Representation of the kinematics of the natural trihedral of a spiral-helix trajectory by quaternion matrices

Authors

  • Anatolii Alpatov
  • Victor Kravets
  • Volodymyr Kravets
  • Erik Lapkhanov Institute of Technical Mechanics NASU and SSAU

DOI:

https://doi.org/10.14738/tmlai.94.10523

Keywords:

Quaternion matrices; hodograph; spiral-helix trajectory; natural trihedral; kinematics; curvature, torsion, Frenet- Serret formulas.

Abstract

The spiral-helix trajectory of the transport vehicle programmed motion in the form of a hodograph in the stationary frame of reference is considered. A relative frame of reference associated with the natural trihedral of the trajectory is introduced. The formulas of curvature and torsion of the trajectory, the unit vector of the natural trihedral, the components of the angular velocity of rotation of the natural trihedral in the proper axes and in the stationary frame of reference are set in the quaternionic matrices. The results are verified using the Frenet-Serret formulas. The mathematical apparatus of quaternion matrices is tested with the aim of adapting spatial, nonlinear problems of dynamic design of transport vehicles to a computational experiment.

References

. Lazaryan, V. A., Dinamyka transportnyh sredstv [Vehicle dynamics], Kyiv, Naukova dumka, 1985, 528 p. (in Russian).

. Blokhin, E. P., Manashkin, L. A., Dinamyka poezda [The dynamics of the train], Moscow, Transport, 1982, 222 p. (in Russian).

. Lysenko, L. N., Navedenie i navigatsion ballisticheskih raket [Navigation and guidance ballistic rockets], Moscow, Bauman university publ., 2007, 762 p. (in Russian).

. Igdalov, I. M., Kuchma, L. D., Polyakov, N. V., Sheptun, Yu. D., Dinamicheskoe proektirovanie raket. Zadachi dinamiki raket I ih kosmicheskih stupeney [Dynamic design of missiles. The tasks of the dynamics rockets and their cosmic stages], Dnipro, Dnipro National University publ., 2010, 264 p. (in Russian).

. Kravets, V. V., Kravets, Vl. V., Burov, O. V., Reliability of Systems. Part 1. Statics of Failures. Lap Lambert Academic Publishing, Omni Scriptum GmbH&Co. KG. 2016. 93 p. ISBN: 978-3-659-83413-4.

. Kravets, V. V., Kravets, Vl. V., Burov, O. V., Reliability of Systems. Part 2. Dynamics of Failures. Lap Lambert Academic Publishing, Omni Scriptum GmbH&Co. KG. 2016. 100 p. ISBN: 978-3-659-89711-5.

. Kravets, V. V., Kravets, T. V. On the nonlinear dynamics of elastically interacting asymmetric rigid bodies. Int. Appl. Mech. 2006. Vol. 42. No. 1. P 110 – 114.

. Kravets, V. V., Kravets, T. V., Kharchenko, A. V. Using quaternion matrices to describe the kinematics and nonlinear dynamics of an asymmetricrigid body. Int. Appl. Mech. 2009. Vol. 44. No. 2. P 223 – 232.

. Kravets, V.V., Bas, К.M., Kravets Т.V., Tokar, L.M., Dynamic design of ground transport with the help of computation experiment, MMSE Journal, 2015, 1, p.p. 105–111. ISSN 2412-5954, Open access www.mmse.xyz, DOI 10.13140/RG.2.1.2466.6643.

. Kravets, V. V., Kravets, Vl. V., Fedoriachenko, S. A., On Application of the Ground Effect For Highspeed Surface Vehicles. Mechanics, Materials Science&Engineering. 2016. No. 4. P. 82–87. DOI:10.13140/RG.2.1.1034.5365.

. Kravets, V.V., Bas, К.M., Kravets Т.V., Zubariev, M.S., Tokar, L.A., Kinetostatics of wheel vehicle in the category of spiral-screw routes, MMSE Journal, 2016, 5, p.p. 87-89. Open access www.mmse.xyz, DOI: 10.13140/RG.2.1.10109.3921.

. Beshta, O., Kravets, V., Bas, K., Kravets, T., Tokar, L. Control of tandem-type two-wheel vehicle at various notion modes along spatial curved lay of line. Power Engineering, Control and Information Technologies in Geotechnical Systems, London, Taylor and Francis Group, 2015, ISBN 978-1-138-02804-3, p. 27-32. DOI: 10.1201/b18475-6.

. Pivnyak G. G., Sakhno V. P., Kravets V. V., Bas K. M. Method for determining high-speed vehicle contact forces of the ground transport. Naukovyi Visnyk NHU. 2019. No. 1, P. 55 – 61. DOI: 10.29202/nvngu/2019-1/8.

. Kravets V., Sakhno, V., Bas, K., Kravets, Vl., Program spatial moment of highspeed vehicles, CMSME 2018, IOP Conf., Series: Material science and engineering, IOP Publ., 2018, p. 383. DOI: 10.1088/1757-899X/383/1/012032.

. Kravets, V.V., Kravets, Vl.V., Artemchuk, V.V., The Vehicle Controlling Near the Screening Surface Using Thrust Vector Deflection of the Electric Motor with Gimbal Mounted Propeller, Mechanics, Materials Science & Engineering, 2017, 12, p.p. 117-122. DOI:10.2412/mmse.2.35.544.

. Kravets V.V., Kravets Vl.V., Artemchuk V.V. Control of following Force in Gimbal Suspension by Programmed Transfer of Vehicle in the Class of Spiral-Screw Trajectories. TMLAI, vol. 8, no. 6. December, 2020, P. 1–15. DOI: 10.14738/tmlai.86.8743

. Kravets, V., Kravets, T., Burov, O., Monomial (1, 0, -1)-matrices-(4х4). Part 1. Application to the transfer in space. Lap Lambert Academic Publishing, Omni Scriptum GmbH&Co. KG., 2016, 137 p. ISBN: 978-3-330-01784-9.

. Kravets, V., Kravets, T., Burov, O., Monomial (1, 0, -1)-matrices-(4х4). Part 2. Application to the rotation in space. Lap Lambert Academic Publishing, Omni Scriptum GmbH&Co. KG., 2017, 82 p. ISBN: 978-3-330-34185-2.

. Kravets, V., Kravets, T., Burov, O., Monomial matrices. Part 3. Application to the programmed transfer and rotation. Lap Lambert Academic Publishing, Omni Scriptum Publishing Group., 2019, 124 p. ISBN: 978-620-0-08354-8.

. Sakhno V. P., Kravets V. V., Bas K. M., Krivda V. V. Orientation of natural trihedral of the spiral-helix supporting trajectory of spatial vehicle movement. Naukovyi Visnyk NHU, 2018, No. 3, P. 50 – 56. DOI: 10.29202/nvngu/2018-3/15

. Kravets, V.V., Kravets, Т.V., Bas, К.M., Tokar, L.M., Mathematical model of a path hodograph of surface transport, Transport problems, Dnipro, 2014, p. 830–841..

. Lur'e, A.I., Analytical mechanics, Springer Science & Business Media, 2002, 824 p.

. Alpatov A.P., Khoroshylov S.V., Maslova A.I. Сontactless de-orbiting of space debris by the ion beam. Dynamics and control. Кyiv: Akademperiodyka, 2019. 170 p.

. Alpatov A., Khoroshylov S., Lapkhanov E. Synthesizing an algorithm to control the angular motion of spacecraft equipped with an aeromagnetic deorbiting system. Eastern-European Journal of Enterprise Technologies. 2020. Vol. 1. Iss. 5(103). Pp. 37 – 46. DOI: 10.15587/1729-4061.2020.192813

Downloads

Published

2021-07-29

How to Cite

Alpatov, A., Kravets, V., Kravets, V., & Lapkhanov, E. (2021). Representation of the kinematics of the natural trihedral of a spiral-helix trajectory by quaternion matrices . Transactions on Machine Learning and Artificial Intelligence, 9(4), 18–29. https://doi.org/10.14738/tmlai.94.10523