Recent Advances in Acquisition/Reconstruction Algorithms for Undersampled Magnetic Resonance Imaging

Authors

  • Giuseppe Placidi Dept. MeSVA, University of L'Aquila, ITALY

DOI:

https://doi.org/10.14738/jbemi.15.499

Abstract

Several applications of Magnetic Resonance Imaging (MRI), in particular dynamic MRI and functional MRI (fMRI), require rapid acquisition to measure dynamic processes changes. Experimental data are collected in the k-space by following different trajectories to cover the whole space. Complete data acquisition necessitates waiting for a fixed time interval: a reduced number of collected trajectories allows acquisition time reduction but undersampling occurs, often producing artifacts. In what follows, a review of methods for sparse sampling acquisition and reconstruction is presented.

In particular, a differentiation is done between sparse acquisition methods which do not use any restoration algorithm (artifacts are tolerated) and those methods for which a restoration algorithm is essential. The first class contains also methods where spatial information is shared between temporal images to reduce the collected data. In the second class of methods, a differentiation is done between those reconstruction/restoration methods that reduce artifacts independently of the sample shape, and those restoration methods that adapt their action by modifying the acquisition trajectories during the acquisition, i.e. the chosen trajectories (both in number and directions) are dependent on the sample shape. A third emerging class of methods, those including hybrid forms of the second class, are also reported.

 

References

B.R.Rosen, J.W.Belliveau, D.Chien, “Perfusion imaging by nuclear magnetic resonance”. Magn. Reson. Q. 5:263–281; (1989).

N.Wilke, C.Simm, J.Zhang, J.Ellermann, X.Ya, H.Merkle, G.Path, H.Ludemann, R.J.Bache, K.Ugurbil, “Contrast-enhanced first pass myocardial perfusion imaging: Correlation between myocardial blood flow in dogs at rest and during hyperemia”, Magn. Reson. Med. 29:485– 497; (1993).

V.M.Runge, J.F.Timoney, N.M.Williams, “Magnetic resonance imaging of experimental pyelonephritis in rabbits”, Invest. Radiol., 32,696 –704; (1997).

A.H.Wilman, S.J.Riederer, B.F.King, J.P.Debbins, P.J.Rossman, R.L.Ehman, “Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: Application to the renal arteries”. Radiol. 205:137–146; (1997).

K.K.Kwong, J.W.Belliveau, D.A.Chesler, I.E.Goldberg, R.M.Weisskoff, B.P.Poncelet, D.N. Kennedy, B.E.Hoppel, M.S.Cohen, R.Turner, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation”. Proc. Natl. Acad. Sci. USA. 89:5675–5679; (1992).

R.Lufkin, L.Teresi, L.Chiu, W.Hanafee, “A technique for MR guided needle placement”. Am. J. Roentgenol. 151:193–196; (1988).

D.A.Leung, J.F.Debatin, S.Wildermuth, N.Heske, C.L.Dumoulin, “Real-time biplanar tracking for interventional MR imaging procedures”. Radiology 197:485– 488; (1995).

G.Adam, J.M.Neuerburg, A.Bucker, A.Glowinski, D.Vorwerk, a.Stargardt, J.Jvan Vaals, R.W.Gunther, “Interventional MR: First clinical experiments on a 1.5T system

combined with C-arm fluoroscopy”. Invest. Radiol. 32:191–197; (1997).

F.A.Jolesz, A.R.Bleier, P.Jakab, P.W.Ruenzel, K.Huttl, G.J.Jako, “MR imaging of laser tissue interaction”. Radiology 168:249 –253; (1988).

R.Matsumoto, A.M.Selig, V.M.Colucci, F.A.Jolesz, “MR monitoring during cryotherapy in the liver: Predictability of histologic outcome”. J. Magn. Reson. Imag. 3:770 –776; (1993).

J.Kettenbach, S.G.Silverman, K.Kuroda, Y.Nakajima, G.P.Zientara, P.Saiviroonporn, N. Hata, P.R.Morrison, S.G.Hushek, D.Gering, P.McL.Black, R.Kikinis, F.A.Jolesz, “Real-time monitoring and quantitative analysis of MR-guided laser ablations”. In: Book of abstracts: Fifth Annual Scientific Meeting and Exhibition. ISMRM; 523, (1997).

C.L.Dumoulin, S.P.Souza, R.D.Darrow, “Real-time positioning of invasive devices using magnetic resonance”. Magn. Reson. Med. 29:411– 415; (1993).

A.Glowinski, G.Adam, A.Bucker, J.M.Neuerburg, J.J.van Vaals, R.W.Gunther, “Catheter visualization using locally induced actively controlled field inhomogeneities”. Magn. Reson. Med. 38:253–258; (1997).

G.Placidi, D.Franchi, L.Marsili, P.Gallo, “Development of an auxiliary system for the execution of vascular catheter interventions with a reduced radiological risk; system description and first experimental results”, Comp. Meth. Progr. Biomed., 88 (2), 144-151, (2007).

G.Placidi, D.Franchi, A.Maurizi, A.Sotgiu, “Review on Patents about Magnetic Localisation Systems for in vivo Catheterizations”, Recent Patents on Biomedical Engineering 2 (1), 58-64, (2009).

A.B.Kerr, J.M.Pauly, B.S.Hu, K.C.Li, C.J.Hardy, C.H.Meyer, A.Macovski, D.G.Nishimura, “Real-time interactive MRI on a conventional scanner”. Magn. Reson. Med. 38:355–367; (1997).

V.Rasche, D.Holz, R.Proksa, “MR Fluoroscopy Using Projection Reconstruction Multi-Gradient-Echo (prMGE) MRI”. Magn. Reson. Med. 42:324–334; (1999)

J.H.Lee, B.A.Hargreaves, B.S.Hu, D.G.Nishimura, “Fast 3D imaging using variable-density spiral trajectories with applications to limb perfusion”. Magn Reson Med;50:1276–1285, (2003).

G.J.Marseille, R.de Beer, M.Fuderer, A.F.Mehlkopf, D.van Ormondt, “Nonuniform phase-encode distributions for MRI scan time reduction”. J. Magn Reson B;111:70–75, (1996).

J.Spiniak, A.Guesalaga, R.Mir, M.Guarini, P.Irarrazaval, “Undersampling k-space using fast progressive 3D trajectories”. Magn Reson Med; 54:886–892, (2005).

K.Scheffler, J.Hennig, “Reduced circular field-of-view imaging”, Magn Reson Med;40:474–480, (1998).

J.R.Liao, J.M.Pauly, T.J.Brosnan, N.J.Pelc, “Reduction of motion artifacts in cine MRI using variable-density spiral trajectories”. Magn Reson Med;37:569–575, (1997).

D.C.Peters, F.R.Korosec, T.M.Grist, W.F.Block, J.E.Holden, K.KVigen, C.A.Mistretta, “Undersampled projection reconstruction applied to MR angiography”. Magn Reson Med; 43:91–101, (2000).

D.M.Spielman, J.M.Pauly, C.H.Meyer. “Magnetic resonance fluoroscopy using spirals with variable sampling densities”. Magn Reson Med;34:388–394, (1995).

J.H.Gao, J.Xiong, S.Lai, E.M.Haacke, M.G.Woldorff, J.Li, P.T.Fox. “Improving the temporal resolution of functional MR imaging using keyhole techniques”. Magn Reson Med; 35:854–860 (1996).

K.K.Vigen, D.C.Peters, T.M.Grist, W.F.Block, C.A.Mistretta “Undersampled projection-reconstruction imaging for time-resolved contrast-enhanced imaging”. Magn Reson Med;43:170–176, (2000).

A.V.Barger, W.F.Block, Y.Toropov, T.M.Grist, C.A.Mistretta, “Time resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory”. Magn Reson Med;48:297–305, (2002).

K.P.Pruessmann, M.Weiger, M.B.Scheidegger, P.Boesiger. “SENSE: sensitivity encoding for fast MRI”. Magn Reson Med;42:952–962, (1999).

D.K.Sodickson, W.J.Manning, “Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays”. Magn Reson Med;38:591–603, (1997).

M.A.Griswold, P.M.Jakob, R.M.Heidemann, M.Nittka, V.Jellus, J.Wang, B.Kiefer, A.Haase, “Generalized autocalibrating partially parallel acquisitions (GRAPPA),” Magn. Reson. Med., 47, 1202–1210, (2002).

D.R.Thedens, P.Irarrazaval, T.S.Sachs, C.H.Meyer, D.G.Nishimura, “Fast magnetic resonance coronary angiography with a three-dimensional stack of spirals trajectory”. Magn Reson Med;41:1170–1179, (1999).

C.M.Tsai, D.G.Nishimura, “Reduced aliasing artifacts using variable density k-space sampling trajectories”, Magn Reson Med;43:452– 458, (2000).

P.Irarrazaval, J.M.Santos, M.Guarini, D.Nishimura, “Flow properties of fast three-dimensional sequences for MR angiography”. Magn Reson Imag.;17:1469–1479 (1999)

S.T.Wong, M.S.Roos, “A strategy for sampling on a sphere applied to 3D selective RF pulse design”, Magn Reson Med;32:778–784, (1994).

E.B.Welch, A.Manduca, R.C.Grimm, H.A.Ward, Jr.C.R. Jack, “Spherical navigator echoes for full 3D rigid body motion measurement in MRI”, Magn Reson Med;47:32–41 (2002).

Y.Shu, A.M.Elliott, S.J.Riederer, M.A.Bernstein, “3D RINGLET: spherical shells trajectory for self-navigated 3D MRI”. In: Proceedings of the 13th Annual Meeting of ISMRM, Miami Beach, FL, USA, 2693, (2005).

Y.Shu, S.J.Riederer, M.A.Bernstein, “Motion correction properties of the shells k-space trajectory”. Magn Reson Imag., 24:739–749, 2006.

Y.Shu, S.J.Riederer, M.A.Bernstein, “Three-Dimensional MRI With an Undersampled Spherical Shells Trajectory”, Magn. Reson. Med. 56:553–562 (2006)

J.G.Pipe, “Motion correction with PROPELLER MRI: Application to head motion and free-breathing cardiac imaging”. Magn Reson Med, 42, 963–969 (1999)

J.G.Pipe, V.G.Farthing, K.P.Forbes, “Multishot diffusion-weighted FSE using PROPELLER MRI”. Magn Reson Med, 47, 42–52 (2002).

K.Arfanakis, A.A.Tamhane, J.G.Pipe, M.A.Anastasio, “k-Space Undersampling in PROPELLER Imaging”, Magn. Reson. Med., 53, 675–683 (2005)

J.J.van Vaals, M.E.Brummer, W.T.Dixon, H.H.Tuithof, H.Engels, R.C.Nelson, B.M.Gerety, J.L.Chezmar, J.A.den Boer, “Keyhole method for accelerating imaging of contrast agent uptake,” J. Magn. Reson. Imag., 3, 671–675, (1993).

R.A.Jones, O.Haraldseth, T.B.Muller, P.A.Rinck, A.N.Oksendal, “K-space substitution: A novel dynamic imaging technique,” Magn. Reson. Med., 29, 830–834, (1993).

S.Di Giuseppe, G.Placidi, J.Brivati, M.Alecci, A.Sotgiu, “Pulsed EPR imaging: image reconstruction using selective acquisition sequences”, Phys. Med. Biol., 44, N137-N144, (1999).

D.Franchi, A.Sotgiu, G.Placidi, “A novel acquisition–reconstruction algorithm for surface magnetic resonance imaging”, Magn. Reson. Imag, 26 (9), 1303-1309, (2008).

A.G.Webb, Z.P.Liang, R.L.Magin, P.C.Lauterbur, “Applications of reduced-encoding MR imaging with generalized-series reconstruction (RIGR),” J. Magn. Reson. Imag., 3, 925–928, (1993).

J.Tintera, G.Schaub, J.Gawehn, P.Stoeter, “Functional MRI with keyhole technique”. Human Brain Mapping s1: 124; (1995).

J.H.Gao, J.Xiong,; S.Lai,; E.M.Haacke, M.G.Woldorff, “Improving the temporal resolution of functional MR imaging using keyhole techniques”. Magn. Reson. Med. 35:854–860; (1996).

J.Xiong, P.T.Fox, J.H.Gao, “The effects of k-space data undersampling and discontinuities in keyhole functional MRI”. Magn. Reson. Imag., 17, 109–119, (1999)

J.J.van Vaals, G.H.van Yperen,; R.W.de Boer, “Real-time MR imaging using the LoLo (Local Look) method for interactive and interventional MR at 0.5T and 1.5T”. In: Book of abstracts: Second Annual Meeting of the Society of Magnetic Resonance Imaging. SMR; 421, (1994).

X.Hu, T.Parrish, “Reduction of field of view imaging”. Magn. Reson. Med. 31:691– 694; (1994).

M.E.Brummer, D.Moratal-Perez, C.Y.Hong, R.I.Pettigrew, J.Millet-Roig, W.T.Dixon, “Noquist: Reduced field-of-view imaging by direct Fourier inversion,” Magn. Reson. Med., 51, 331–342, (2004).

K.Scheffler, J. Hennig, “Reduced Circular Field-of-View Imaging.” In: Book of abstracts: Sixth Annual Scientific Meeting and Exhibition. ISMRM; 180, 1998.

S.Weiß, V.Rasche, “Projection-Reconstruction Reduces FOV Imaging”, Magn. Reson. Imag., 17, 517–525, (1999)

D.C.Peters, M.A.Guttman, A.J.Dick, V.K.Raman, R.J.Lederman, E.R.McVeigh, “Reduced Field of View and Undersampled PR Combined for Interventional Imaging of a Fully Dynamic Field of View”, Magn. Reson. Med., 51, 761–767 (2004).

H.Sedarat, A.B.Kerr, J.M.Pauly, D.G.Nishimura, “Partial-FOV reconstruction in dynamic spiral imaging,” Magn. Reson. Med., 43, 429–439, (2000).

B.Madore, G.H.Glover, N.J.Pelc, “Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI”, Magn. Reson. Med., 42, 813–828, (1999).

J.Tsao, “On the UNFOLD method,” Magn. Reson. Med., 47, 202–207, (2002).

J.Tsao, P.Boesiger, K.P.Pruessmann, “k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations,” Magn. Reson. Med., 50, 1031–1042, (2003).

Q.S.Xiang R.M.Henkelman, “K-space description for MR imaging of dynamic objects,” Magn. Reson. Med., 29, 422–428 (1993).

M.S.Hansen, C.Baltes, J.Tsao, S.Kozerke, K.P.Pruessmann, H.Eggers, “k–t BLAST reconstruction from non-Cartesian k–t space sampling,” Magn. Reson. Med., 55, 85–91, (2006).

C.H.Meyer, B.S.Hu, D.G.Nishimura, A. Macovski, “Fast spiral coronary artery imaging,” Magn. Reson. Med., 28, 202–213, (1992).

T.Shin, J.F.Nielsen, K.S.Nayak, ”Accelerating Dynamic Spiral MRI by Algebraic Reconstruction From Undersampled k–t Space”, IEEE Trans. Med. Imag., 26, 917-924, (2007)

Y.Hu, G.H.Glover, “Increasing Spatial Coverage for High-Resolution Functional MRI”, Magn Reson Med, 61:716–722 (2009)

Y. Hu, G.H.Glover, “Three-dimensional spiral technique for high-resolution functional MRI”, Magn Reson Med;58:947–951, (2007).

G.Placidi, A.Sotgiu, “A novel restoration algorithm for reduction of undersampling artifacts from Magnetic Resonance Images”, Magn. Reson. Imag., 22, 1279-1287, (2004).

G.Placidi, M.Alecci, S.Colacicchi, A.Sotgiu, “Fourier reconstruction as a valid alternative to filtered back projection in iterative applications: implementation of Fourier spectral spatial EPR imaging”, J. Magn. Reson., 134, 280-286, (1998).

G.Placidi, “Constrained Reconstruction for Sparse Magnetic Resonance Imaging”, Proc. WC2009, September 7-12, Munich, Germany (2009).

G.Placidi, M.Alecci, A.Sotgiu, “Post-processing noise removal algorithm for magnetic resonance imaging based on edge detection and wavelet analysis”, Phys. Med. Biol., 48 (13), 1987-1995, (2003).

E.Candès, J.Romberg, T.Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information”. IEEE Trans Inf Theory, 52, 489–509, (2006).

D.Donoho, “Compressed sensing”. IEEE Trans Inf Theory, 52, 1289–1306, (2006)

E.Candès and T.Tao, “Near optimal signal recovery from random projections: Universal encoding strategies?” IEEE Trans. Inform. Theory, 52, pp.5406–5425, (2006).

M.Lustig, D.Donoho, J.M. Pauly, “Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging”, Magn Reson Med, 58, 1182–1195 (2007)

M.Lustig, D.L.Donoho, J.M.Santos, J.M.Pauly, “Compressed Sensing MRI”, IEEE Sign. Proc. Magazine, 72-82, (2008)

J.Trzasko, A.Manduca, “Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic l0-Minimization”, IEEE Trans. Med. Imag., 28, 106-121, (2009)

T.Knopp, S.Kunis, D.Potts, “A Note on the Iterative MRI Reconstruction from Nonuniform k-Space Data”, Intern. J. Biomed. Imag., 2007, 1-9, (2007).

J.D.O’Sullivan, “A fast sinc function gridding algorithm for Fourier inversion in computer tomography,” IEEE Trans. Med. Imag., 4, 200–207, (1985).

K.T.Block, M.Uecker, J.Frah, “Undersampled Radial MRI with Multiple Coils. Iterative Image Reconstruction Using a Total Variation Constraint”, Magn Reson Med, 57, 1086–1098, (2007)

I.Contreras, A.Guesalga, M.P.Fernandez, M.Guarini, P.Irarrazaval, MRI fast tree log scanning with helical undersampled projection acquisitions, Magn. Reson. Imag., 20, 781–787, (2002)

G.Placidi, M.Alecci, A.Sotgiu, "Theory of Adaptive Acquisition Method for Image Reconstruction from Projections and Application to EPR Imaging", J. Magn. Reson., Series B, 108, 50-57, (1995).

G.Placidi, M.Alecci, A.Sotgiu, “Metodo perfezionato di acquisizione di dati nel dominio della frequenza spaziale per la ricostruzione di immagini bidimensionali, in particolare di risonanza magnetica nucleare, e relativo apparato”, Italian Patent No. RM98A000217, Issued April 3, (1998).

G.Placidi, M.Alecci, and A.Sotgiu, “ω-Space adaptive Acquisition Technique for Magnetic Resonance Imaging from Projections”, J. Magn. Reson., 143, 197-207, (2000).

G.Placidi, “Adaptive compression algorithm from projections: Application on medical greyscale images”, Comp. Biol. Med., 39 (11), 993-999, (2009).

G.Placidi “Circular Acquisition to Define the Minimum Set of Projections for Optimal MRI Reconstruction” Lecture Notes in Computer Science, 6026, 254-262 (2010).

G Placidi, M Alecci, A Sotgiu, “A general Algorithm for Magnetic Resonance Imaging Simulation: a Versatile Tool to Collect Information about Imaging Artefacts and New Acquisition Techniques”, Studies in health technology and informatics, 13-17, (2002).

G.Placidi, M.Alecci, A.Sotgiu, "Angular Space-Domain Interpolation for Filtered Back Projection Applied to Regular and Adaptively Measured Projections". J. Magn. Reson., Series B, (110), 75-79, (1996).

G.Placidi, “MRI: Essentials for Innovative Technologies”, CRC Press, (2012).

L.Ciancarella, D.Avola, E.Marcucci, G.Placidi, A hybrid sampling strategy for Sparse Magnetic Resonance Imaging, Di Giamberardino et al. Editors, CRC Press, 285-289, (2012).

L.Ciancarella, D.Avola, G.Placidi, “Adaptive Sampling and Reconstruction for Sparse Magnetic Resonance Imaging”, Computational Modeling of Objects Presented in Images, Lecture Notes in Computational Vision and Biomechanics, Springer, 15, 115-130, (2014).

G.Placidi, D.Avola, L.Cinque, G.Macchiarelli, A.Petracca, M.Spezialetti, “Adaptive Sampling and Non Linear Reconstruction for Cardiac Magnetic Resonance Imaging”, Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications, Lecture Notes in Computer Science, 8641, 24-35, (2014).

Downloads

Published

2014-11-04

How to Cite

Placidi, G. (2014). Recent Advances in Acquisition/Reconstruction Algorithms for Undersampled Magnetic Resonance Imaging. British Journal of Healthcare and Medical Research, 1(5), 5–70. https://doi.org/10.14738/jbemi.15.499