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1. INTRODUCTION

The fundamental desirable characteristic of outlier resistant or “robust: time series operations is performance stability; that is, a robust statistical procedure should guarantee small performance deviations for small perturbations in the data generating stochastic process.  Thus, statistical robustness may be qualitatively defined along the latter lines, where for an analytical definition, the use of appropriate stochastic distance measures is essential.  This qualitative definition is developed by the theory of qualitative robustness, while it also intimately related to the robust saddle-point game theoretic formalizations.  The theory of qualitative robustness provides necessary conditions to be satisfied by robust operations, while the robust saddle-point game theoretic formalizations provide specific solutions within the qualitatively robust class of operations.    In this paper, we will review this composite construction of statistically robust operations.  We will then present solutions for outlier resistant or robust filtering and smoothing.

     The definition of qualitative robustness was first given by Hampel (1971, who considered only memoryless data processes.  The definition was extended to include processes with memory, first by Papantoni-Kazakos and Gray (1979) and then by Cox (1978), Bustos et al (1984) and Papantoni-Kazakos (1984a, 1984b, 1987).  Solutions for outlier resistant prediction, filtering and smoothing were first developed by Tsaknakis et al (1988, 1986), while an overview of the theory can be found in Kazakos et al (1990).  Extensions of the theory of qualitative robustness to include robust block encoders and quantizers were developed by Papantoni- Kazakos (1981a, 1981b).  Finally, a stochastic neural network was developed by Kogiantis et al (1997) and Burrell et al (1997), for implementation of robust prediction, and has been applied by Burrell et al (2012) for predictive model mapping.

     The organization of the paper is as follows:  In Section 2, we present the outline of the qualitative robustness theory and its relationship to robust saddle-point game theoretic formalizations.  In Section 3, we describe the process for developing robust filtering operations.  In Section 4, we draw from the derivations in Section 3, to develop non-causal filtering or smoothing operations, when the nominal information and noise processes are both Gaussian.  In Section 5, we focus on robust causal filtering solutions for nominally Gaussian information and noise processes. In Section 6, we include concluding remarks.

2. QUALITATIVE ROBUSTNESS AND ROBUST SADDLE-POINT GAME THEORETIC FORMALIZATIONS

As discussed in the introduction, qualitative robustness corresponds to small performance deviations for small perturbations in the data generating processes.  Alternatively, qualitative robustness is a continuity property defined on the space of stochastic processes via appropriate stochastic measures.  In particular, let xn and yn denote n-dimensional data sequences, generated respectively by two non-identical n-dimensional probability density functions 
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. Let g(·) denote some function or operation on n-dimensional data sequences, where g(·) could be, for example, a test function in hypothesis testing or a parameter estimate. Let h 0g and  hg denote respectively the density function of the random variables 
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 be two stochastic distance measures respectively between the densities
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Definition 1: The operation g (·)  is qualitatively robust at the density function 
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From the above definition, we conclude that qualitative robustness is a local (around 
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) stability property, parallel to the continuity property of real function. The specific analytical properties of a qualitatively robust data operation 
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. The latter stochastic distances are initially selected to best reflect the desired stability properties of the qualitatively robust data operation, where the weaker the distance  
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, then the stronger the qualitative robustness properties. The main issue arising here is the relationship of the qualitative robustness to the robust saddle-point formalizations, and the choice of the stochastic distance measures 
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. We will first address the relationship to the robust saddle-point game-theory formalizations.  


Let us consider a saddle-point game with payoff function f(x,y), where the function  
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 and its arguments x and y are all real and scalar, and where x and y take values respectively in the subsets A and B of the real line R. Consider the metric d ( u , v ) = | u – v | on the real line, and let the subsets A and B both be convex with respect to that metric. Let at least one of those two subsets also be compact with respect to the metric 
[image: image30.wmf])

,

(

 

d

×

×

, and let the payoff function f (x , y) be convex in x, concave in y, and continuous in x and y, with respect to the same metric. Then, the existence of a saddle-point solution (x* ,y*) such that  
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is guaranteed and it is unique. If, on the hand, the function f (x , y)  is not continuous in x and y, then the existence of a saddle-point solution is not generally guaranteed. The continuity of the payoff function is thus an essential property for the guaranteed existence of a saddle-point solution. The same is true when instead of x and y, we have density functions f n and hg  as in Definition 1. In the latter case, the metric | u – v | on the real line is replaced by the stochastic distance measure 
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  , for densities hg  induced by some  f n and some data operation g. Therefore, qualitative robustness is essential for the guaranteed solutions of the robust saddle-point game-theory formalization. 

Let us now turn to the choice of the distances
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in Definition 1. As we already pointed out, to make the qualitative robustness property strong, we need a weak distance 
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. A weak distance that also represents closeness in data sequences and best reflects the outlier model as well is the Prohorov distance [10], with data distortion measure 
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The Prohorov distance with data distortion measure as in (1) is a metric; that is, it satisfies the triangular property. For classes of memoryless processes, the distance is identical to the Prohorov distance with dtata distortion measure 
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, the Vasershtein or Rho-Bar distances [10]  are appropriate. Indeed, those two distances are strong and they both bound difference in expected error performance. The choice of the data distortion measure within the latter distances depends on the particular application, where a popular and useful such choice is the difference squared distortion measure 
[image: image42.wmf]2

*

)

(

)

,

(

y

x

y

x

-

=

r

. The Rho-Bar distance is used for closeness in stochastic processes. Given some data sequences 
[image: image43.wmf]}

,...,

{

1

1

n

N

n

N

y

y

y

+

+

=

and some scalar operation 
[image: image44.wmf])

(

×

g

, let  
[image: image45.wmf])

(

n

i

i

y

g

+

   estimate the datum xk of some process whose arbitrary dimensionality density function is f 2  and whose data sequence are …, x - 1 , x 0 , x 1 …. If the sequence 
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 and the data operation g (·). Let hg  denote the arbitrary dimensionality density induced by  g (·) and some other data density function 
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The definition of qualitative robustness, in conjunction with the Prohorov and Rho-Bar or Vasershtein distances lead to constructive sufficient conditions that data operations should satisfy [2], [6], [7] and [10]. These conditions are included in Theorem 1 below, whose proof can be found in [2].

Theorem 1 : Consider a scalar real operation g(xn) on data sequences xn of length n. Let g(xn) be bounded, and such that :

i. If n is finite, then g(xn) is pointwise continuous as a function of the data. That is,    

   given ε > 0, there exists δ > 0, such that 
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ii. If n is asymptotically large, and given some data generating density function f0, then 

g (xn) is pointwise asymptotically continuous at f0. That is, given  ε > 0 and  η > 0, there 

        exist δ > 0, positive integers m and n0, and for each n > n0 some set An ε Rn , such that 
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From Theorem 1, we conclude that to be qualitatively robust, it suffices that a data operation be bounded and continuous. For data sequences of finite length continuity is defined in the usual functional sense. For asymptotically large data sequences, continuity is defined as follows at some data generating density function: If some sequence xn is representative of the latter density function, in the sense that it belongs to a high-probability set An, and if the majority of the elements of another sequence yn are close to the corresponding elements of the sequence xn , then the values g(xn) and g(yn) of the data operating are close as well. Due to the above results, we conclude that linear operations are not qualitatively robust. This is so because such operations are not bounded, and because closeness between the majority of corresponding elements of two sequences does not guarantee closeness in the values of those operations.





Qualitative robustness is a property that does not induce uniqueness. That is, given a specific problem, and some data generating density function f0 , there generally exists a whole class 
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 is as in (1). Let  h 0g and hg  be the density functions induced by the data operation 
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It can be found that if bounded sensitivity at f0 is required (parallel to bounded derivative) then the qualitatively robust operation 
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     As may be deduced from the presentation in this section, qualitative robustness is a performance stability property and its time series applications include prediction, interpolation and filtering or smoothing.  Solutions for the later time series operations require the marriage of qualitative robustness with the theory of saddle-point game theoretic formalizations.  In this paper, we present such solutions for non-causal filtering or smoothing as well as for causal filtering.

3. ROBUST  FILTERING 

The objective of either non-causal or causal filtering is the extraction of information carrying data from noisy observations.  That is, the outcomes generated by an information process are estimated, when distorted by interferences from a noise process.  We will assume that the relationship between the information and noise processes is additive.  In the robust filtering problem, the information and noise processes are modeled by two disjoint classes, Fs and FN, respectively. Arbitrary dimensionality probability density functions in classes Fs and FN  are respectively denoted fs and fN.  

 


Let f0S and f0N be two nominal well known, stationary density functions, such that f0s 
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Let us denote by …, W-1 , W0, W1, … random noise data sequences, and let …, Z-1 , Z0, Z1, … be data sequences from the nominal noise density function f0N . Given some number 
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where …, V-1 , V0, V1, … is a random sequence generated by any arbitrary dimensionality stationary density function. The noise model in (2) represents the occurrence of outliers, with probability 
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where Xn is generated by fs , Wn is generated by fN [ as in (2)], and the sequences …, X-1 , X0, X1, … and …, W-1 , W0, W1, … are mutually independent. Let  
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Consider then the following saddle-point game. Search for the triple 
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The right part of (5) is satisfied for 
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The game in (5) reduces then to the following search. Find the pair (
[image: image115.wmf]*

s

f

,
[image: image116.wmf]*

N

f

) such that 
[image: image117.wmf]*

s

f

 
[image: image118.wmf]Î

 Fs  and  
[image: image119.wmf]*

N

f

  
[image: image120.wmf]Î

F N  , and  


[image: image121.wmf]{

}

[

]

þ

ý

ü

î

í

ì

-

-

-

*

*

2

*

*

1

0

0

,

|

,

,

|

N

s

N

s

l

n

f

f

f

f

y

X

E

X

E

 = 


[image: image122.wmf]{

}

[

]

þ

ý

ü

î

í

ì

-

=

-

-

Î

Î

N

s

N

s

l

n

F

f

s

f

f

f

f

f

y

X

E

X

E

F

N

N

s

,

|

,

,

|

sup

2

1

0

0















(7)
and select 
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we easily find, for f= 
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     Let 
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Then, the supremum in (7) reduces to the search of the infimum below, where F  denotes the class induced by  f 0S  and fN  ; that is, F  = { f  = f0S * f N  ,  fN   
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We consider the class FN  of noise processes, as described by the probability density functions these processes induce and we select this class to be given by expression (12) below.
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We then express Theorem 2 below. This theorem and the subsequent Lemma 1 are due to Tsaknakis et. al. (1986).

Theorem 2 : Let the density f0s have a nonzero and analytic characteristic function 
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Let 
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such that 
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where, An+1 includes all 
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Then, the infimum in (11) with substitution of  F N for F  , exists and is attained by the following density f * 
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with λ such that 
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Furthermore, the filtering operation 
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     Lemma 1 below is a consequence of Theorem 2.  
Lemma 1 : Let the densities f0s and f0N  in Theorem 2 be both zero mean Gaussian, with respective auto-covariance matrices Mn+1 and Nn+1 , where the elements of  Mn+1 are denoted {mi,j}.Then, the density f0 in (13) is zero mean Gaussian, with auto-covariance matrix An+1=  Mn+1 + Nn+1 and the density f *  in (16) and the filtering operator g* in (17) take then the following special form, where | An+1 | means determinant, T means transpose and (-1) denotes inverse, where it is assumed that 
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where denoting c = 
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Given εN , n and l, the constant λ is positive and unique. Given n and l, λ decreases monotonically with increasing εN. For εN = 0, λ equals infinity, and the filtering operation in (19) becomes then identical to the optimal at the Gaussian noise, linear, mean-squared filter. 
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     We observe that the filtering operation is (19) is a truncated linear function of the data; it is thus bounded and continuous in the sense of part i in Theorem 1, but it is not asymptotically continuous in the sense of part ii in the same theorem. The latter operation is therefore qualitatively robust for finite data dimensionalities n+l only. We will extend the operation in (19), to create a filtering operation that is both asymptotically and non-asymptotically robust. We distinguish between casual and non-casual filtering, and we present then two different extensions.      

4. ROBUST  NON-CAUSAL FILTERING OR SMOOTHING FOR NOMINALLY GAUSSIAN INFORMATION AND NOISE PROCESSES
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where  
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   Let 
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Then, 
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5. ROBUST CAUSAL FILTERING FOR NOMINALLY GAUSSIAN INFORMATION AND NOISE PROCESSES

Given the Gaussian densities   f0s and f0N   in Lemma 1 and the sequences { …, X-1 , X0, X1, … } and { …, W-1 , W0, W1, … }of random variables as in the non-causal filtering, let Mn,k and Nn,k denote respectively the auto-covariance matrices   
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where  
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Let 
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  Where 
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Let us define, 
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Then, 
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  represents the variance gain in estimating the datum xk from the observation vector 
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     It can be shown [Tsaknakis (1986)] that the operations in (30) are qualitatively robust, in both the asymptotic and the non-asymptotic sense. In the later operation, the integer m and εN represent a tradeoff between optimality at the Gaussian noise f0N density    robustness, and they are both system parameters. As m increases and εN decreases, the filtering operation in (30) tends to the optimal at the Gaussian density  f0N, linear data operation. 
6. CONCLUSIONS

We have examined outlier resistant time series operations in the light of the theory of qualitative robustness.  The resulting operations are continuous, both in a pointwise and an asymptotic sense, as well as bounded.  Their performance is controlled by two parameters, one of which represents outlier contamination level.  Special attention has been given to causal and non-causal filtering.
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