Tripartite Entanglement for Qubits and Qudit in Double Photoionization of Xenon Atom

Authors

  • Minakshi Chakraborty Asansol Girls' College, Kazi Nazrul University
  • Sandip Sen Triveni devi Bhalotia College, Kazi Nazrul University

DOI:

https://doi.org/10.14738/tmlai.71.5711

Keywords:

entanglement, quantum information, qubit, qudit, Peres-Horodecki condition, negativity

Abstract

Quantum entanglement holds the key to an information processing revolution. In this article, we study the entanglement properties of tripartite states of two electronic qubits and ionic qudit,without observing spin orbit interaction (SOI), produced by single-step double photoionization from Xeon atom following the absorption of a single photon. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion Xe2+. In absence of SOI, Russel-Salunders coupling (L-S coupling) is applicable. As the estimations of entanglement, we consider Peres-Horodecki condition and negativity. In case of L-S coupling, all the properties of a qubit-qudit system can be predicted merely with the knowledge of the spins of the target atom, the residual photoion, emitted electrons and state of polarization of the incident photons.

Author Biographies

Minakshi Chakraborty, Asansol Girls' College, Kazi Nazrul University

Department of Physics, Assistant Professor.

Sandip Sen, Triveni devi Bhalotia College, Kazi Nazrul University

Department of Physics, Associate Professor.

References

(1) Quantum Computation and Quantum Information, M.A. Nielsen and I. L. Chuang (Cambridge University Press, Cambridge, England, 2000).

(2) Quantum Information: An Introduction to basic Theoretical Concepts and Experiments, edited by G. Alber, T. Berth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner and A. Zeilinger (Spinger, Berlin, 2000) .

(3) B. Shumacher, Phys. Rev. A 51, 2738 (1995).

(4) M. Horodecki, P. Horodecki and R. Horodecki, Rev. Mod. Phys. 81, 865 (2009).

(5) P. Rungta et al., in Directions in Quantum Optics: A Collection of Papers Dedicated to the Memory of Dan Walls, edited by H. J. Carmichae et al., (Spinger, Berlin, 2001), pp. 149-164.

(6) A. Einstein, B. Polodolsky and N. Rosen, Phy. Rev. 47, 777 (1935).

(7) J. S. Bell, Physics 1, 195 (1965).

(8) A. Ekert, Phys. Rev. Lett. 67, 661 (1991).

(9) C. H. Bannett, C. Brassard, R. Jozsa, A. Peres and W. K. Wooters, Phys. Rev. Lett. 70, 1895 (1993).

(10) A. Ekert and. R. Jozsa, Rev. Mod. Phys. 68, 733 (1998).

(11) S. Parida and N. Chandra, Phys. Rev. A 86, 062302 (2012).

(12) S. Koike, H. Takahashi, H. Yonezawa, N. Takei, S. L. Braunstein, T. Aoki and A. Furusawa, Phys. Rev. Lett. 96, 060504 (2006).

(13) A. Galindo and M.A. Martin-Delgado, Rev. Mod. Phys.74, 347 (2002).

(14) C.H. Bennett, D. P. DiVincenzo, J. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).

(15) A. Peres, Phys. Rev. Lett. 77, 1413 (1996 ).

(16) M. Horodecki, P. Horodecki and R. Horodecki, Phys. Rev. A. 223, 1, (1996).

(17) T.C. Wei, K. Nemoto, P. M. Goldbart, P. G. Kwiat, W. J. Munro and F. Verstraete, Phys. Rev. A 67, 022110 (2003).

(18) S. Ishizaka and T. Hiroshima, Phys. Rev. A 62, 022310 (2000).

(19) W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

(20) N. Chandra and M. Chakraborty, J. Phys. B: At. Mol. Opt. Phys. 35, 2219 (2002).

(21) Angular Momentum in Quantum Mechanics, A. R. Edmonds (Princeton University press, Princeton, 1974).

(22) A Huetz, P. Selles, D. Waymel and J. Mazeau, J. Phys. B 24 ,1917 (1991).

(23) Quantum Entanglement in Electron Optics, N. Chandra and R. Ghosh, (Springer-Verlag, Berlin, 2013).

(24) D. Loss, D. P. DiVicenzo, Phys. Rev. A 57, 120 (1998).

(25) M. Chakraborty and S. Sen, Journal of Electron Spectroscopy and Related Phenomena,203, 60 (2015).

(26) M. Chakraborty, Indian Journal of Science and Technology, 10, 27 (2017).

Downloads

Published

2019-03-08

How to Cite

Chakraborty, M., & Sen, S. (2019). Tripartite Entanglement for Qubits and Qudit in Double Photoionization of Xenon Atom. Transactions on Engineering and Computing Sciences, 7(1), 01. https://doi.org/10.14738/tmlai.71.5711