Inference-based User’s Recommendation in E-learning Systems

  • Youssef Elouahby Faculty of Sciences Moulay Ismail University Meknès, Maroc
  • Rachid Elouahbi Computer science Laboratory, Faculty of Science Moulay Ismail University Meknès, Maroc
Keywords: E-learning, recommendation of users, artificial intelligence, Inference, Semantic Web.

Abstract

This paper proposes a technique of user’s recommendation for E-learning systems, which makes it possible to identify the best qualified profiles in a given field, the method is based on artificial intelligence in order to make connection between the knowledge expressed explicitly on a learner profile and a special need of another learner, not necessarily expressed on that profile, but which can be deduced through mechanism of inference.

References

(1) S. Chehbi, R. Elouahbi, and F. Elkhoukhi, “Trachking of learner’s motivation and involvement in moodle,” Int. J. Multi-disciplinary Sci., vol. 2, no. 2, pp. 22–28, 2016.

(2) S. V Aciar, G. I. Aciar, C. A. Collazos, and C. S. González, “User Recommender based on information from forums,” Proc. XV Int. Conf. Hum. Comput. Interact., pp. 3–4, 2014.

(3) F. Abel, I. I. Bittencourt, E. Costa, N. Henze, D. Krause, and J. Vassileva, “Recommendations in online discussion forums for E-learning systems,” IEEE Trans. Learn. Technol., vol. 3, no. 2, pp. 165–176, 2010.

(4) V. R. Pandit, “E-Learning System Based on Semantic Web,” 3rd Int. Conf. Emerg. Trends Eng. Technol., pp. 559–564, 2010.

(5) I. Szilagyi, F. Greffier, and J. Domenget, “Apprentissage personnalisé via le web sémantique,” Atelier“ Personnal. l’apprentissage quelles Approch. pour quels besoins?”, EIAH 2011, pp. 1–8, 2011.

(6) Y. Li, L. Mei, and J. Wang, “A Personalized Recommendation System in E-Learning Environment Based on Semantic Analysis,” Int. Conf. New Trends Inf. Sci. Serv. Sci. Data Min., pp. 802–807, 2012.

(7) A. Korchi, N. Elmrani Elidrissi, A. Jeghal, L. Oughdir, and F. Messaoudi, “A modeling learner approach in a computing environment for human leaning based on ontology,” Int. J. Comput. Eng. Technol., vol. 6, no. 9, pp. 21–31, 2015.

(8) B. Chaput, A. Benayache, C. Barry, and M.-H. Abel, “Une expérience de construction d’ontologie d’application pour indexer les ressources d’une formation en statistique,” Actes des Trente-sixièmes Journées Françaises Stat. (SFDS’04), Montpellier, Fr., 2004.

(9) ACM, Computer Science Curricula 2013. 2013.

(10) J. Haton, “L ’ intelligence artificielle,” 263e conférence l’Université tous les savoirs donnée, 2000.

(11) B. Quilitz and U. Leser, “Querying Distributed RDF Data Sources with SPARQL,” pp. 524–538, 2008.

(12) M. Horridge and M. Musen, “Snap-SPARQL: A java framework for working with SPARQL and OWL,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9557, pp. 154–165, 2016.

Published
2017-09-01
Section
Special Issue : 1st International Conference on Affective computing, Machine Learning and Intelligent Systems