Antimicrobial Application and Assessment of Green Synthesized Silver Nanoparticles Using Aqueous Leaf Extract of Ficus Copiosa

Authors

  • David Timi
  • Subramaniyam Gopalakrishnan Department of Applied Sciences, PNG University of Technology, PMB, Lae, Papua New Guinea.
  • Macquin Maino Department of Agriculture, PNG University of Technology, PMB, Lae, PNG.

DOI:

https://doi.org/10.14738/jbemi.63.7641

Keywords:

Silver nanoparticles, Antimicrobial Application, Green Synthesis, Ficus copiosa

Abstract

Plant mediated green-synthesized silver nanoparticles (AgNPs) and the bioactivity on pathogenic micro-organisms is discussed. In the present investigation, aqueous leaf extracts of a medicinal plant, Ficus copiosa was utilized to construct AgNPs. The synthesized AgNPs was characterized by Ultraviolet-visible (UV-vis), Fourier Transform-infrared (FT-IR), X-ray Diffraction (XRD) spectrometer and Scanning Electron Microscopy (SEM) analysis. The phytosynthesized AgNPs exhibited comparable antimicrobial activity with two reference antibiotics against five indicator micro-organisms including two gram-positive (G+) bacteria, two gram-negative (G-) bacteria and a Protozoa (Pz). Study of the minimum inhibition concentration shows the two gram-negative bacteria to be more susceptible to AgNPs than the two gram-positive bacteria. The organisms included in the study are namely, B. Subtilis (G+), S. aureus (G+), E. coli (G-), S. pneumonia (G-) and T. vaginalis (Pz). Agar Disc diffusion technique was employed to assess the efficacy of the silver nanoparticles on the micro-organisms.

References

(1) Prasad, R., Kumar, V., and Prasad, S. K. (2014), Nanotechnology in Sustainable Agriculture: Present Concerns and Future Aspects, African Journal of Biotechnology, Vol. 13(6): 705–713.

(2) Bandyopadhyay, K. A. (2007), Nano Materials, New Age International Publishes, New Delhi.

(3) Rauwel, P., Rauwel, E., Ferdov, S and Singh, P. M. (2015), Silver nanoparticles: synthesis, properties and applications, Advances in Materials science and Engineering, 2015.

(4) Tran, H. Q., Nguyen, Q. V. and Le, Anh-Tuan (2013), Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives, Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(3).

(5) Ennock, J and Ehrenpreis, D. (2018), Good Health: A Cornerstone of Development, OECD, Paris.

(6) Ahmed, S., Ahmad, M., Swami, L. B. and Ikram, S. (2016), A review on plant extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise, Journal of Advance Research, 7(1): 17 – 28.

(7) Zhan, G., Huang, J., Lin, L., Lin, W., Emmanuel, K. and Li, Q. (2011), synthesis of gold nanoparticles by Cacumen platycladi leaf extract and its simulated solution toward the plant-mediated biosynthisis mechanism, J. Nanopart. Res. 13: 4957– 4968.

(8) Mody, V. V., Siwale, R., Singh, A. and Hardik, R. M. (2010), Introduction to metallic nanoparticles, J. Pharm Bioallied Sci. 2(4), 282 – 289

(9) Zhang, H. (2013), Application of silver nanoparticles in drinking water purification, PhD. Thesis, University of Rhode Island, USA.

(10) Krutyakov, Y. A., Kudrynskiy, A. A., Olenin, A. Y. and Lisichkin, G. V. (2008) Russ. Chem. Rev. 77 (233).

(11) Ahamed, M. Alsalhi, M. S. and Siddiqui, M. K. (2010) Clin. Chim. Acta 411: 1841.

(12) García-Barrasa, J., López-de-luzuriaga, J. M. and Monge, M. (2011) Cent. Eur. J. Chem. 9(17).

(13) Kholoud, M. M., El-Nour, A., Eftaiha, A. and Al-Warthan, A. (2010), Synthesis and applications of silver nanoparticles, Arabian Journal of Chemistry, 3(3): 135 – 140.

(14) Chung, Ill-Min, Park, I., Seung-Hyun, K., Thiruvengadam, M. and Rajakumar, G. (2016), Plant-mediated synthesis of silver nanoparticles: Their characteristic properties and therapeutic applications, Nanoscale Research Letter, 11(40).

(15) Roy, S. and Das, K. T. (2015), Plant mediated green synthesis of silver nanoparticles – A review, International Journal of Plant Biology & Research, 3(3): 1044.

(16) Song, Y. J. and Kim, S. B. (2008), Rapid biological synthesis of silver nanoparticles using plant leaf extracts, Bioprocess and Biosystems Engineering, 32(1): 79 – 84.

(17) Pelczar, J. M., Chan, C. S. E. and Krieg, R. N. (1993), Microbiology – Concepts and Applications, Mc Graw-Hill, INC, New York.

(18) Gopinath, K., Gowri, S. and Arumugam, A. J. (2013), Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties Nanostruct Chem (2013) 3:68.

(19) Rather, Y. M., Pandian, J. K., Sundarapandian, M. S. and Yogamoorthi, A. (2017), Biosynthesis and characterization of silver nanoparticles using leaf extract of Wedelia urticifolia and evaluation of antibacterial efficacy, Journal of Pharmacy and Biological Sciences, 12(4): 14 – 23.

(20) Ponarulselvam, S., Panneerslvam, C., Murugan, K., Aarthi, N., Kalimuthu, K. and Thangamani, S. (2012), Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities, Asian Pacific Journal of Tropical Biomedicine, 2(7): 574 – 580.

(21) Ficus copiosa (PROSEA) – PlantUse https://uses.plantnet-project.org/en/Ficus_copiosa_(PROSEA) – Accessed 7/11/2018.

(22) Holdsworth, D. K. (1977), Medicinal Plants of PNG, Technical Paper No. 175, South Pacific Commission, Noumea, 1 – 3.

(23) Waruruai, J., Sipana, B., Koch, M., Barrows R. L., Maitainaho, K. T. and Rai, P. P. (2011), An ethnobotanical survey of medicinal plants used in the Siwai and Buin districts of the Autonomous Region of Bougainville, J. Ethnopharmacol. 138(2): 564 – 577.

(24) Wau, S. J. (2013), Phytochemical and Antimicrobial Assessment of Ficus botryocarpa (Moraceae), MPhil. Thesis, PNG University of Technology, Lae. PNG.

(25) Gopinath, K., Gowri, S. and Arumugam, A. J. (2013), Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties Nanostruct Chem (2013) 3:68.

(26) Roberts, M. R., Gilbert, C. J., Rodewald, B. L. and Wingrove, S. A. (1985), Modern Experimental Organic Chemistry, 4th ed., Saunders College Publishing, Philadelphia, USA.

(27) Andrews JM. Determination of minimum inhibitory concentration, Journal of Antimicrobial Chemotherapy, 2001, 48(1): 5 – 16.

(28) Lok, CN., Ho, CM., Chen, R., He, QY,. Yu, WY., Sun, H., Tam, PKH., Chiu, JF. and Che, CM. (2007), Silver nanoparticles: partial oxidation and antibacterial activities, Journal of Biological Inorganic Chemistry, 12(4): 527 – 534.

(29) Jyoti, K., Baunthiyal, M. and Singh, A. (2016), Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics, Journal of Radiation Research and Applied Sciences, 9: 217– 227.

Downloads

Published

2019-12-30

How to Cite

Timi, D. ., Gopalakrishnan, S. ., & Maino, M. . (2019). Antimicrobial Application and Assessment of Green Synthesized Silver Nanoparticles Using Aqueous Leaf Extract of Ficus Copiosa. British Journal of Healthcare and Medical Research, 6(3), 06–15. https://doi.org/10.14738/jbemi.63.7641