A Block Diagram of Electromagnetoelastic Actuator for Control Systems in Nanoscience and Nanotechnology

Authors

  • S. M. Afonin National Research University of Electronic Technology (MIET), Moscow, Russia

DOI:

https://doi.org/10.14738/tmlai.84.8476

Keywords:

Block diagram; Electromagnetoelastic actuator; Piezoactuator; Nanoscience; Nanotechnology; Transfer function.

Abstract

The block diagram and the transfer functions of the electromagnetoelastic actuator are received for control systems in nanoscience and nanotechnology. The block diagram of the electromagnetoelastic actuator is reflected the transformation of electrical energy into mechanical energy, in contrast to Cady’s and Mason’s electrical equivalent circuits of piezotransducer. The electromagnetoelasticity equation and the second order linear ordinary differential equation with boundary conditions are solved for calculations the block diagram of the electromagnetoelastic actuator. The block diagram of the piezoactuator is obtained with using the reverse and direct piezoelectric effects. The back electromotive force is determined from the direct piezoelectric effect equation. The transfer functions of the piezoactuators are obtained for control systems in nanoscience and nanotechnology.

References

(1) Schultz, J., Ueda, J., Asada, H., Cellular actuators. Oxford: Butterworth-Heinemann Publisher, 2017. 382 p.

(2) Afonin, S.M., Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady mathematics, 2006. 74(3): p. 943-948, doi:10.1134/S1064562406060391.

(3) Zhou, S., Yao, Z., Design and optimization of a modal-independent linear ultrasonic motor. IEEE transaction on ultrasonics, ferroelectrics, and frequency control, 2014. 61(3): p. 535-546, doi:10.1109/TUFFC.2014.2937.

(4) Przybylski, J., Static and dynamic analysis of a flextensional transducer with an axial piezoelectric actuation. Engineering structures, 2015. 84: p. 140-151, doi:10.1016/j.engstruct.2014.11.025.

(5) Ueda, J., Secord, T., Asada, H.H., Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms. IEEE/ASME transactions on mechatronics, 2010. 15(5): p. 770-782, doi:10.1109/TMECH.2009.2034973.

(6) Karpelson, M., Wei, G.-Y., Wood, R.J., Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and actuators A: Physical, 2012. 176: p. 78-89, doi:10.1016/j.sna.2011.11.035.

(7) Afonin, S.M., Block diagrams of a multilayer piezoelectric motor for nano- and microdisplacements based on the transverse piezoeffect. Journal of computer and systems sciences international, 2015. 54(3): p. 424-439, doi:10.1134/S1064230715020021.

(8) Afonin, S.M., Structural parametric model of a piezoelectric nanodisplacement transduser. Doklady physics, 2008. 53(3) p. 137-143, doi:10.1134/S1028335808030063.

(9) Afonin, S.M., Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady mathematics, 2006. 73(2), p. 307-313, doi:10.1134/S1064562406020402.

(10) Cady W.G., Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York, London: McGraw-Hill Book Company, 1946. 806 p.

(11) Physical acoustics: Principles and methods. Vol.1. Part A. Methods and devices. Mason, W., Editor, New York: Academic Press, 1964. 515 p.

(12) Zwillinger, D., Handbook of differential equations. Boston: Academic Press, 1989. 673 p.

(13) Afonin, S.M., Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and nanomaterials: Fundamentals, developments and applications. Parinov, I.A., Editor, New York: Nova Science, 2015. p. 225-242.

(14) Afonin, S.M., A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Chapter 8 in Advances in nanotechnology. Volume 19. Bartul, Z., Trenor, J., Editors, New York: Nova Science, 2017. p. 259-284.

(15) Afonin, S.M., Nano- and micro-scale piezomotors. Russian engineering research, 2012. 32(7-8): p. 519-522, doi:10.3103/S1068798X12060032.

(16) Afonin, S.M., Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mechanics of solids, 2007. 42(1): p. 43-49, doi:10.3103/S0025654407010062.

(17) Afonin, S.M., Static and dynamic characteristics of a multi-layer electroelastic solid. Mechanics of solids, 2009. 44(6): p. 935-950, doi:10.3103/S002565440.

(18) Afonin, S.M., Static and dynamic characteristics of multilayered electromagnetoelastic transducer of nano- and micrometric movements. Journal of computer and systems sciences international, 2010. 49(1): p. 73-85, doi:10.1134/S106423071.

(19) Afonin, S.M., Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International journal of physics, 2017. 5(1): p. 9-15, doi: 10.12691/ijp-5-1-27.

(20) Afonin, S.M., Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International journal of physics, 2019. 7(2): p. 50-57, doi:10.12691/ijp-7-2-3.

(21) Afonin SM (2018) Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators, 2018. 7(1): 1-9, doi: 10.3390/act7010006.

(22) Afonin, S.M., Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators, 2019. 8(3): 1-14, doi: 10.3390/act8030052.

(23) Afonin, S.M., A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transactions on networks and communications, 2018. 6(3): p. 1-9, doi:10.14738/tnc.63.4641.

(24) Afonin, S.M., Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems, Transactions on networks and communications, 2019. 7(3): p. 11-21, doi:10.14738/tnc.73.6564.

(25) Afonin, S.M., Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Transactions on networks and communications, 2020. 8(1): p. 8-15, doi:10.14738/tnc.81.7775.

(26) Afonin, S.M., Structural scheme actuator for nano research. COJ Reviews and Research, 2020. 2(5): p. 1-3, doiI:10.31031/COJRR.2020.02.000548.

(27) Afonin, S.M., Structural–parametric model electroelastic actuator nano- and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ ecology and environmental sciences, 2018. 3(5): p. 306‒309. doi:10.15406/mojes.2018.03.00104.

(28) Afonin, S.M., Structural-parametric model of electro elastic actuator for nanotechnology and biotechnology. Journal of pharmacy and pharmaceutics, 2018. 5(1): p. 8-12, doi:10.15436/2377-131.

(29) Afonin, S.M., Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surgery and case studies open access journal, 2019. 3(3): p. 307–309, doi:10.32474/SCSOAJ.2019.03.000165.

(30) Springer Handbook of Nanotechnology. Bhushan, B., Editor, Springer, Berlin, New York, 2004. 1222 p.

Downloads

Published

2020-08-05

How to Cite

Afonin, S. M. (2020). A Block Diagram of Electromagnetoelastic Actuator for Control Systems in Nanoscience and Nanotechnology. Transactions on Engineering and Computing Sciences, 8(4), 23–33. https://doi.org/10.14738/tmlai.84.8476