Four Parallel Decoding Schemas of Product Block Codes
DOI:
https://doi.org/10.14738/tnc.23.229Keywords:
Error Correcting Codes, Product Block Codes, Genetic Algorithms, Parallel Decoding, Ierative Decoding, Time ComplexityAbstract
This paper presents four new iterative decoders for two dimensional product block codes (2D-PBC) based on Genetic Algorithms. Each of these iterative decoders runs in parallel on a number of processors connected by a network. They have almost the same complexity as the conventional iterative decoder, but their performances are improved since at each iteration, they trap
the better of extrinsic information computed by the elementary decoders running simultaneously on all processors.
References
C. E. Shannon, ”A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379-423 and 623-656, July and October,
Berrou, G., A. Glavieux, and P. Thitimajshima. ”Near Shannon limit
error-correcting coding : Turbo Codes,” in proc. 1993 Int. Conf. Commun.
Geneva, Switzerland, May 1993, pp. 1064-1070.
Gallager, R.G. Low Density parity Check Codes. Th`ese. Cambridge,
Mass.1963. IRE Transactions on Information Theory.1962.
D.J.C Mackay, and R.M. Neal, ”Near Shannon Limit Performance of
Low Density Parity Check Codes”, Electronics Letters, Vol. 32, no. 18,
pp. 1645-1646, August 1996.
J. H. Holland, ”Adaptation In Natural And Artificial Systems, University
of Michigan Press”, 1975.
D.E. Goldberg, ”Genetic Algorithms in Search, Optimization, and Machine
Learning”, Addison-Wesley, 1989.
A.TANENBAUM, ”Computer architecture”. Dunod 2001.
H. S. Maini, K. G. Mehrotra,C. Mohan, S. Ranka, ”Genetic Algorithms
for Soft Decision Decoding of Linear Block Codes”, Journal of Evolutionary
Computation, Vol.2, No.2, pp.145-164, Nov.1994.
F. El Bouanani, H. Berbia, M. Belkasmi, H. Ben-azza, ”Comparaison
des d´ecodeurs de Chase, l’OSD et ceux bas´es sur les algorithmes
g´en´etiques”, GRETSI 2007, Troyes, France 11-14 Septembre 2007 in
french.
M. Belkasmi, H. Berbia, F. El Bouanani, ”Iterative decoding of product
block codes based on the genetic algorithms”, Source and Channel
Coding (SCC), 2008 7th International ITG Conference on Source and
Channel Coding (SCC’08), 2008.
A. Ahmadi, F. El Bouanani, H. Ben-Azza, and Y. Benghabrit, ”Reduced
Complexity Iterative Decoding of 3D-Product Block Codes Based on
Genetic Algorithms”, Journal of Electrical and Computer Engineering,
Volume 2012.
A. Ahmadi, F. El Bouanani, H. Ben-Azza, and Y. Benghabrit, ”A Novel
Decoder Based on Parallel Genetic Algorithms for Linear Block Codes”,
International Journal of Communications, Network and System Sciences,
, 6, 66-76.
F.J. Macwilliams and N.J.A. Slone, ”The Theory of error correcting
rrror”, North-Holland publishing comapny, 1978, pp. 567-580.
E.R. Berlkamp, R. J. McEliece, and H. C. A. Van Tilborg, ”On the
inherent intractability of certain coding problems”, IEEE Transactions
on Information Theory, IT-24 :384-386, 1978.
A. Vardy, ”The intractability of computing the minimum distance of
a code”, IEEE Transactions on Information Theory, IT-43 :1757-1766,
A. E. Eiben, E. H. L. Aarts, and K. M. Van Hee, ”Global convergence
of genetic algorithms: A markov chain analysis”, in Parallel Problem
Solving from Nature H. -P. Schwefel and R. M¨anner (Eds), Berlin and
Heidelberg : Springer, 1991, pp. 4-12.
D.B. Fogel, ”Evolving Arti cial Intelligence”, PhD dissert., San Diego
University of California, 1992.
G. Rudolph, ”Convergence analysis of canonical genetic algorithms”, IEEE Trans. on Neural Networks, 5(1): 96-101, 1994.