Simulation of Dry Reforming of Methane Catalyzed by Iron Hexagonal Mesoporous Silicates (Fe-HMS) Using Aspen HYSYS

Authors

  • Jérôme Dikwa Department of Mechanical Petroleum and Gas Engineering of National Advanced School of Mines and Petroleum Industries (ENSMIP) The University of Maroua, Cameroon
  • Philemon Ze Bilo’o Department of Refining and Petrochemistry of National Advanced School of Mines and Petroleum Industries (ENSMIP) The University of Maroua, Cameroon https://orcid.org/0000-0001-5785-6334
  • Adji Allawadi Department of Refining and Petrochemistry of National Advanced School of Mines and Petroleum Industries (ENSMIP) The University of Maroua, Cameroon

DOI:

https://doi.org/10.14738/aivp.105.13226

Keywords:

Catalyst, CO2, Dry reforming, Fe-HMS-n, Mesoporous silicate, Methane

Abstract

This paper deals with the theoretical study of mesoporous silicates applied to the dry reforming of methane. In order to enhance natural gas and reduce the concentration of carbon dioxide, which is a greenhouse gas in the atmosphere in the same way as methane, the catalytic properties of silicate of the Fe-HMS-n type were used in the simulation of the methane dry reforming reaction on HYSYS. The dry reforming of methane aims to produce syngas, which is an important raw material in the production of fertilizers and resins. Among the Fe-HMS-n silicates used, Fe-HMS-15 provided good catalytic performance for methane dry reforming. A study of the influence of the quantity of iron incorporated in the silicates on the activity was carried out. This led to the conclusion that increasing the iron content improves the catalytic performance of silicates. On the other hand, this performance decreases for high porous volumes. By varying the relative quantity of reactants, the results proved that a molar ratio value greater than unity favors a majority production of dihydrogen due to the decomposition of methane. Conversely, the excess of carbon dioxide leads to the formation of carbon monoxide in a preponderant manner.

References

Sing K. S. W., Everett D. H., Haul R. A. W., Moscou L., Pierotti R. A., Rouquerol J. and Siemieniewska T., (1985). Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry, 57 (4) : 603 – 619.

Durand J. O. and RAEHIM L., (2009). Nanoparticules mésoporeuses de silice et applications biologiques », Technique de l’ingénierie 1, NM4050.

Fajula F., Di Renzo F., (2002). Contrôle de la porosité : des micro – aux mésoporeux. L’actualité chimique, 2002.

Yu-Shen Lin, Katie Hurley R., Christy Haynes L., (2012). Critical considerations in the biomedical use of mesoporous silica nanoparticles”. The journal of physical chemistry letters 3: 364 – 374.

Mamaeva V., Sahlgren C., Lindén M., (2013). Mesoporous silica nanoparticles in medicine—Recent advances. Advanced drug delivery reviews. 65 (5): 689 – 702.

Corma A., (1997). From microporous molecular sieves materials and their use in catalysis. Chemical review, 97 (6): 2373 – 2420.

Lavoie J M, (2014). Review on dry reforming of methane, a potentially more

environmentally-friendly approach to the increasing natural gas exploitation, Frontiers in

chemistry, 2: 1 – 17.

Won-Jun J, Jae-Oh S, Hak-Min K, Seong-Yeun Y, Hyun-Seog R. (2019). A review on dry reforming of methane in aspect of catalytic properties, Catalysis Today, 324: 15 – 26.

Abdelsadek Z., Chaudhari P., Holgado J. P., Bali F., Halliche D., Cherifi O., Gonzalez-Cortes S. and Masset P. J., (2021). Hydrogen production via methane dry reforming process over CoAl and CoMgAl-Hydrotalcite derived catalysts. IOP Conf. Series: Earth and Environmental Science, 880: 012035.

Das S., Sengupta M., Bag A., Shah M. and Bordoloi A., (2018). Facile synthesis of highly disperse Ni-Co nanoparticles over mesoporous silica for enhanced methane dry reforming. Nanoscale, 10 (14): 6409 – 6425.

Kang Dohyung, Lim Hyun Suk, Lee Jae W., (2017). Enhanced catalytic activity of methane dry reforming by the confinement of Ni nanoparticles into mesoporous silica. International journal of hydrogen energy, 42 (16): 11270 – 11282.

Mourhly Asmaa, Kacimi Mohammed, Halim Mohammed, Arsalane Said, (2018). New low cost mesoporous silica (MSN) as a promising support of Ni-catalysts for high-hydrogen generation via dry reforming of methane (DRM). International Journal of Hydrogen Energy, 45 (20): 11449 – 11459.

Roblero J. G., Pola-Albores F., Valenzuela M. A., Rojas-Garcia E., Rios-Valdovinos E., Valverde-Aguilar G., (2019). Ni and Ni3C catalysts supported on mesoporous silica for dry reforming of methane. International Journal of Hydrogen Energy, 44 (21): 10473 – 10483.

Li Bin, Yuan Xiaoqing, Li Lvyin, Li Baitao, Wang Xiujun, and Tomishige Keiichi, (2021). Lanthanide oxide modified nickel supported on mesoporous silica catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 46 (62): 31608 – 31622.

Yue Lei, Li Jiamao, Chen Chao, Fu Xiaolong, Gong Yu, Xia Xiulong, Hou Jingwei, Xiao Chengjian, Chen Xiaojun, Zhao Linjie, Ran Guangming, Wang Heyi, (2018). Thermal-stable Pd@mesoporous silica core-shell nanocatalysts for dry reforming of methane with good coke-resistant performance. Fuel, 218: 335 – 341.

Das Subhasis, Shah Mumtaj, Gupta Rishi Kumar, Bordoloi Ankur, (2019). Enhanced dry methane reforming over Ru decorated mesoporous silica and its kinetic study. Journal of CO₂ Utilization, 29: 240 – 253.

Ramachandran Ram, Menon Raghu K., (1998). An overview of industrial uses of hydrogen. International journal of hydrogen energy 23 (7): 593 – 598.

Okolie J. A., Biswa Patra R., Mukherjee A., Nanda S., Ajay Dalai K., Janusz Kozinski A. (2021). Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. International Journal of Hydrogen Energy 46 (13): 8885 – 8905.

Chauvel A., Lefebvre G., Castex L. Procédés de Pétrochimie. Paris: TECHNIP, 1985.

Ilhyong Ryu (2001). Radical carboxylations of iodoalkanes and saturated alcohols using carbon monoxide. Chemical Society Reviews 30: 16 – 25.

Tuel A., Arcon I., and Millet J. M. M., (1998). Investigation of structural iron species in Fe-mesoporous silicas by spectroscopic techniques. J. Chem. Soc., Faraday Trans., 94: 3501 – 3510.

Bachari K., Millet J. M. M., Bonville P., Cherifi O., Figueras F., (2007). Spectroscopic characterization of iron nanoparticles in Fe-mesoporous silicate catalysts. Journal of Catalysis, 249: 52 – 58.

Ashikin Siti Norhannan, Amani H and Abdullah Ahmad Zuhairi, (2016). Catalytic Activity of Iron Doped Hexagonal Mesoporous Silica (Fe-HMS) for Degradation of Reactive Green-19 Dye in Water. Natural Products Chemistry & Research, 4:215.

Yan Wenjuan, Zhang Wenxiang, Xia Qi, Wang Shuaishuai, Zhang Shuxia, Shen Jian, Jin Xin, (2020). Highly dispersed metal incorporated hexagonal mesoporous silicates for catalytic cyclohexanone oxidation to adipic acid. Chinese Journal of Chemical Engineering, 28 (10): 2542 – 2548.

Plus, Inc Aspen Technology. ASPEN. Reference manual Volume 2, Physical Properties Methods & models. Inc: Aspen Technology, 1996.

Berdouzi F., Villemur C., Maget N. O., Gabas N., (2018). Dynamic simulation for risk analysis: application to an exothermic reaction. Process Safety and Environmental Protection 113, 149 – 163.

Nasir Al-Lagtah M. A., Al-Habsi S., Sagheer Onaizi A., (2015). Optimization and performance improvement of Lekhwair natural gas sweetening plant using Aspen HYSYS. Journal of Natural Gas Science and Engineering 26, 367 – 381.

Lorenzo-Llanes J., Pages-Diaz J., Kalogirou E., Contino F., (2020). Development and application in Aspen Plus of a process simulation model for the anaerobic digestion of vinasses in UASB reactors: Hydrodynamics and biochemical reactions. Journal of Environmental Chemical Engineering 8, 103540.

Bouillot Baptiste, Introduction aux méthodes thermodynamiques pour le genie des procédés: Choix d’un modèle thermodynamique et simulation. MINES – Saint-Etienne, 2020 -2021.

Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B. and Schlenker, J.L. (1992) A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. Journal of the American Chemical Society, 114, 10834-10843.

Bachari Khaldoum, (2005). Synthèse Et Caractérisation De Solides Silicates Mesoporeux Et Leurs Applications En Catalyse Hétérogène. Thèse de Doctorat, Université des Sciences et de la Technologie Houari-Boumédièn – Alger.

Guerba Hadjira, (2014). Synthèse et caractérisation de nouveaux matériaux mésoporeux de type SBA-15 à propriétés texturales et structurales contrôlées. Application dans la réaction d’oxydation totale de CO et d’époxydation d’éthylène. Thèse de Doctorat, Université FERHAT-ABBAS-SETIF1 – Alger.

Downloads

Published

2022-11-01

How to Cite

Dikwa, J., Ze Bilo’o, P. ., & Allawadi, A. (2022). Simulation of Dry Reforming of Methane Catalyzed by Iron Hexagonal Mesoporous Silicates (Fe-HMS) Using Aspen HYSYS. European Journal of Applied Sciences, 10(5), 559–574. https://doi.org/10.14738/aivp.105.13226