Reversible nanoporous sensors of carbon monoxide in atmosphere

Authors

  • Alexander Novikov Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, Department of Physical Engineering, Kronwerksky, Saint Petersburg, Russia.

DOI:

https://doi.org/10.14738/tnc.32.899

Keywords:

Optical chemical sensors, Carbon monoxide detection, Nanoporous glass composition materials, Palladium complexes.

Abstract

Optical сhemical compositions being sensitive to carbon monoxide in atmosphere were investigated and tested. The gas sensitive Palladium(II) complexes were immobilized within nano-scale through-out porous glass substrates. Fabricated specimens have demonstrated reversible color changes while interaction with gaseous carbon monoxide in atmosphere.

References

Dräger Werk AG. Product Catalog. Detector Tube Handbook, 2010.

Thompson C. V., Goedert M. G. Field-Portable Instrumentation for Gas and Vapor Samples. In: Encyclopedia of Analytical Chemistry / Ed. by Meyers R. A., John Wiley and Sons, Inc. Vol. 14, Field-portable Instrumentation, 2009.

Opekar F., Štulík K. Electrochemical Gas Sensors. Ibid. Vol. 9, Electroanalytical Methods, 2009.

Lucena R. Infrared Sensors. Ibid. Vol. 20, Infrared Spectroscopy, 2010.

Saltzman R. S. Ultraviolet/Visible Spectroscopy in Process Analyses. Ibid. Vol. 33, Process Instrumental Methods, 2011.

Holleman A. F., Wiberg E. Inorganic Chemistry. Academic Press. San Diego, 2001.

Livingstone S.A. The Chemistry of Ruthenium, Rhodium, Palladium, Osmium, Iridium and Platinum, Oxford: Pergamon Press. 1973.

T. H. Allen, W. S. Root. Colorimetric Determination of Carbon Monoxide in Air by an improved Palladium Chloride Method. // Journ. Biol. Chem. 1955. V. 216, No.1, pp. 309–317.

Yanowski F., Heyer W. Poröse Gläser. Herstellung, Eigenschaften, Anwendung. I Auflage. Leipzig: VEB Deutscher Verlag fűr Grundstoffindustrie. 1981. 276 S.

Enke D., Janowski F., Schwieger W. Porous glasses in the 21st century − a short review // Microporous and Mesoporous Materials. 2003. V. 60. N 1−3. P. 19−30.

Macedo P. B., Litovits T. A. Method of precipitation of dopants in a porous silicate glass. – Patent USA No. 4110096, publ. 29.08.78.

Novikov A.F. Nanoporous silica glass sensibilisation in respect to the gas components detection. // Optica Applicata, 2008, V. XXXVIII, No.1, 65-69.

Elmer T. H. Porous and Reconstructed Glasses. In: Schneider S. J. (ed.). Engineered Materials Handbook, Vol. 4: Ceramics and Glasses. Materials Park, OH: ASM International. 1991, pp. 427–432.

Novikov A.F. Characterization of the inner structure and surface of nanoporous sodium-borate-silicate glasses. // Optica Applicata, 2005. V. XXXV, No.4, pp.702-708.

Basche T. [ed.], Single-Molecule Optical Detection, Imaging and Spectroscopy. VCH Publ. 1997, 250 p.

Gregg S., Sing C.. Adsorption, Surface Area & Porosity. L. – N.Y.: Academic Press. 1967.

Lever A.B.P. Inorganic Electronic Spectroscopy. 2nd ed. Part 2, section 6.2.8. Elsevier, ser. Studies in Physical and Theoretical Chemistry 33. 1985.

Rush R.M., Martin D.S., Jr., Le Grand R.G. Electronic spectra of the Pd complexes. // Inorg. Chem. 1975. V.14, № 10, pp. 2543–2550.

Maitlis P. M. The Organic Chemistry of Palladium. N.Y.: Academic Press. 1971.

Candlin J.P., Taylor K.A., Thompson D.T. Reactions of Transition-Metal Complexes. Elsevier Publ. Co., N.Y. 1968.

Downloads

Published

2015-05-02

How to Cite

Novikov, A. (2015). Reversible nanoporous sensors of carbon monoxide in atmosphere. Discoveries in Agriculture and Food Sciences, 3(2), 70. https://doi.org/10.14738/tnc.32.899