Development of an Infusion for Dysmenorrhea Based on Fig Leaves (Ficus Carica) and Mango
DOI:
https://doi.org/10.14738/aivp.104.12573Keywords:
Infusion, fig leaves, mango, dysmenorrhea, sensory analysis.Abstract
An infusion based on fig leaves and mango was developed. Its sensory acceptability was evaluated as a possible alternative for the treatment of dysmenorrhea. Fig leaves and mangoes were washed, cut, dehydrated and ground. The optimal time for fig leaf dehydration was determined by means of a weight loss curve, producing an outcome of 120 minutes at 45ºC. Two formulations were made, the first containing 1 g of dehydrated fig leaves and 0.6 g of dehydrated mango, and the second containing 1 g of dehydrated fig leaves and 6 g of dehydrated mango. Sensory analysis was performed according to taste, aroma, paired preference and purchase intention ranking tests. Tasters preferred the formulation with the least amount of dried mango. 93% of tasters indicated that they would buy this infusion due to its possible functional properties against dysmenorrhea.
References
Proctor, M., & Farquhar, C. (2006). Diagnosis and management of dysmenorrhoea. BMJ 332, 1134-1138.
Kho, KA., & Shields, JK. (2020). Diagnosis and Management of Primary Dysmenorrhea. JAMA 323(3), 268-269.
Osayande, AS., & Mehulic, S. (2014). Diagnosis and initial management of dysmenorrhea. Am Fam Physician 89(5), 341-346.
Abaraogu, UO., & Tabansi-Ochuogu, CS. (2015). As acupressure decreases pain, acupuncture may improve some aspects of quality of life for women with primary dysmenorrhea: a systematic review with meta-analysis. J Acupunct Meridian Stud, 220–228.
Gagua, T., Tkeshelashvili, B., & Gagua, D. (2012). Primary dysmenorrhea: prevalence in adolescent population of Tbilisi, Georgia and risk factors. J Turk Ger Gynecol Assoc 13, 162–168.
Ju, H., Jones, M., & Mishra, G. (2014). The prevalence and risk factors of dysmenorrhea. Epidemiol Rev 36, 104–113.
Latthe, P., Mignini, L., & Gray, R. (2011). Factors predisposing women to chronic pelvic pain: systematic review. BMJ 332, 749–755.
Lentz, G., Lobo, R., & Gershenson, D. (2012). Comprehensive gynecology. Philadelphia Mosby Elsevier.
Haidari, F., Akrami, A., Sarhadi, M., & Mohammad Shahi, M. (2011). Prevalence and severity of primary dysmenorrhea and its relation to anthropometric parameters. Tums Hayat 17, 70–77.
Willman, EA., Collins, WP., & Clayton, SG. (1976). Studies in the involvement of prostaglandins in uterine symptomatology and pathology. Br J Obstet Gynaecol 83, 337.
Marjoribanks, J., Proctor, M., Farquhar, C., & Derks, RS. (2015). Nonsteroidal anti-inflammatory drugs for dysmenorrhoea. Cochrane Database Syst Rev 7.
Allen, LM., & Nevin Lam, AC. (2012). Premenstrual syndrome and dysmenorrhea in adolescents. Adolesc Med 23, 139–163.
Wong, CL., Farquhar, C., Roberts, H., & Proctor, M. (2011). Oral contraceptive pill for primary dysmenorrhoea. Cochrane Database Syst Rev 4.
Brown, J., & Brown, S. (2011). Exercise for dysmenorrhoea. Cochrane Database Syst Rev 2.
Ozerdogan, N., Sayiner, D., Ayranci, U., Unsal, A., & Giray, S. (2011). Prevalence and predictors of dysmenorrhea among students at a university in Turkey. Int J Gynaecol Obstet 107, 39–43.
Jahangirifar, M., Taebi, M., Dolatian, M. (2018). The effect of Cinnamon on primary dysmenorrhea: A randomized, double-blind clinical trial. Complement Ther Clin Pract 33, 56-60.
Sharifi, F., Simbar, M., Mojab, F., & Alavi Majd, H. (2013). A comparative study of the effects of Matricaria chamomilla extract and mefenamic acid on the severity of premenstrual syndrome symptoms. Arak Univ. Med. Sci. J. 16, 71–78.
Rahnama, P., Fallah Huseini, H., Mohammadi, H., Modares, M., Khajavi Shojaee, K., & Askari, M. (2010). The effects of Zingiber officinal R. on primary dysmenorrhea. J. Med. Plants 9, 81–86.
Iravani, M. (2010). Clinical effects of Thymus vulgaris extract on primary dysmenorrhea, J. Med. Plants 2, 54–60.
Trad, M., Ginies, C., Gaaliche, B., Renard, C., & Mars, M. (2012). Does pollination affect aroma development in ripened fig (Ficus carica L) fruit. Scientia Horticulturae 134, 93–99.
Vikas, V.P., Bhangale, S.C., & Patil, V.R. (2010). Evaluation of antipyretic potential of Ficus carica leaves. International Journal of Pharmaceutical Sciences Review and Research, vol. 2.
Oliveira, A.P., Silva, L.R., Guedes de Pinho, P., Gil-Izquierdo, A., & Valentao, P. (2010). Volatile profiling of Ficus carica varieties by HS-SPME and GC-IT-MS. Food Chem 123, 548–557.
Barolo, M., Ruiz Mostacero, N., & López, S. (2014). Ficus carica L. (Moraceae): An ancient source of food and health. Food Chem 164, 119−127.
Mawa, S., Husain, K., & Jantan, I. (2013). Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities, evidence-based complement. Altern. Med.
Alcántara, C., Žugčić, T., Abdelkebir, R., García-Pérez, J., Jambrak, A., Lorenzo, J., Collado, M., Granato, D., & Barba, F. (2020). Effects of Ultrasound-Assisted Extraction and Solvent on the Phenolic Profile, Bacterial Growth, and Anti-Inflammatory/Antioxidant Activities of Mediterranean Olive and Fig Leaves Extracts. Molecules 25(7):1718.
Kang, H.K., Ecklund, D., Liu, M., & Datta, S.K. (2010). Apigenin, a non-mutagenic dietary flavonoid, suppresses lupus by inhibiting autoantigen presentation for expansion of autoreactive Th1 and Th17 cells. Arthritis Res Ther 11(2).
Patil, R., Babu, R., Naveen Kumar, M., Kiran Kumar, K., Hegde, S., & Nagesh, R. (2016). Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells. Inflammation 39,138-147.
Jiang, PY., Zhu, XJ., Zhang, YN., Zhou, FF., & Yang, XF. (2018). Protective effects of apigenin on LPS-induced endometritis via activating Nrf2 signaling pathway. Microb Pathog 123, 139-143.
Hu, X., Meng, D., & Fang, J. (2008). Apigenin inhibited migration and invasion of human ovarian cancer A2780 cells through focal adhesion kinase. Carcinogenesis 29, 2369-2376.
Endale, M., Park, S., Kim, S., Kim, H., Yang, Y., Cho, J., & Rhee, M. (2013). Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology 218, 1452–1467.
Sung-Hyun, K., Eun-Seon, Y., Joong-Seok, W., So-Hee, H., Jae-Han, L., Soo-Hyun, J., Hyeong-Jin, K., & Ji-Youn, J. (2019). Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation. European Journal of Pharmacology 860.
Lee, WJ., Hsiao, M., Chang, JL. (2015). Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograft. Arch Toxicol 89, 1103–1117.
Karuppagounder, V., Arumugam, S., Thandavarayan, R., Sreedhar, R., Giridharan, V., & Watanabe, K. (2016). Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drug Discov Today. 21(4), 632-639.
Jahurul, M., Zaidul, I., Ghafoor, K., Al-Juhaimi, F., Nyam, K., Norulaini, N., Sahena, F., & Mohd Omar, A. (2015). Mango (Mangifera indica L.) by-products and their valuable components: a review. Food Chem 15, 173-180.
Ediriweera, M., Tennekoon, K., & Samarakoon, S. (2017). A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango). Evid Based Complement Alternat Med.
Dar, A., Faizi, S., Naqvi, S., Roome, T., Zikr-ur-Rehman, S., Ali, M., Firdous, S., & Moin, S. (2005). Analgesic and antioxidant activity of mangiferin and its derivatives: the structure activity relationship. Biol Pharm Bull 28, 596-600.
Takeda, T., Tsubaki, M., Sakamoto, K., Ichimura, E., Enomoto, A., Suzuki, Y., Itoh, T., Imano, M., & Nishida, S. (2016). Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model. Toxicol Appl Pharmacol 306, 105-112.
Bhatia, H., Candelario-Jalil, E., de Oliveira, A., Olajide, O., Martínez-Sánchez, G., & Fiebich, B. (2008). Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells. Arch Biochem Biophys 477, 253-258.
Lopes, S., da Silva, A., Arruda, B., Morais, T., Rios, J., Trevisan, M., Rao, V., & Santos, F. (2013). Peripheral antinociceptive action of mangiferin in mouse models of experimental pain: role of endogenous opioids, K (ATP)-channels and adenosine. Pharmacol Biochem Behav 110, 19-26.
Gong, X., Zhang, L., Jiang, R., Ye, M., Yin, X., & Wan, J. (2013). Anti-inflammatory effects of mangiferin on sepsis-induced lung injury in mice via up-regulation of heme oxygenase-1. J Nutr Biochem 6,1173-1181.
Dou, W., Zhang, J., Ren, G., Ding, L., Sun, A., Deng, C., Wu, X., & Wang, Z. (2014). Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation. Int Immunopharmacol 1, 170-178.
Zou, B., Wang, H., Liu, Y., Qi, P., Lei, T., Sun, M., & Wang, Y. (2017). Mangiferin induces apoptosis in human ovarian adenocarcinoma OVCAR3 cells via the regulation of Notch3. Oncol Rep 38, 1431-1441.
He, W., You, Y., Du, S., Lei, T., Wang, H., Li, X., He, X., Tong, R., & Wang, Y. (2019). Anti-neoplastic effect of mangiferin on human ovarian adenocarcinoma OVCAR8 cells via the regulation of YAP. Oncol Lett 1, 1008-1018.
Zeng, Z., Lin, C., Wang, S., Wang, P., Xu, W., Ma, W., Wang, J., & Xiang Q. (2020). Suppressive activities of mangiferin on human epithelial ovarian cancer. Phytomedicine 76.
Ali, B., Mujeeb, M., Aeri, V., Mir, S., Faiyazuddin, M., & Shakeel, F. (2012). Anti-inflammatory and antioxidant activity of Ficus carica Linn. leaves. Nat Prod Res 26, 460-465.
Zuluaga, J., Cortes-Rodríguez, M., & Rodríguez-Sandoval, E. (2010). Evaluación de las características físicas de mango deshidratado aplicando secado por aire caliente y deshidratación osmótica. Revista de la Facultad de Ingeniería Universidad Central de Venezuela 25, 127-135.
Eteraf-Oskouei, T., Allahyari, S., Akbarzadeh-Atashkhosrow, A., Delazar, A., Pashaii, M., Gan, S., & Najafi, M. (2015). Methanolic Extract of Ficus carica Linn. Leaves Exerts Antiangiogenesis Effects Based on the Rat Air Pouch Model of Inflammation. Evid Based Complement Alternat Med.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Daniel Revelo-Cáceres, María Jesús Oliveras-López, Herminia López-García de la Serrana
This work is licensed under a Creative Commons Attribution 4.0 International License.