Evolution Via Epr-Entanglement Algorithm

Authors

  • W. Grant Cooper International Physics Health & Energy, Inc. 5109 82nd Street Suite 7 Lubbock, Texas, USA 79424 Texas Tech University College of Education Lubbock, Texas 79409-1071

DOI:

https://doi.org/10.14738/jbemi.42.2795

Keywords:

Entanglement evolution algorithm, Informational entangled qubits, Quantum/classical interface, Quantum information processing, Quantum uncertainty limits, Variable ‘tick rate’ clock

Abstract

By quantifying EPR-generated accumulations of entangled proton qubits populating duplex microsatellite base pairs, observed as G-C → G'-C', G-C → *G-C* and A-T → *A-*T, the potential to exhibit expansion or contraction over evolutionary times can be qualitatively specified. Bold italics identify base pair superpositions of entangled proton qubits. Metastable hydrogen bonding amino (−NH2) protons encounter quantum uncertainty limits, Δx Δpx ≥ ћ/2, which generate EPR arrangements, keto-amino ―(entanglement)→ enol−imine, yielding reduced energy entangled proton qubits shared between two indistinguishable sets of electron lone-pairs belonging to enol oxygen and imine nitrogen on opposite strands. When measured by Grover’s-type quantum processors, δt ≤ 10–13 s, microsatellites whose entangled proton qubits generate a preponderance of initiation codons ─ UUG, CUG, AUG, GUG ─ participate in the expansion mode of DNA synthesis, but if more stop codons ─ UAA, UGA, UAG ─ were introduced and/or the particular sequence consisted exclusively of A‑T, such microsatellites would generally decrease in relative abundance over evolutionary times. This model is tested by evaluating the twenty‑two most abundant microsatellites common to human and rat. From this list, predictions by “measurements of” entangled proton qubit states identify two ordered sets – eleven exhibiting expansion and eleven exhibiting contraction – of microsatellites, consistent with observation. These analyses imply Grover’s-type enzyme-processor measurements of EPR-generated entangled proton “qubit pairs” can simulate microsatellite evolution, and further, identify entangled proton “qubit pairs” as the smallest “measurable” genetic informational unit, specifying available quantum information as particular evolution instructions. Classical pathways cannot simulate microsatellite evolution observables. 

References

(1) Cooper WG (2016) Molecular dynamics responsible for observable Huntington’s disease (CAG)n repeat evolution. Ann. Neurodegener Dis 1(2) 1009.

(2) Cooper WG (2017) Origin of Life Insight: Reactive Transitions from Anthropic Causality to Biological Evolution. OMICS Group eBooks (in press), www.esciencecentral.org/ebooks.

(3) Cooper WG (2016) Quantum information processing model explains “early” and “recent” genome repair mechanisms, Res. & Rev.: J. Pure & Applied Phys.

(4) Cooper WG (2018) Consequences of EPR-generated entangled proton qubits origin of life model. (Submitted to Adv. Quantum Chem. 77, November 2016).

(5) Hwang DG, Green P (2004) Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution. Proc. Natl. Acad. Sci. USA, 101:13994-14001.

(6) Cooper WG (2012) Coherent states as consequences of keto-amino → enol-imine hydrogen bond arrangements driven by quantum uncertainty limits on amino DNA protons. Int. J. Quantum Chem. 112:2301-2323.

(7) Cooper WG (2011) The molecular clock in terms of quantum information processing of coherent states, entanglement and replication of evolutionarily selected decohered isomers. Interdiscip. Sci. 3: 91-109.

(8) Cooper, WG (2011) Accuracy in biological information technology involves enzymatic quantum processing and entanglement of decohered isomers. Information 2:166-194.

(9) Cooper, W.G., (1994) T4 phage evolution data in terms of a time dependent Topal-Fresco mechanism, Biochem. Genet. 32, 383 395.

(10) Cooper WG (2009) Evidence for transcriptase quantum processing implies entanglement and decoherence of superposition proton states. BioSystems 97:73-89.

(11) Cooper WG (2009) Necessity of quantum coherence to account for the spectrum of time-dependent mutations exhibited by bacteriophage T4. Biochem. Genet 47: 392-410.

(12) Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proc. 28th Annual ACM Symposium on the Theory of Computing, ACM, Philadelphia, p.212; Phys Rev. Lett. 1997, 79: 325.

(13) Einstein A, Podolsky B, Rosen N (1935) Can Quantum Mechanical Description of Physical Reality be Considered Complete? Phy. Rev. 47: 777–780.

(14) Schrödinger E, Born M (1935) Discussion of probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society 31: 555–563.

(15) Schrödinger E (1936) Discussion of Probability Relations between Separated Systems, Proceedings of the Cambridge Philosophical Society 31:555–563; 1936, 32:446–451.

(16) Schrödinger E, Dirac PAM (1936) Probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society 32: 446–452.

(17) Bell JS (1964) On the Einstein-Podolsky-Rosen Paradox. Physics 1: 195–200.

(18) Bell JS (1993) Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press.

(19) Whitney KD, Garland T, Jr (2010) Did genetic drift drive increases in genome complexity? PLoS Genet. 26: e1001080.

(20) Beckmann, J.S., Weber, J.L. (1992) Survey of human and rat microsatellites, Genomics 12, 627 631.

(21) Weber J.L., Wong C. (1993). Mutation of human short tandem repeats. Hum. Mol. Genet. 2 (8): 1123–1128. doi:10.1093/hmg/2.8.1123.

(22) Love JM, Knight AM, McAleer MA, Todd JA (1990) Towards construction of a high-resolution map of the mouse genome using PCR analyzed microsatellites. Nucleic Acid Res. 8: 4123 4130.

(23) Hancock JM (1996). Simple sequences and the expanding genome. BioEssays 18: 421-425.

(24) Richard GF, Kerrest A, Dujon B (2008). Comparative genomics and molecular dynamics of DNA repeats in Eukaryotes. Micr. Mol. Bio. Rev. 72 (4): 686–727. doi:10.1128/MMBR.00011-08.

(25) Dib, C., Fauré, S., Fizames, C., Samson, D., Drouot, N., Vignal, A., Millasseau, P., Marc, S., Hazan, J., Seboun, E., Lathrop, M., Gyapay, G., Morissette, J., Weissenbach, J., (1996). A comprehensive genetic map of the human genome based on 5264 microsatellites, Nature (London) 380, 152-154.

(26) Riccio, A., Aaltonen, L., Godwin, A., Loukola, A., Percesepe, A., Salovaara, R., Masciullo, V., Genuardi, M., Paravatou-Petsotas, M., Bassi, D., Ruggeri, B., Andres, J., Klein-Szanto, P., Testa, J., Neri, G., Bellacosa, A. (1999). The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability, Nature Genet. 23, 266-268.

(27) Sainudiin, R., Durrett, R.T., Aquadro, C.F., Nielsen, R. (2004). Microsatellite mutation models: Insights from a comparison of humans and chimpanzees, Genetics 168, 383-395.

(28) Fu, Y.H., Kuhl, D.A.P., Pizzuti, A., Pieretti, M., Sutcliffe, J., Richards, S., Verkerk, A., Holden, J., Fenwick Jr, R., Warren, S.T., Oostra, B.A., Nelson, D.L., Caskey, C.T. (1991).Variation of the CGG repeat at the fragile X site results in genetic instability: Resolution of the Sherman paradox, Cell 67, 1047-1058.

(29) Cooper, W.G. (1995). Evolutionary origin of expandable G C rich triplet repeat DNA sequences, Biochem. Genet. 33, 173-181.

(30) Campuzano, V., Montermini, L., Moltò, M., Pianese, L., Cossée, M., Cavalcanti, F., Monros, E., Rodius, F., Duclos, F., Monticelli, A., Zara, F., Cañizares, J., Koutnikova, H., Bidichandani, S., Gellera, C., Brice, A., Trouillas, P., De Michele, G., Filla, A., De Frutos, R., Palau, F., Patel, P., Di Donato, S., Mandel, J.-L., Cocozza, S., Koenig, M., Pandolfo, M. (1996). Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion, Science 271, 1423-1427.

(31) Bidichandani, S.I., Purandare, S.M., Taylor, E.E., Gumin, G., Machkas, H., Harati, Y., Gibbs, R.A., Ashizawa, T., Patel, P.I. (1999). Somatic sequence variation at the Friedreich ataxia locus includes complete contraction of the expanded GAA triplet repeat significant length variation in serially passaged lymphoblasts and enhanced mutagenesis in the flanking sequences, Hum. Mol. Genet. 8, 2425-2436.

(32) Semaka A, Creighton S, Warby S, Hayden MR (2006) Predictive testing for Huntington’s disease: interpretation and significance of intermediate alleles. Clin. Genet.70: 283-294.

(33) Mirkin, S.M (2007) Expandable DNA repeats and human disease. Nature 447:932-9402.

(34) Sutherland, G.R., Richards, R.I. (1995). Simple tandem DNA repeats and human genetic diseases, Proc. Natl. Acad. Sci. USA 92, 3636- 3641.

(35) Kruglyak, S., Durrett, R.T., Shug, M.D., Aquadro, C.F. (1998). Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations, Proc. Natl. Acad. Sci USA 95, 10774-10778.

(36) La Spada, A.R., Richards, R.I., Wieringa, B. (2004). Dynamic mutations on the move in Banff. Nature Genet. 36, 667-670.

(37) Pearson, C.E., Edamura, K.N., Cleary, J.D. (2005). Repeat instability: Mechanisms of dynamic mutation. Nat. Rev. Genet. 6, 729-742.

(38) Petruska J, Hartenstine MJ, Goodman, MF (1998). Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease. J. Biol. Chem. 273: 5204–10.

(39) Santibáñez-Koref, M.F., Gangeswaran, R., Hancock, J.M. (2001). A relationship between lengths of microsatellites and nearby substitution rates in mammalian genomes. Mol. Biol. Evol 18, 2119-2123.

(40) Amos W (2010). Mutation biases and mutation rate variation around very short human microsatellites revealed by human-chimpanzee-orangutan genomic sequence alignments. J. Mol. Evol. 71: 192–201. doi:10.1007/s00239-010-9377-4.

(41) Rubinsztein DC, Amos W, Cooper G (1999). Microsatellite and trinucleotide-repeat evolution: evidence for mutational bias and different rates of evolution in different lineages. Phil. Trans. R. Soc. Lond. B.354, 1095-1099.

(42) Schlötterer, C. (2000). Evolutionary dynamics of microsatellite DNA. Chromosoma 109, 365-371.

(43) Li YC, Korol AB, Fahima T, Nevo, E (2004). Microsatellites within genes: Structure, function and evolution, Mol. Biol. Evol. 21, 991-1007.

(44) Matsuura, T., Fang, P., Pearson, C.E., Jayakar, P., Ashizawa, T., Roa, B.B. Nelson, D.L. (2006). Interruptions in the expanded ATTCT repeat of spinocerebellar ataxia type 10: Repeat purity as a disease modifier? Am. J. Hum. Genet. 78, 125-129.

(45) Estoup, A., Jarne, P., Cornuet, J.M. (2002). Homoplasy and mutation model at microsatellite loci and their consequences for populating genetic analysis, Mol. Ecol. 11, 1591-1604.

(46) Pearson, CE (2011). Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities! PLoS Genet. 7:e1002018.

(47) Forster P., Hohoff C., Dunkelmann B., Schürenkamp M., Pfeiffer H., Neuhuber F., Brinkmann B. (2015). Elevated germline mutation rate in teenage fathers. Proc. R. Soc. B. 282 (1803): 20142898. doi:10.1098/rspb.2014.2898.

(48) Amos W (2016). Heterozygosity increases microsatellite mutation rate. Biol. Lett. 12: 20150929. doi:10.1098/rsbl.2015.0929.

(49) Bromham, L., Penny, D. (2003). The modern molecular clock. Nat. Rev. Genet. 4, 216-224.

(50) Shepherd, L.D., Lambert, D.M. (2005). Mutational bias in penguin microsatellite DNA. J. Hered. 96, 566-571.

(51) Rubinsztein, D.C., Amos, W., Leggo, J., Goodburn, S., Jain, S., Li, S.-H., Margolis, R., Ross, C., Ferguson-Smith, M. (1995). Microsatellite evolution – evidence for directionality and variation in rate between species, Nature Genet. 10, 337-343.

(52) Amos, W., Sawcer, S.J., Feakes, R.W., Rubinsztein, D.C. (1996). Microsatellites show mutational bias and heterozygote instability, Nature Genet. 13, 390-391.

(53) Primmer, C.R., Ellegren, H., Saino, N., Møller, A.P. (1996). Directional evolution in germline microsatellite mutations, Nature Genet. 13, 391-393.

(54) Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B (1998). Mutation Rate in Human Microsatellites: Influence of the Structure and Length of the Tandem Repeat. Am J Hum Genet. 62 (6): 1408–1415. doi:10.1086/301869.

(55) Tautz D, Schlötterer C (1994). Simple sequences. Current Opinion in Genetics & Development. 4 (6): 832–837. doi:10.1016/0959-437X(94)90067-1.

(56) Brock, G.J., Anderson, N.H., Moncktron, D.G. (1999). Cis-acting modifiers of expanded CAG/CTG triplet repeat expandability: associations with flanking GC content and proximity to CpG islands. Hum. Mol. Genet. 8, 1061-1067.

(57) Ohta T, Kimura M (1973). A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population, Genet. Res. 22, 201-204.

(58) Watson J, Baker T, Bell S, Gann A, Levine M, Losick R. (2013) Molecular Biology of the Gene, 7th ed. Menlo Park, CA: Benjamin-Cummings.

(59) Tegmark M, Wheeler JA (2003) 100 years of the Quantum. Sci. Am. 284:68-75.

(60) Pfaff W, Taminiau TH, Robledo L, Bemien H, Markham M, Twitchen DJ, Hanson R, (2013) Demonstration of entanglement-by-measurement of solid-state qubits. Nature Physics 9: 29–33. doi:10.1038/nphys2444.

(61) de Vicente JI, Spee C, Kraus B (2013) Maximally entangled set of multipartite quantum states. Phys. Rev. Lett. 111: 110502.

(62) Amico L, Fazio R, Osterloh A, Vedral V (2008) Entanglement in many body systems. Rev. Mod. Phys. 80: 517-576.

(63) Xu GF, Zhang J, Tong DM, Sjöqvist E, Kwek LC (2012) Nonadiabatic holonomic quantum computation in decoherence-free subspaces. Phys Rev Lett. 109:170501.

(64) Xu G, Long G (2014) Universal nonadiabatic geometric gates in two-qubit decoherence-free subspaces. Sci Rep. 4:6814.

(65) Suter D, Álvarez GA (2016) Protecting quantum information against environmental noise. Rev. Mod. Phys. 88, 041001.

(66) Goldman N, Tamblyn I (2013) Prebiotic chemistry within a simple impacting icy mixture. J. Phys. Chem. A. 117: 5124.

(67) Koonin EV, Senkevich T, Dolja VV (2006). The ancient virus world and the evolution of cells. Biol. Direct 1: 29.

(68) Shelke SA, Piccirilli JA (2014) Origins of life: RNA made its own mirror image. Nature 515, 347-348. Doi:10.1038/nature13935.

(69) Cech TR (2012) The RNA Worlds in Context. Cold Spring Harb. Perspect. Biol. 4: a006742.

(70) Noller HF (2012) Evolution of protein synthesis from an RNA world. Cold Spring Harb Perspect Biol 4:a003681.

(71) Reif. F (1965) Fundamentals of Statistical and Thermal Physics. McGraw Hill, New York.

(72) Scheiner S (1997) Hydrogen Bonding. A Theoretical Perspective. Oxford University Press, Oxford.

(73) Wing R, Drew H, Takano T, Broka C, Tanaka S, Itakura K, Dickerson R (1980) Crystal structure analysis of a complete turn of B-DNA. Nature 287:755-756.

(74) Monz T, Kim K, Villar AS, Schindler P, Chwalla M, Riebe M, Roos CF, Häffner H, Hänsel W, Hennrich M, Blatt R (2009) Realization of universal ion-trap quantum computation with decoherence-free qubits. Phys Rev Lett. 103:200503.

(75) Tegmark M (2000) The importance of quantum decoherence in brain processes. Phys. Rev. E 61: 4194-4206.

(76) Zurek WH (2009) Quantum Darwinism, Nat. Phys. 5:181-188.

(77) Takeuchi N, Hogeweg P, Koonin E.V (2011) On the origin of DNA genomes: Evolution of the division of labor between template and catalyst in model replicator systems. PLoS Comput, Biol. 7: Artn. e2002024.

(78) Richards, R (2001) Dynamic mutations: a decade of unstable expanded repeats in human genetic disease, Mol. Hum. Genet.10: 2187-2194.

(79) Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W (2003) Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev. 67: 86-156.

(80) Ripley LS (1988) Estimation of in-vivo miscoding rates. Quantitative behavior of two classes of heat-induced DNA lesions. J. Mol. Biol. 202: 17-34.

(81) Baltz RH, Bingham PM, Drake J.W (1976) Heat mutagenesis in bacteriophage T4: The transition pathway. Proc. Natl. Acad. Sci. USA. 73:1269-1273.

(82) Bingham PM, Baltz RH, Ripley LS, Drake JW (1976) Heat mutagenesis in bacteriophage T4: The transversion pathway. Proc. Natl. Acad. Sci. USA, 73: 4159-4163.

(83) Drake JW, McGuire J (1967) Characteristics of mutations appearing spontaneously in extracellular particles of bacteriophage T4. Genetics 55: 387-398.

(84) Arndt M, Juffmann T, Vedral V (2009) Quantum physics

meets biology. HFSP J. 3: 386-400.

(85) Wiseman HM, Eisert J (2008) Nontrivial quantum effects in biology: A skeptical physicist's view. In Quantum Aspects of Life, ed. by D Abbott, PCW Davies, AK Pati. Imperial College Press, London, pp. 381–402.

(86) Ball P (2011) Physics of life: The dawn of quantum biology. Nature 474: 272-274.

(87) Vattay G, Kauffman S, Niiranen S (2014) Quantum biology on the edge of quantum chaos. PLoS One 9:89017.

(88) 88. Lambert N, Chen Y-N, Cheng Y-C, Li C-M, Chen G-Y Nori F (2013) Quantum biology. Nature Phys. 9:10-18. Doi: 10.1038/nphys2474.

(89) Moheni M, Omar Y (2014) eds. Quantum Effects in Biology. Cambridge University Press, Cambridge, UK

(90) Tamulis A, Grigalavicius M (2014) Quantum entanglement in photoactive prebiotic systems. Syst Synth Biol.8:117-140.

(91) Gauger EM, Rieper E, Morton JJL, Benjamin SC, Vedral V (2011) Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett. 106, 040503.

(92) Topal, M.D., Fresco, J.R (1976) Complementary base pairing and the origin of base substitutions. Nature 263: 285 289.

(93) Kouri DJ (2014) Harmonic oscillators, Heisenberg’s uncertainty principle and simultaneous measurement precision for position and momentum. arXiv:1409.2468v2 [quant-ph].

(94) Wootters WK, Zurek WH (1982) A single quantum state cannot be cloned. Nature 299: 802-803.

(95) Kricker M, Drake JW (1990) Heat mutagenesis in bacteriophage T4: Another walk down the transversion pathway. J. Bacteriol. 172: 3037 3039.

(96) Drake JW, Ripley LS (1994) Mutagenesis. In JD Karam (Ed.) Molecular Biology of Bacteriophage T4, American Society for Microbiology, Washington DC, pp 98-124.

(97) Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667-1686 (see p. 1671).

(98) Benzer S (1961) On the topography of the genetic fine structure. Proc. Natl. Acad. Sci. USA 47:403-415.

(99) Wilde, MM (2013) Quantum Information Theory, Cambridge University Press, Cambridge.

(100) Davies, P.C.W (2004) Does quantum mechanics play a non-trivial role in life? BioSystems 78:69-79.

(101) Goel A, Astumian RD, Herschbach D (2003) Tuning and switching a DNA polymerase motor with mechanical tension. Proc. Natl. Acad. Sci. USA 98, 8485-8491.

(102) Wigner, EP (1957) Relativistic invariance and quantum phenomena. Rev. Mod. Phys. 29: 255-268.

(103) Koonin EV (2012) The Logic of Chance. The Nature and

Origin of Biological Evolution. Pearson, FT Press. Upper Saddle River, New Jersey.

(104) Nenguke T, Aladjem M, Gusella J, Wexler N, Arnheim N (2003) Candidate DNA replication initiation regions at human trinucleotide repeat disease loci. Hum. Mol. Genet. 12:1021-1028.

(105) Sawaya SM, Lennon D, Buschiazzo E, Gemmell N, Minin V (2012). Measuring Microsatellite Conservation in Mammalian Evolution with a Phylogenetic Birth–Death Model. Genome Biol Evol. 4:748–759.

(106) Varela MA, Amos W (2010) Heterogeneous distribution of SNPs in the human genome: Microsatellites as predictors of nucleotide diversity and divergence. Genomics 95:151–159.

(107) Kumar S, Hedges, SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917-920.

(108) Higham CF, Morales F, Cobbold CA, Haydon D, Monckton DG (2012) High levels of somatic DNA diversity at the myotonic dystrophy type 1 locus are driven by ultra-frequent expansion and contraction mutations. Hum. Mol. Genet. 21, 2450-2463.

(109) Voineagu I, Surka CF, Shishkin AA, Krasilnikova MM, Mirkin, SM (2009) Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility, Nat Struct Mol Biol 16: 226-228.

(110) Snowdon DA, Kane RL, Beeson WL, Burke GL, Sprafka JM, Potter J, Iso H, Jacobs Jr DR, Phillips RL (1989) Is early natural menopause a biologic marker of health and aging? Am. J. Public Health 79: 709-714.

(111) Ehrenberg L, von Ehrenstein G, Hedgran A (1957) Gonad temperature and spontaneous mutation rate in man. Nature 180, 1433-1434.

(112) Torrellas G, Maciá E (2012) Twist-radial normal mode analysis in double-stranded DNA chains. Phys. Lett. A 376:3407-3410.

(113) Cooper WG (1979) Proton transitions in hydrogen bonds of DNA. A first order perturbation model Int. J. Quantum Chem. Quantum Biol. Symp. 6:171.

(114) Gusella JF, MacDonald ME, Ambrose CM, Duyao MP (1993) Molecular genetics of Huntington’s disease. Arch. Neurol. 50:1157-1163.

(115) Semaka A, Creighton S, Warby S, Hayden MR (2006) Predictive testing for Huntington’s disease: interpretation and significance of intermediate alleles. Clin. Genet.70: 283-294.

(116) Chung M, Ranum L, Duvick L, Servadio A, Zoghb H, Orr H (1993) Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat. Genet. 5: 254-258.

(117) Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A. Hayashi,T, Saito M. Tomoda A, Miike T, Naito H, Ikuta F, Tsuji S (1994) Unstable expansion of CAG repeats in hereditary dentatorubral-pallidoluysian atrophy. Nat. Genet. 6:9-13.

(118) Zhang L, Leeflang EP, Yu J, Arnheim N (1994) Studying human mutations by sperm typing: instability of CAG trinucleotide repeats in human androgen receptor gene, Nature Genet. 7, 531-535.

(119) Rosenberg SM (2001) Evolving responsively: adaptive mutations. Nat. Rev. Genet. 2:504-515.

(120) Feng D-F, Cho G, Doolittle RF (1997) Determining divergence times with a protein clock: Update and reevaluation. Proc. Natl. Acad. Sci. 94:13028–13033.

(121) Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, Karachin R, Kinzler KW, Vogelstein B, Nowak M.A (2010) Accumulation of driver and passenger mutations during tumor progression. Proc. Natl. Acad. Sci 107: 18545-18550.

(122) Illingworth CJR, Mustonen V (2011) Distinguishing driver and passenger mutations in an evolutionary history categorized by inference. Genetics 189:989-1000.

(123) Mosconi L, Rinne JO, Tsui WH, Berti V, Li Y, Wang H, Murray J, Scheinin N, Nagren K, Williams S, Glodzik L, De Santi S, Vallabhajosula S, de Leon M.J (2010) Increased fibrillar amyloid-β burden in normal individuals with a family history of late-onset Alzheimer’s. Proc. Natl. Acad. Sci. USA. 107:5949-5954.

(124) Pifer PM, Yates EA, Legleiter J (2011) Point mutations in Aβ result in the formation of distinct polymorph aggregates in the presence of lipid bilayers, PLoS One 6: e16248.

(125) Cruchaga C, Haller G, Chakraverty S, Mayo K, Vallania FLM, Mitra RD, Faber K, Williamson J, Bird T, Diaz-Arrastia R, Foround TM, Boeve BF, Graff-Radford NR, St. Jean P, Lawson M, Ehm MG, Mayeux,R, Goate AM (2012) Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer’s disease families. PLoS One 7: e31039.

(126) Lujambio A, Portela A, Liz J, Melo SA, Rossi S, Spizzo R, Croce CM, Calin GA, Esteller M (2010) CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 29:6390-6401.

(127) Huang Y, Shen X.J, Zou Q, Wang SP, Tang SM, Zhang G.Z (2011) Biological functions of microRNAs: a review. J. Physiol. Biochem 67: 129-139.

(128) Kumar. S (2005) Molecular clocks: four decades of evolution. Nat. Rev. Genet. 6: 654-662.

Downloads

Published

2017-05-04

How to Cite

Cooper, W. G. (2017). Evolution Via Epr-Entanglement Algorithm. British Journal of Healthcare and Medical Research, 4(2), 43. https://doi.org/10.14738/jbemi.42.2795