The Phospholipid Degradation in Paddy Rice: a Theoretical Model with DFT/B3LYP 6–311 G


  • EL Hadji Sawaliho Bamba Laboratoire de Constitution et Réaction de la Matière, UFR SSMT, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
  • Alain Koffi Koffi Laboratoire de Constitution et Réaction de la Matière
  • Boka Robert N’Guessan Laboratoire de Constitution et Réaction de la Matière,



Phospholipids, paddy rice, chemical reactivity, dual descriptor


This work focuses on the degradation of phospholipids during rice storage. It aims to identify the chemical phenomena underlying this process. It aspires to test the hypothesis that 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC) triggers the latter. It uses the Density Functional Theory (DFT) at the B3LYP/6–311 G level in this sense. The research evaluates the reactivity of phospholipids; it estimates the orbital frontier energies. It assesses its global index. It determines the dual descriptors. It measures the molecular electrostatic potential. It calculates the thermodynamic quantities related to phospholipids formation. It discusses these results before concluding.


The energies of the orbital frontier establish that 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (PE) is more reactive than PC. In other words, PE is the precursor of lipid alteration. The work highlights the parts of PE likely to join this transformation. This research demonstrates that PE reacts with its C=O (sp2) or C-O (sp3)-C oxygen or its phosphorus P2 when it associates with a nucleophilic entity. For an electrophilic attack, it interacts with its hydrogen and its nitrogen or its C92 carbon (sp2). These sites can promote its deterioration during rice storage.

Author Biographies

Alain Koffi Koffi, Laboratoire de Constitution et Réaction de la Matière

UFR SSMT, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire

Boka Robert N’Guessan, Laboratoire de Constitution et Réaction de la Matière,

UFR SSMT, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire

rank = 2


A. V. Ablé, B. R. N’guessan and E.-H. S. Bamba, “Monosaccharide degradation analysis by functional density theory at level B3lyp/6-311G(d,p),” Biogeneric science and research, 2020, vol. 6, no. 2, p. 1-9.

A. V. Ablé, B. R. N’guessan and E.-H. S. Bamba, “Hydrogen bonds sites of amylose or amylopectin from starch at the ONION level (B3LYP/6-311++G[d, p]: AM1),” Computational Chemistry, 2020, vol. 9, no. 1, p. 85-96,

K. A. Koffi, S. Koné and E. H. S. Bamba, “Water and dioxide carbon effects on di or tri-saccharide degradation by density functional theory at level: B3LYP/6–311++G(d,p),” Journal of Materials Physics and Chemistry, 2021, vol. 9, no. 1, p. 1-8.

P. Mendez Del Villar, Le marché international du riz, Agriculture et Développement, 1994, p. 15-19,

H. S. Lam and A. Proctor, “Kinetics and Mechanism of Free Fatty Acid Formation on the Surface of Milled Rice,” Journal of Agricultural and Food Chemistry, 2002, vol. 50, no. 24, p. 7161–7163.

Z. Zhou, K. Robards, S. Helliwell and C. Blanchard, “Ageing of Stored Rice: Changes in Chemical and Physical Attributes,” Journal of Cereal Science, 2002, vol. 35, no. 1, p. 65-78.

S. Aibara, I. A. Ismail, H. Yamashita, H. Ohta, F. Sekiyama and Y. Morita, “Changes in Rice Bran Lipids and Free Amino Acids During Storage,” Agricultural and Biological Chemistry, 1986, vol. 50, no. 3, p. 665–673,

H. Lam and A. Proctor, “Hydrolysis of acylglycerols and phospholipids of milled rice surface lipids during storage,” Journal of the American Oil Chemists’ Society, 2004, vol. 81, p. 385-388.

L. Liu, D. L. E. Waters, T. J. Rose, J. Bao and G. J. King, “Phospholipids in Rice: Significance in Grain Quality and Health Benefits: A Review,” Food Chemistry, 2013, vol. 139, no. 1, p. 1133-1145.

S. Pérez and E. Bertoft, "The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review," Starch - Stärke, 2010, vol. 62, no. 8, p. 389-420.

F. Wang, R. Wang, W. Jing and W. Rong, “Quantitative dissection of lipid degradation in rice seeds during accelerated ageing,” Plant Growth Regulation, 2012, vol. 66, no. 1, p. 49-58.

R. Piggott, W. R. Morrison and J. Clyne, “Changes in lipids and in sensory attributes on storage of rice milled to different degrees,” International Journal of Food Science and Technology, 2007. vol. 26, no. 6, p. 615-628.

D. Küllenberg, L. A. Taylor, M. Schneider, and U. Massing, “Health effects of dietary phospholipids,” Lipids in Health and Disease, 2012, vol. 11, no. 3, p. 1-16.

Ö. Tokuşoğlu and C. A. H. III, Fruit and Cereal Bioactive, CRC Press, 2011.

M Ghosh, “Review on recent trends in rice bran oil processing,” Journal of the American oil chemists’ society, 2007, vol. 84, no. 4, p. 315–324.

A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” Journal of Physical Chemistry A, 1993, vol. 98, no. 7, p. 5648–5652.

B. G. Johnson, P. M. W. Gill and J. A. Pople, “The Performance of a Family of Density Functional Methods,” The Journal of Chemical Physics, 1993, vol. 98, no. 7, p. 5612–5626.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Baronne, B. Mennucci, G. A. Peterson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada and M. Ehara, “Gaussian 09, Revision A.02,” Wallingford CT, 2009.

C. Valverde, F. A. P. Osório, T. L. Fonseca and B. Baseia, “DFT Study of Third-Order Nonlinear Susceptibility of a Chalcone Crystal,” Chemical Physics Letters, 2018, vol. 706, p. 170–174.

M. Talu, E. U. Demiroğlu, Ş. Yurdakul and S. Badoğlu, “FTIR, Raman and NMR spectroscopic and DFT theoretical studies on poly (N-vinyl imidazole),” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, vol. 134, p. 267-275.

C. Lee, W. Yang and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, 1988, vol. 37, no. 2, p. 785–789.

R. G. Parr and R. G. Pearson, “Absolute hardness: companion parameters to absolute electronegativity,” Journal of the American Chemical Society, 1983, vol. 105, no. 26, p. 7512-7516.

M. S. de Giambiagi and G. M, “Sur une définition OM de la dureté moléculaire; quelques applications,” Journal of Molecular Structure, 1993, vol. 288, no. 3, p. 273-282.

S. Pal, R. Roy and A. K. Chandra, “Change of Hardness and Chemical Potential in Chemical Binding: A Quantitative Model,” The Journal of Physical Chemistry, 1994, vol. 98, no. 9, p. 2314-2317.

D. A. Kofke and P. T. Cummings, “Quantitative comparison and optimization of methods for evaluating the chemical potential by molecular simulation,” Molecular Physics, 1997, vol. 92, no. 6, p. 973-996.

R. G. Parr, L. v. Szentpály and S. Liu, “Electrophilicity Index,” Journal of the American Chemical Society, 1999, vol. 121, no. 9, p. 1922-1924,

T. Koopmans, “Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms,” Physica, 1934, vol. 1, no. 1-6, p. 104-113.

R. B. Woodward and R. Hoffmann, “The Conservation of Orbital Symmetry,” Angewandte Chemie International Edition in English, 1969, vol. 8, no. 11, p. 781-853.

A. Bendjeddou, T. Abbaz, A. K. Gouasmia and D. Villemin, “Molecular structure, HOMO-LUMO, MEP and Fukui function analysis of some TTF-donor substituted molecules using DFT (B3LYP) calculations,” International Research Journal of Pure and Applied Chemistry, 2016, pp. 1-9.

C. Morell, A. Grand and A. Toro-Labbé, “New Dual Descriptor for chemical reactivity,” The Journal of Physical Chemistry A, 2005, vol. 109, no. 1, pp. 205-212.

C. Morell, A. Grand and A. Toro-Labbé, “Theoretical support for using the Δf (r) descriptor,” Chemical Physics Letters, vol. 425, no. 4-6, p. 342–346, 2006.

A. U. Orozco-Valencia, J. L. Gázquez and A. Vela, “Global and local partitioning of the charge transferred in the Parr—Pearson Model,” The Journal of Physical Chemistry A, 2017, vol. 121, no. 20, p. 4019–4029.

F. L. Hirshfeld, « Bonded-atom fragments for describing molecular charge densities, » Theoretica chimica acta, 1977, vol. 44, no. 2, p. 129–138,

M. Kavimani, V. Balachandran, B. Narayana, K. Vanasundari and B. Revathi, “Quantum chemical calculation (RDG) of molecular structural evaluation, Hirshfeld, DSSC and docking studies of 4-nitrophenylacetic acid,” Journal of Molecular Structure, 2017, vol. 1149, pp. 69-83,

J. S. Murray and K. Sen, Molecular Electrostatic Potentials: Concepts and Applications, Elsevier, 1996.

T. Brinck and C. Párkányi, “The use of the electrostatic potential for analysis and prediction of intermolecular interactions,” in Theoretical and Computational Chemistry, 1998, vol. 5, Stockholm, Elsevier, pp. 51-93.

Z. Demircioğlu, Ç. Albayrak and O. Büyükgüngör, “Theoretical and experimental investigation of (E)-2—([3,4-dimethylphenyl) imino] methyl)-3-methoxyphenol: Enol—keto tautomerism, spectroscopic properties, NLO, NBO and NPA analysis,” Journal of Molecular Structure, 2014, Vol. 1065-1066, p. 210-222.

J. W. Ochterski, Thermochemistry in Gaussian, Tunghai University. Gaussian, Inc., 2000.

M. W. Chase, J. L. Curnutt, J. R. Dowmey, R. A. McDonald, A. N. Syverud and E. A. Valenzuela, “JANAF Thermochemical Table,” Journal of Physical and Chemical Reference Data, 1982, vol. 11, no. 3, p. 695-940.

H. Hagelin, J. S. Murray, P. Politzer, T. Brinck and M. Berthelot, “Family-independent relationships between computed molecular surface quantities and solute hydrogen bond acidity/basicity and solute-induced methanol O–H infrared frequency shifts,” Canadian Journal of Chemistry, 1995, vol. 73, no. 4, p. 483-488.




How to Cite

Bamba, E. H. S., Koffi, A. K., & N’Guessan, B. R. (2021). The Phospholipid Degradation in Paddy Rice: a Theoretical Model with DFT/B3LYP 6–311 G. European Journal of Applied Sciences, 9(5), 162–174.