Decision Matrix Equation and Block Diagram of Multilayer Electromagnetoelastic Actuator Micro and Nanodisplacement for Communications Systems

Authors

  • S. M Afonin National Research University of Electronic Technology (MIET), Moscow, Russia

DOI:

https://doi.org/10.14738/tnc.73.6564

Keywords:

Communications and services, Multilayer electromagnetoelastic actuator

Abstract

For the communications systems the parametric block diagram of the multilayer electromagnetoelastic actuator micro and nanodisplacement or the multilayer piezoactuator is determined in contrast to Cady and Mason’s electrical equivalent circuits for the calculation of the piezoelectric transmitter and receiver, the vibration piezomotor. The decision matrix equation of the multilayer electromagnetoelastic actuator is used. The parametric block diagram of multilayer electromagnetoelastic actuator is obtained with the mechanical parameters the displacement and the force. The transfer functions of the multilayer electroelastic actuator are determined. The the generalized parametric block diagram, the generalized matrix equation for the multilayer electromagnetoelastic actuator micro and nanodisplacement are obtained. The deformations of the multilayer electroelastic actuator for the nanotechnology are described by the matrix equation. Block diagram and structural-parametric model of multilayer electromagnetoelastic actuator micro and nanodisplacement of the communications systems are obtained, its transfer functions are bult. Effects of geometric and physical parameters of multilayer electromagnetoelastic actuators and external load on its dynamic characteristics are determined. For calculations the communications systems with the multilayer piezoactuator for micro and nanodisplacement the parametric block diagram and the transfer functions of the multilayer piezoactuator are obtained.

Author Biography

S. M Afonin, National Research University of Electronic Technology (MIET), Moscow, Russia

Associate professor, senior researcher, PhD

References

(1) Schultz, J., Ueda, J., Asada, H., Cellular actuators. Oxford: Butterworth-Heinemann Publisher, 2017. 382 p.

(2) Afonin, S.M., Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady mathematics, 2006. 74(3): p. 943-948, doi:10.1134/S1064562406060391.

(3) Zhou, S., Yao, Z., Design and optimization of a modal-independent linear ultrasonic motor. IEEE transaction on ultrasonics, ferroelectrics, and frequency control, 2014. 61(3): p. 535-546, doi:10.1109/TUFFC.2014.2937.

(4) Przybylski, J., Static and dynamic analysis of a flextensional transducer with an axial piezoelectric actuation. Engineering structures, 2015. 84: p. 140-151, doi:10.1016/j.engstruct.2014.11.025.

(5) Ueda, J., Secord, T., Asada, H.H., Large effective-strain piezoelectric actuators using nested cellular

architecture with exponential strain amplification mechanisms. IEEE/ASME transactions on mechatronics, 2010. 15(5): p. 770-782, doi:10.1109/TMECH.2009.2034973.

(6) Karpelson, M., Wei, G.-Y., Wood, R.J., Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and actuators A: Physical, 2012. 176: p. 78-89, doi:10.1016/j.sna.2011.11.035.

(7) Afonin, S.M., Block diagrams of a multilayer piezoelectric motor for nano- and microdisplacements based on the transverse piezoeffect. Journal of computer and systems sciences international, 2015. 54(3): p. 424-439, doi:10.1134/S1064230715020021.

(8) Afonin, S.M., Structural parametric model of a piezoelectric nanodisplacement transduser. Doklady physics, 2008. 53(3) p. 137-143, doi:10.1134/S1028335808030063.

(9) Afonin, S.M., Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady mathematics, 2006. 73(2), p. 307-313, doi:10.1134/S1064562406020402.

(10) Cady W.G., Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York, London: McGraw-Hill Book Company, 1946. 806 p.

(11) Physical acoustics: Principles and methods. Vol.1. Part A. Methods and devices. Mason, W., Editor, New York: Academic Press, 1964. 515 p.

(12) Zwillinger, D., Handbook of differential equations. Boston: Academic Press, 1989. 673 p.

(13) Afonin, S.M., Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and nanomaterials: Fundamentals, developments and applications. Parinov, I.A., Editor, New York: Nova Science, 2015. p. 225-242.

(14) Afonin, S.M., A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Chapter 8 in Advances in nanotechnology. Volume 19. Bartul, Z., Trenor, J., Editors, New York: Nova Science, 2017. p. 259-284.

(15) Afonin, S.M., Nano- and micro-scale piezomotors. Russian engineering research, 2012. 32(7-8): p. 519-522, doi:10.3103/S1068798X12060032.

(16) Afonin, S.M., Generalized parametric structural model of a compound electromagnetoelastic transducer. Doklady physics, 2005. 50(2) p. 77-82, doi: 10.1134/1.1881716.

(17) Afonin, S.M., Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mechanics of solids, 2007. 42(1): p. 43-49, doi:10.3103/S0025654407010062.

(18) Afonin, S.M., Stability of strain control systems of nano-and microdisplacement piezotransducers. Mechanics of solids, 2014. 49(2): p. 196-207, doi:10.3103/S0025654414020095.

(19) Afonin, S.M., Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International journal of physics, 2017. 5(1): p. 9-15, doi:10.12691/ijp-5-1-2.

(20) Afonin, S.M., A block diagram of electromagnetoelastic actuator nanodisplacement for communications Systems. Transactions on Networks and Communications, 2018. 6(3): p. 1-9, doi:10.14738/tnc.63.4641.

(21) Afonin, S.M., Electromagnetoelastic nano- and microactuators for mechatronic systems. Russian Engineering Research, 2018. 38(12): p. 938-944, doi:10.3103/S1068798X18120328.

(22) Springer handbook of nanotechnology. Bhushan, B., Editor, Springer, Berlin, New York, 2004. 1222 p.

(23) Encyclopedia of nanoscience and nanotechnology. 10-Volume set. Nalwa, H.S., Editor. American Scientific Publishers, Los Angeles, 2004.

Downloads

Published

2019-07-02

How to Cite

Afonin, S. M. (2019). Decision Matrix Equation and Block Diagram of Multilayer Electromagnetoelastic Actuator Micro and Nanodisplacement for Communications Systems. Discoveries in Agriculture and Food Sciences, 7(3), 11–21. https://doi.org/10.14738/tnc.73.6564