A Block Diagram of Electromagnetoelastic Actuator Nanodisplacement for Communications Systems

  • Sergey Mikhailovich Afonin National Research University of Electronic Technology (MIET), Moscow, Russia
Keywords: Electromagnetoelastic actuator, Parametric block diagram, Matrix transfer function, Piezoactuator.

Abstract

The parametric block diagram of the electromagnetoelastic actuator nanodisplacement or the piezoactuator is determined in contrast the electrical equivalent circuit types Cady or Mason for the calculation of the piezoelectric transmitter and receiver, the vibration piezomotor with the mechanical parameters in form the velosity and the pressure. The method of mathematical physics is used. The parametric block diagram of electromagnetoelastic actuator is obtained with the mechanical parameters the displacement and the force. The transfer functions of the electroelastic actuator are determined. The the generalized parametric block diagram, the generalized matrix equation for the electromagnetoelastic actuator nanodisplacement are obtained. The deformations of the electroelastic actuator for the nanotechnology are described by the matrix equation. Block diagram and structural-parametric model of electromagnetoelastic actuator nanodisplacement for nanodisplacement of the communications systems are obtained, its transfer functions are bult. Effects of geometric and physical parameters of electromagnetoelastic actuators and external load on its dynamic characteristics are determined. For calculations the communications systems with the piezoactuator for nanodisplacement the parametric block diagram and the transfer functions of the piezoactuator are obtained.

References

(1) Schultz, J., Ueda, J., Asada, H., Cellular actuators. Oxford: Butterworth-Heinemann Publisher, 2017. 382 p.

(2) Afonin, S.M., Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady mathematics, 2006. 74(3): p. 943-948, doi:10.1134/S1064562406060391.

(3) Zhou, S., Yao, Z., Design and optimization of a modal-independent linear ultrasonic motor. IEEE transaction on ultrasonics, ferroelectrics, and frequency control, 2014. 61(3): p. 535-546, doi:10.1109/TUFFC.2014.2937.

(4) Przybylski, J., Static and dynamic analysis of a flextensional transducer with an axial piezoelectric actuation. Engineering structures, 2015. 84: p. 140-151, doi:10.1016/j.engstruct.2014.11.025.

(5) Ueda, J., Secord, T., Asada, H.H., Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms. IEEE/ASME transactions on mechatronics, 2010. 15(5): p. 770-782, doi:10.1109/TMECH.2009.2034973.

(6) Karpelson, M., Wei, G.-Y., Wood, R.J., Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and actuators A: Physical, 2012. 176: p. 78-89, doi:10.1016/j.sna.2011.11.035.

(7) Afonin, S.M., Block diagrams of a multilayer piezoelectric motor for nano- and microdisplacements based on the transverse piezoeffect. Journal of computer and systems sciences international, 2015. 54(3): p. 424-439, doi:10.1134/S1064230715020021.

(8) Afonin, S.M., Structural parametric model of a piezoelectric nanodisplacement transduser. Doklady physics, 2008. 53(3) p. 137-143, doi:10.1134/S1028335808030063.

(9) Afonin, S.M., Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady mathematics, 2006. 73(2), p. 307-313, doi:10.1134/S1064562406020402.

(10) Cady W.G., Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York, London: McGraw-Hill Book Company, 1946. 806 p.

(11) Physical acoustics: Principles and methods. Vol.1. Part A. Methods and devices. Mason, W., Editor, New York: Academic Press, 1964. 515 p.

(12) Zwillinger, D., Handbook of differential equations. Boston: Academic

Press, 1989. 673 p.

(13) Afonin, S.M., Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and nanomaterials: Fundamentals, developments and applications. Parinov, I.A., Editor, New York: Nova Science, 2015. p. 225-

(14) Afonin, S.M., A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Chapter 8 in Advances in nanotechnology. Volume 19. Bartul, Z., Trenor, J., Editors, New York: Nova Science, 2017. p. 259-284.

(15) Afonin, S.M., Nano- and micro-scale piezomotors. Russian engineering research, 2012. 32(7-8): p. 519-522, doi:10.3103/S1068798X12060032.

(16) Afonin, S.M., Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mechanics of solids, 2007. 42(1): p. 43-49, doi:10.3103/S0025654407010062.

(17) Afonin, S.M., Stability of strain control systems of nano-and microdisplacement piezotransducers. Mechanics of solids, 2014. 49(2): p. 196-207, doi:10.3103/S0025654414020095.

(18) Afonin, S.M., Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International journal of physics, 2017. 5(1): p. 9-15.

(19) Springer Handbook of Nanotechnology. Bhushan, B., Editor, Springer, Berlin, New York, 2004. 1222 p.

Published
2018-07-12