Image Category Recognition using Bag of Visual Words Representation
DOI:
https://doi.org/10.14738/tmlai.45.2206Keywords:
Bag-of-visual-words, Object recognition, Local image features, Interest point detector, Image descriptorReferences
(1) Yang, J, et., Evaluating bag-of-visual-words representations in scene classification. In Proceedings of the international workshop on Workshop on multimedia information retrieval, 2007. p. 197-206.
(2) Tirilly, P., Claveau, V., and Gros, P., Language modeling for bag-of-visual words image categorization. In Proceedings of the 2008 international conference on Content-based image and video retrieval, 2008. p. 249-258.
(3) Yang, Y., and Newsam, S., Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems, 2010. p. 270-279.
(4) Sivic, J., and Zisserman, A., Video Google: A text retrieval approach to object matching in videos. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, 2003. p. 1470-1477.
(5) Cortes, C., and Vapnik, V., Support-vector networks. Machine learning, 1995, 20(3): p. 273-297.
(6) Lowe, D. G., Distinctive image features from scale-invariant keypoints. International journal of computer vision, 2004, 60(2): p. 91-110.
(7) Kannan, R, et al., CLRF: Compressed Local Retinal Features for Image Description. In Advances in Pattern Recognition (ICAPR), Eighth International Conference on, 2015, p. 1-5.
(8) Bay, H., Tuytelaars, T., and Van Gool, L. Surf: Speeded up robust features. In European conference on computer vision, 2006. p. 404-417.
(9) Fan, B., Wu, F., and Hu, Z. Rotationally invariant descriptors using intensity order pooling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012. 34(10): p.2031-2045.
(10) Peng, X., et al., Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice. Computer Vision and Image Understanding, 2016. p. 109-125.
(11) Karakasis, E. G., et al., Image moment invariants as local features for content based image retrieval using the bag-of-visual-words model. Pattern Recognition Letters, 2015, 55, p. 22-27.
(12) Pun, C. M., and Lee, M. C. Log-polar wavelet energy signatures for rotation and scale invariant texture classification. IEEE transactions on pattern analysis and machine intelligence, 2003, 25(5): p.590-603.
(13) Kavukcuoglu, K., et al., Learning convolutional feature hierarchies for visual recognition. In Advances in neural information processing systems, 2010, p. 1090-1098.
(14) Lazebnik, S., Schmid, C., and Ponce, J., Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006. 2: p. 2169-2178.
(15) Goh, H., et al., Unsupervised and supervised visual codes with restricted boltzmann machines. In European Conference on Computer Vision, 2012. p. 298-311.
(16) Vedaldi, A., et., Multiple kernels for object detection. In 2009 IEEE 12th international conference on computer vision, 2009. p. 606-613.
(17) Perronnin, F., and Dance, C., Fisher kernels on visual vocabularies for image categorization. IEEE Conference on Computer Vision and Pattern Recognition, 2007. p. 1-8.
(18) Sanchez, J., et al., Image classification with the fisher vector: Theory and practice. International journal of computer vision, 2013. 105(3): p. 222-245.
(19) Zhou, X., et al., Image classification using super-vector coding of local image descriptors. In European conference on computer vision, 2010. p. 141-154.
(20) Jegou, H., et., Aggregating local descriptors into a compact image representation. In Computer Vision and Pattern Recognition, 2010 IEEE Conference on, p. 3304-3311.
(21) Arandjelovic, R., and Zisserman, A. All about VLAD. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013. p. 1578-1585.
(22) Zhu, C., Bichot, C. E., and Chen, L. Image region description using orthogonal combination of local binary patterns enhanced with color information. Pattern Recognition, 2013. 46(7): p.1949-1963.
(23) Ojala, T., Pietikainen, M., and Harwood, D. A comparative study of texture measures with classification based on featured distributions. Pattern recognition, 1996. 29(1): p. 51-59.
(24) Heikkila, M., Pietikainen, M., and Schmid, C. Description of interest regions with local binary patterns. Pattern recognition, 2009. 42(3): p. 425-436.
(25) Mikolajczyk, K., et al., A comparison of affine region detectors. International journal of computer vision, 2005. 65(1-2): p.43-72.
(26) Wang, J. Z., Li, J., and Wiederhold, G. SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. Pattern analysis and machine intelligence, IEEE Transactions on, 2001. 23(9): p.947-963.
(27) Lazebnik, S., Schmid, C., and Ponce, J. Semi-local affine parts for object recognition. In British Machine Vision Conference, 2004. p. 779-788.