Condition Absolute Stability Control System of Electromagnetoelastic Actuator for Communication Equipment

  • Sergey Mikhailovich Afonin National Research University of Electronic Technology (MIET), Moscow, Russia
Keywords: Electromagnetoelastic actuator; Piezoactuator; Hysteresis; Control system; Condition absolute stability; Stationary set.


We obtained the condition absolute stability on the derivative for the control system of electromagnetoelastic actuator for communication equipment. We applied the frequency methods for Lyapunov stable control system to calculate the condition absolute stability control system of electromagnetoelastic actuator. We used Yakubovich criterion absolute stability system with the condition on the derivative. The aim of this work is to determine the condition of the absolute stability on the derivative for the control system of electromagnetoelastic actuator. We received the stationary set of the control system of the hysteresis deformation of the electromagnetoelastic actuator. The stationary set is the segment of the straight line.


(1). Schultz, J., Ueda, J., Asada, H., Cellular actuators. Oxford: Butterworth-Heinemann Publisher, 2017. 382 p.

(2). Yakubovich, V.A., Popov's method and its subsequent development. European Journal of Control, 2002. 8(3): p.200-208, doi:10.3166/ejc.8.200-208.

(3). Afonin, S.M., Absolute stability of a piezotransducer deformation control system. Journal of Computer and Systems Sciences International. New York: Pleiades publishing, Inc., Springer, 2005. 44(2): p. 266 – 272.

(4). Zhou, S., Yao, Z., Design and optimization of a modal-independent linear ultrasonic motor. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 2014. 61(3): p. 535-546, doi:10.1109/TUFFC.2014.2937.

(5). Przybylski, J., Static and dynamic analysis of a flextensional transducer with an axial piezoelectric actuation. Engineering Structures, 2015. 84: p. 140-151, doi:10.1016/j.engstruct.2014.11.025.

(6). Ueda, J., Secord, T., Asada, H.H., Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms. IEEE/ASME Transactions on Mechatronics, 2010. 15(5): p. 770-782, doi:10.1109/TMECH.2009.2034973.

(7). Karpelson, M., Wei, G.-Y., Wood, R.J., Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and Actuators A: Physical, 2012. 176: p. 78-89, doi:10.1016/j.sna.2011.11.035.

(8). Afonin, S.M., Block diagrams of a multilayer piezoelectric motor for nano- and microdisplacements based on the transverse piezoeffect. Journal of Computer and Systems Sciences International, 2015. 54(3): p. 424-439, doi:10.1134/S1064230715020021.

(9). Afonin, S.M., Structural parametric model of a piezoelectric nanodisplacement transduser. Doklady Physics, 2008. 53(3): p. 137-143, doi:10.1134/S1028335808030063.

(10). Afonin, S.M., Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics, 2006. 73(2): p. 307-313, doi:10.1134/S1064562406020402.

(11). Cady W.G., Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York, London: McGraw-Hill Book Company, 1946. 806 p.

(12). Physical acoustics: Principles and methods. Vol.1. Part A. Methods and devices. Mason, W., Editor, New York: Academic Press, 1964. 515 p.

(13). Zwillinger, D., Handbook of differential equations. Boston: Academic Press, 1989. 673 p.

(14). Afonin, S.M., Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and nanomaterials: Fundamentals, developments and applications. Parinov, I.A., Editor, New York: Nova Science, 2015. p. 225-242.

(15). Afonin, S.M., A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Chapter 8 in Advances in nanotechnology. Volume 19. Bartul, Z., Trenor, J., Editors, New York: Nova Science, 2017. p. 259-284.