lipophilicity, hydrogen bond, level of theory

Abstract

This work was undertaken to determine and compare the lipophilic properties of a group of Manzamenones with those of two antimalarials (Quinine and Artemisinin). Manzamenones are atypical fatty acid derivatives, belonging to the large family of lipids. They are extracted from a marine sponge, of the genus Plakortis kenyensis, used in the treatment of malaria. Three approaches were used to estimate the lipophilicity values of the molecules. Secondly, we analyzed the intermolecular interactions between these molecules and each of the two probes: the water molecule and the 3-aminopropanoic acid molecule (alanine: a protein residue of the polymerase). Manzamenones are studied with a mixed method: ONIOM 2. The intermolecular interactions between Manzamenones and water are described at the B3LYP/6-31++G(d,p) level. The ones between Manzamenones and 3-aminopropanoic acid are described at B3LYP/6-31+G(d,p). The last part of the study was the determination of energetic parameters and the estimation of the relative stabilities of the complexes formed with the two probes. This part allowed making comparisons with Quinine or Artemisinin.

References

Bibliographic references

Olumese P. Epidemiology and surveillance: changing the global picture of malaria. Myth or reality?, Acta trop., 2005; 95, 265.

C. Guinovart, M.M. Navia M. Tanner and P.L. Alonso. « Malaria: Burden of Disease», Current Molecular Medicine, 2006, 6, 137-140.

TB LATHIA, R JOSHI. «CAN HEMATOLOGICAL PARAMETERS DISCRIMINATE MALARIA FROM NONMALARIOUS ACUTE FEBRILE ILLNESS IN THE TROPICS», INDIAN JOURNAL OF MEDICAL SCIENCES, Vol. 58 No. 6, June 2004

Reddy, P.L.; Khan, S.I.; Ponnan, P.; Tripathi, M.; Rawat, D.S. Synthesis and evaluation of 4-aminoquinoline-purine hybrids as potential antiplasmodial agents. Eur. J. Med. Chem. 2017, 126, 675-686.

Jones, R.A.; Panda, S.S.; Hall, C.D. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur. J. Med. Chem. 2015, 97, 335–355.

Murugan, K.; Raichurkar, A.V.; Rahman, F.; Khan, N.; Iyer, P.S. Synthesis and in vitro evaluation of novel 8-aminoquinoline—Pyrazolopyrimidine hybrids as potent antimalarial agents. Bioorg. Med. Chem. Lett. 2015, 25, 1100–1103.

White, N.J.; Pukrittayakamee, S.; Hien, T.T.; Faiz, M.A.; Mokuolu, O.A.; Dondorp, A.M. Malaria. Lancet 2014, 383, 723–735.

White N.J., Nosten F., Looareesuwan S., Olliaro P. Averting a malaria disaster. Lancet, 1999; 353, 1965.

Demar M.. Plasmodium falciparum in vivo resistance to quinine: description of tow RIII responses in French Guinea. Am. J. Trop. Med. Hyg., 2004; 70, 125.

S. Turschner, T. Efferth. Drug resistance in plasmodium: natural products in the fight against malaria, Mini-Rev. Med chem., 2009; 2, 206.

Matthew D. Norris and Michael V. Perkins. Structural diversity and chemical synthesis of peroxide and peroxide-derived polyketide metabolites from marine sponges, Natural Product Reports REVIEW, 2016.

Takeuehi S., Kikuehi., Tsukamoto S., Ishibashi M., Kobayashi J., three New oxylipins related to 3, 6 dioxo-4-docosenoic acid from Okinawan marine sponges, Plakortis sp. Tetrahedron, 1995, 51, 21, 5979-5986.

Tanaka N., Asai M., Takahashi-Nakaguchi A., Gonoi T., Formont J., Kobayashi J. Manzamenone O, new trimeric fatty acid derivative from a marine sponge Plakortis sp. Organic letters, 2013, 15, 10, 2518-2521.

M.Perpelescu, M.Tsuda, M.Suzuki, S. Yoshida and J.Kobayashi, «Inhibitory Activity of Mazamenone A and Plakoridine A against DNA Polymerases » Nat.Med., 2004, 58, 86.

Tsukamoto S., Takeuchi S., Ishibashi M., Kobayashi J. « Manzamenones AF from the Okinawan marine sponges Plakortis Sp.: novel dimeric fatty acid derivatives possessing a bicyclo [4.3. 0] nonane skeleton », J. Org. Chem., 57, 5255-5260, 1992.

Jun’ichi Kobayashi, «Search for New Bioactive Marine Natural Products and Application to Drug Development » Chem. Pharm. Bull. 2016, 64, 1079–1083.

Atse Adepo Jacques, Kone Soleymane, Diomande Sékou, Bamba El-Hadji Sawaliho « Comparison of Molecular Properties (Stabilities, Reactivity and Interaction) of Manzamenones and Two Antimalarial Drugs (Quinine and Artemisinin) Using Mixed Method Calculations (ONIOM) and DFT (B3LYP) », Computational Chemistry, 2022, 10, 1-18;

Molinspiration : http://www.molinspiration.com. [Accès le 15 Novembre 2016]

Petrauskas, V., Maximowitsch, E., Matulis, D. « Thermodynamics of Ion Pair Formations Between Charged Poly (Amino Acid),» Journal of Physical Chemistry, vol. 119 (137), pp. 164. – 157; 1993.

Cheng, T., Zhao, Y., Li, X., Lin, F., Xu, Y., Zhang, X., Li, Y., Wang, R., Lai, L.«Computation of octanol-wledge,» J Chem Inf Model, vol. 47 (16), pp. 2140 – 2148, 2007.

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,

M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand,

K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Hohenberg, P.; Kohn, W. Inhomogeneous electron gas,. Phys.Rev. 1964, 136, B864.

Koch,W.; Holthausen, M.C.A in Chemist’s Guide to Density Fonctional Theory 2nd Ed, Wiley-VCH, 1999.Weinheim.

R.J. Maldanis, J.S. Wood, A. Chandrasekaran, M.D. Rauusch, J.C.W. Chien, The formation and polymerization behavior of Ni(II)-diimine complexes using various aluminum activators, Journal of Organometallic Chemistry, 645, 2002, 158-167.

Morokuma, K. New challenges in quantum chemistry: quests for accurate calculations forlarge molecular systems, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 360, 2002, 1149-1164.

Dapprich, S., Komáromi, I., Byun, K. S., Morokuma, K., and Frisch, M. J. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives, Journal of Molecular Structure: THEOCHEM, 461, 1999, 1-21.

Vreven, T., and Morokuma, K. On the application of the IMOMO (integrated molecular orbital+ molecular orbital) method. Journal of Computational Chemistry, 21, 2000, 1419-1432.

Zheng, F., and Zhan, C.-G. Rational design of an enzyme mutant for anti-cocaine therapeutics. Journal of Computer-Aided Molecular Design, 22, 2008, 661-671.

Ruangpornvisuti, V. Recognition of carboxylate and dicarboxylates by azophenol ̶ thiourea derivatives: a theoretical host ̶ guest investigation. Journal of Molecular Structure: THEOCHEM, 686, 2004, 47-55.

Samanta, P. N., and Das, K. K. Prediction of binding modes and affinities of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide inhibitors to the carbonic anhydrasereceptorby docking and ONIOM calculations. Journal of Molecular Graphics and Modelling, 63, 2016, 38-48.

Desiraju, G.; Steiner, T. The Weak Hydrogen Bond: Applications to Structural Chemistry and Biology, 1999.

Chtita S. Modélisation de molécules organiques hétérocycliques biologiquement actives par des méthodes QSAR/QSPR. Recherche de nouveaux medicaments, PhD Thesis, 2017.

Babu N S and Jayaprakash D. «Global and reactivity descriptors studies of cyanuric acid tautomers», International Journal of Science and Research, 2015.

Rowland, R. S.; Taylor, R. « Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii», J. Phys. Chem. 1996, 100, 7384.

Bondi, A. « van der Waals Volumes and Radii» J. Phys. Chem. 1964, 68, 441.

S. S. Batsanov « Van der Waals Badii of Elements», INORGANIC MATERIALS, Vol. 37 N0 9 2001

Downloads

Published

2022-05-27

How to Cite

KONE, S., ATSE, A. J., DIOMANDE, S., & BAMBA, E.-H. S. (2022). Lipophilicity and Interactions Properties of a Group of Thirteen Manzamenones in Comparison with Artemisinin and Quinine Using Quantum Chemical Methods: ONIOM and DFT (B3LYP). European Journal of Applied Sciences, 10(3), 258–274. https://doi.org/10.14738/aivp.103.12352