Road Towards Mili Meter Wave Communication For 5G Network: A Technological Overview

Authors

  • Sumant Kumar Mohapatra Trident Academy Of Technology,BPUT,Bhubaneswar,Odisha
  • Biswa Ranjan Swain Trident Academy Of Technology,BPUT,Bhubaneswar,Odisha
  • Nibedita Pati Trident Academy Of Technology, BPUT, Bhubaneswar, Odisha
  • Annapurna Pradhan Trident Academy Of Technology, BPUT, Bhubaneswar, Odisha

DOI:

https://doi.org/10.14738/tmlai.23.256

Keywords:

Millimeter wave, 4G, 5G, Spectrum

Abstract

For future broadband cellular communication networks wireless carriers has motivated the exploration of the under-utilized millimeter (mm-wave) frequency spectrum. The cellular mm wave propagation is densely populated in the world. It is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum.  This paper provides the overview of the recent world-wide activities for beyond 4G and 5G wireless standardization and technological aspects for millimeter wave communications.  A complete characterization of the mm-wave link for next generation 5G mobile broadband remains elusive. The coverage, directionality and reliability of mm-wave communications will require new innovations in system design and communication technologies that are far from trivial. The transmission range and spatial selectivity’s in the mm-wave bands especially in non line of sight channels can be increased by system design. So it require highly direction antennas and steerable antenna beams to compensate for the high propagation loss.

References

T. S. Rappaport, J. N. Murdock, and F. Gutierrez, ``State of the art in 60 GHz integrated circuits & systems for wireless communications,'' Proc.IEEE, vol. 99, no. 8, pp. 1390_1436, Aug. 2011.

Z. Pi and F. Khan, ``An introduction to millimeter-wave mobile broadband systems,'' IEEE Commun. Mag., vol. 49, no. 6, pp. 101_107, Jun. 2011.

Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulations (Release 10), Standard 3GPP TR 25.996,

Mar. 2011.

Guidelines for Evaluation of Radio Interference Technologies for IMT- Advanced, Standard ITU-R M.2135, 2008.

T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 2002.

L. Xichun, A. Gani, R. Salleh, and O. Zakaria, ``The future of mobile wireless communication networks,'' in Proc. Int. Conf. Commun. Softw. Netw., Feb. 2009, pp. 554_557.

P. Rysavy. (2010). Transition to 4G: 3GPP Broadband Evolution to IMT-Advanced (4G) [Online]. Available: http: //www.3gamericas.org / documents/Transition%20to%204G-HSPA%20LTE%20Advanced% 20Rysavy%202010%20PPT.pdf

Nokia Siemens Networks. (2010). Long Term HSPA Evolution: Mobile Broadband Evolution Beyond 3GPP Release 10, Espoo, Finland [Online]. Available: http://lteworld.org/whitepaper/long-term-hspa-evolution-mobile-broadband-evolution-beyond-3gpp-release-10

Ericsson. (2011, Apr.). LTE-A 4G Solution, Stockholm, Sweden [Online]. Available:ttp://www.ericsson.com/news/110415_wp_4g_244188810_c

A. F. Molisch, M. Steinbauer, M. Toeltsch, E. Bonek, and R. Thoma,``Capacity of MIMO systems based on measured wireless channels,'' IEEE J. Sel. Areas Commun., vol. 20, no. 3, pp. 561_569,

Apr. 2002.

J. Fuhl, A. F. Molisch, and E. Bonek, ``A united channel model for mobile radio systems with smart antennas,'' Proc. Inst. Electr. Eng.-Radar, Sonar Navigat., Special Issue Antenna Array Process. Tech., vol. 145, no. 1,

pp. 32_41, Feb. 1998.

S. Rajagopal, S. Abu-Surra, Z. Pi, and F. Khan, ``Antenna array design for multi-Gbps mm wave mobile broadband communication,'' in Proc. IEEE Global Telecommun. Conf., Dec. 2011, pp. 1_6.

Nokia Siemens Networks.(2011).2020:Beyond 4G:Radio Evolution for the Gigabit Experience,Espoo,Finland[online],Available:http://www.nokiasiemensnetworks.com/_le/15036/2020-beyond-4g- radio-evolution-for-the-gigabit-experience

S. Hwang, D. Lyu, and K. Chang, ``4G vision and technology development in Korea,'' in Proc. IEEE Int. Conf. Commun. Technol., vol. 1. Apr. 2003,pp. 26_27.

(2002).All IP Wireless_All the Way[Online],Available:

http://www.mobileinfo.com/3G/4G_Sun_MobileIP.htm

K. R. Santhi, V. K. Srivastava, G. SenthilKumaran, and A. Butare, ``Goals of true broad band's wireless next wave (4G-5G),'' in Proc. IEEE 58th Veh.Technol. Conf., vol. 4. Oct. 2003, pp. 2317_2321.

L. George, ``Another generation,'' Global Telephony, vol. 9 no. 2,pp. 1_10, Feb. 2001.

Y. Kim. (2012). Global Competition, Interconnectivity, Smarter Customers, and Deregulation [Online]. Available: http://www.3g4g.co.uk/4G/News/20050205.html

L. HyeonWoo, ``4G and B4G R&D activities in Korea,'' in Proc. Int.Mobile Commun. Symp., Sep. 2012, pp. 1_6.

M. Cudak, A. Ghosh, T. Kovarik, R. Ratasuk, T. Thomas, F. Vook,and P. Moorut, ``Moving towards mm wave-based beyond-4G (B-4G) Technology,'' in Proc. IEEE Veh. Technol. Soc. Conf., 2013,pp. 1_17.

Y. Chen, S. De, R. Kernchen, and K. Moessner, ``Device discovery in future service platforms through SIP,'' in Proc. IEEE Veh. Technol. Conf.,Sep. 2012, pp. 1_5.

F. Gutierrez, S. Agarwal, K. Parrish, and T. S. Rappaport, ``On-chip integrated antenna structures in CMOS for 60 GHz WPAN sys-tems,'' IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1367_1378,Oct. 2009.

T. S. Rappaport, E. Ben-Dor, J. N. Murdock, and Y. Qiao, ``38 GHz and 60 GHz Angle-dependent Propagation for Cellular and peer-to-peer wireless communications,'' in Proc. IEEE Int. Conf. Commun., Jun. 2012,

pp. 4568_4573.

F. Rusek, D. Persson, B. Lau, E. Larsson, T. Marzetta, O. Edfors,and F. Tufvesson, ``Scaling up MIMO: Opportunities and challenges with very large arrays,'' IEEE Signal Process. Mag., vol. 30, no. 1,pp. 40_60, Jan. 2013.

Downloads

Published

2014-06-09

How to Cite

Kumar Mohapatra, S., Ranjan Swain, B., Pati, N., & Pradhan, A. (2014). Road Towards Mili Meter Wave Communication For 5G Network: A Technological Overview. Transactions on Engineering and Computing Sciences, 2(3), 48–60. https://doi.org/10.14738/tmlai.23.256