
 

VOLUME 3, ISSUE 1 
 

 

Software methods for fast hashing 

Shay Gueron  
University of Haifa, Israel; 

Intel Corporation, Israel Development Center, Israel  
shay@math.haifa.ac.il  

ABSTRACT   

The carry-less multiplication instruction, PCLMULQDQ, is a relatively recent addition to the x86-64 
instructions set. It multiplies two binary polynomials of degree63, using 𝐺𝐺𝐺𝐺(2) arithmetic, and 
produces a polynomial of degree126, stored in a 128-bit register. PCLMULQDQ is intended to speed 
up computations in𝐺𝐺𝐺𝐺(2128), which are used for AES-GCM authenticated encryption. We show here 
how PCLMULQDQ can be used for efficient software implementation of a 64-bit hash function that 
has a low collision probability. While a 64-bit hash is normally not a meaningful security primitive, 
the discussed hashing algorithm can be leveraged for other usages that enjoy fast hashing, e.g., 
querying/maintaining databases. On the latest Intel architecture (Codename Broadwell), our hash 
function can process messages at the rate of ∼ 0.13 cycles per byte.  
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1 Introduction 
Intel architectures introduced instructions that accelerate AES (AES-NI), and supplemented them 
with the carry-less multiplication instruction𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. It was motivated by the desire to 
accelerate AES-GCM authenticated encryption, but other usages (e.g., CRC computations) were also 
considered (see details on 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and its applications in [5, 6]). 

In this paper, we are interested in a non-cryptographic hashing algorithm that has a low collision 
probability, and can be computed efficiently. In particular, we seek a 64-bit hash. Hash functions 
with a relatively short digest have various usages, and a leading one is searching/updating 
databases. For such usages, the hashed messages are relatively short. Typical entries from database 
columns are, for example, zip code, name, address, salary, age, employer, and inventory. The 
associated message lengths are: 5 bytes (zip code), 10 bytes (telephone number), 32 bytes (city 
name).  

There are many known (and used) hash functions. Two examples are LOOKUP3 [3], and Google’s 
CityHash [2] (additional examples can be looked up, for example, in [1]). To the best of our 
knowledge, the collision probability for these hash functions is either verified empirically, and/or 
depends on some assumptions on the properties of the messages.  

In this paper, we discuss a 64-bit hash function that has a provable low collision probability, and can 
be computed efficiently on modern computer platforms. 

 

DOI: 10.14738/tnc.31.918 
Publication Date: 26th February 2015 
URL: http://dx.doi.org/10.14738/tnc.31.918 
 



Shay Gueron; Software methods for fast hashing, Transactions on Networks and Communications, Volume 3 
No 1, Feb (2015); pp: 85-92 
 

2 Preliminaries and notation 
Let 𝑛𝑛 be a positive integer, denote𝑠𝑠 = 𝑛𝑛 − 1, and let 𝐺𝐺 = 𝐺𝐺𝐺𝐺(2𝑛𝑛)/𝑃𝑃(𝑥𝑥) be the finite field with 2𝑛𝑛 
elements, represented via the irreducible polynomial 𝑃𝑃(𝑥𝑥) (of degree𝑛𝑛). A field element 𝐴𝐴 ∈ 𝐺𝐺 is a 
binary polynomial of degree𝑠𝑠, 𝐴𝐴 = 𝐴𝐴(𝑥𝑥) = ∑ 𝑎𝑎𝑗𝑗𝑠𝑠

𝑗𝑗=0 𝑥𝑥𝑗𝑗 where 𝑎𝑎𝑗𝑗 ∈ {0,1}. We also view 𝐴𝐴 as the string 
of 𝑛𝑛  bits, 𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠−1 …𝑎𝑎0  (by convention 𝑎𝑎𝑠𝑠  is at the leftmost position). For𝐴𝐴,𝐵𝐵 ∈ 𝐺𝐺 , 𝐴𝐴 = 𝐴𝐴(𝑥𝑥) =
∑ 𝑎𝑎𝑗𝑗𝑠𝑠
𝑗𝑗=0 𝑥𝑥𝑗𝑗  and𝐵𝐵 = 𝐵𝐵(𝑥𝑥) = ∑ 𝑏𝑏𝑗𝑗𝑠𝑠

𝑗𝑗=0 𝑥𝑥𝑗𝑗, define addition and multiplication as follows: 

1. Addition (+): 𝑃𝑃 = 𝐴𝐴 + 𝐵𝐵 is the polynomial𝑃𝑃 = 𝑃𝑃(𝑥𝑥) = ∑ ��𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗� 𝑚𝑚𝑚𝑚𝑚𝑚 2 � 𝑥𝑥𝑗𝑗𝑠𝑠
𝑗𝑗=0 . The string 

representation of 𝑃𝑃 is the bitwise XOR𝐴𝐴⊕𝐵𝐵. 

2. Multiplication (⊗): 𝑃𝑃(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) ⊗𝐵𝐵(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) × 𝐵𝐵(𝑥𝑥) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃(𝑥𝑥), where “×” denotes 
polynomial multiplication with coefficients added/multiplied in 𝐺𝐺𝐺𝐺(2). Specifically, if 
𝑇𝑇(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) × 𝐵𝐵(𝑥𝑥), then 𝑇𝑇(𝑥𝑥) is the binary polynomial of degree 2𝑠𝑠, with coefficients 𝑡𝑡𝑖𝑖 
satisfying 𝑡𝑡𝑖𝑖 = �∑ 𝑎𝑎𝑗𝑗𝑏𝑏𝑖𝑖−𝑗𝑗𝑖𝑖

𝑗𝑗=0  � 𝑚𝑚𝑚𝑚𝑚𝑚 2 for 0 ≤ 𝑖𝑖 ≤ 𝑠𝑠 and  𝑡𝑡𝑖𝑖 = �∑ 𝑎𝑎𝑗𝑗𝑏𝑏𝑖𝑖−𝑗𝑗𝑠𝑠
𝑗𝑗=𝑖𝑖−𝑠𝑠 � 𝑚𝑚𝑚𝑚𝑚𝑚 2 for 

𝑠𝑠 < 𝑖𝑖 ≤ 2𝑠𝑠. 

When 𝑛𝑛 = 8𝑚𝑚, an element 𝐺𝐺 = 𝐺𝐺(𝑥𝑥) = ∑ 𝑓𝑓𝑗𝑗𝑠𝑠
𝑗𝑗=0 𝑥𝑥𝑗𝑗 ∈ 𝐺𝐺 can be represented in a compact form, by a 

sequence of 𝑚𝑚 bytes 𝐵𝐵𝑚𝑚−1𝐵𝐵𝑚𝑚−2 …𝐵𝐵0, and written in hexadecimal notation.  

Hereafter, we focus on 𝑛𝑛 = 64 and choose the irreducible polynomial 𝑃𝑃(𝑥𝑥) = 𝑥𝑥64 + 𝑥𝑥4 + 𝑥𝑥3 + 𝑥𝑥 +
1. We call a 64-bit string a “quadword”.  

To illustrate, we offer the following example. 

Example 1: Use 𝑛𝑛 = 64, 𝑃𝑃(𝑥𝑥) = 𝑥𝑥64 + 𝑥𝑥4 + 𝑥𝑥3 + 𝑥𝑥 + 1. 
The element 𝐺𝐺 = 𝑥𝑥63 + 𝑥𝑥4 + 𝑥𝑥3 + 𝑥𝑥 + 1 is written in hexadecimal (compact) notation as the 8 
bytes string 800000000000001𝐵𝐵. If 𝐴𝐴 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺0000000𝐺𝐺, 𝐵𝐵 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺0000010𝐸𝐸, then 
𝐴𝐴 × 𝐵𝐵 = 55555555555555𝐴𝐴𝐴𝐴000000𝐺𝐺𝐺𝐺00000𝐺𝐺5𝐴𝐴, and 𝐴𝐴⊗𝐵𝐵 = 000000𝐺𝐺𝐺𝐺00000615. 

2.1 The instruction 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 
The instruction 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 operates on two 128-bit registers e.g., 𝑥𝑥𝑚𝑚𝑚𝑚1, 𝑥𝑥𝑚𝑚𝑚𝑚2 (the registers’ 
names are arbitrary, and the second operand can also be in a specified in a memory location). It 
executes polynomial multiplication of two polynomials of degree 63, and writes the result (which is 
polynomial of degree 126) into a third 128-bit register (see precise definitions in [5]). An 
“immediate” byte selects the two 64-bit halves from 𝑥𝑥𝑚𝑚𝑚𝑚1 and 𝑥𝑥𝑚𝑚𝑚𝑚2, which are to be multiplied. 
For example, 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑥𝑥𝑚𝑚𝑚𝑚0,  𝑥𝑥𝑚𝑚𝑚𝑚1,  𝑥𝑥𝑚𝑚𝑚𝑚2,   𝑖𝑖𝑚𝑚𝑚𝑚 = 0𝑥𝑥10 operates on 𝑥𝑥𝑚𝑚𝑚𝑚1[127: 64] 
(top half of 𝑥𝑥𝑚𝑚𝑚𝑚1) and on 𝑥𝑥𝑚𝑚𝑚𝑚2[63: 0] (bottom half of 𝑥𝑥𝑚𝑚𝑚𝑚2), writing their carry-less product 
into 𝑥𝑥𝑚𝑚𝑚𝑚0. With 𝐴𝐴,𝐵𝐵 from Example 1 (embedded in two 𝑥𝑥𝑚𝑚𝑚𝑚 registers),  
invoking 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑥𝑥𝑚𝑚𝑚𝑚0,  𝑥𝑥𝑚𝑚𝑚𝑚1,  𝑥𝑥𝑚𝑚𝑚𝑚2,   0𝑥𝑥01 with the registers contents  
𝑥𝑥𝑚𝑚𝑚𝑚1 =  0000000000000000𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺0000000𝐺𝐺and 
𝑥𝑥𝑚𝑚𝑚𝑚2 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺0000010𝐸𝐸0000000000000000, results in the value  
55555555555555𝐴𝐴𝐴𝐴000000𝐺𝐺𝐺𝐺00000𝐺𝐺5𝐴𝐴 in 𝑥𝑥𝑚𝑚𝑚𝑚0. 

3 Efficient hash functions with 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 
To define the message space, over which we use 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and carry out computations in 
𝐺𝐺𝐺𝐺(264), we need each message to be a string of quadwords. To this end, we pad messages of 
arbitrary lengths (in bytes) to the 8 bytes boundary, with zero bytes. In addition, to distinguish 
messages of variable lengths, we also append a quadword that encodes the message’s length. The 
exact procedure is defined in the following subsections. 
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3.1 Message padding and length encoding  
Consider a message 𝑃𝑃𝑀𝑀𝐺𝐺 whose length, in bytes, is 𝑙𝑙𝑏𝑏𝑙𝑙𝑡𝑡𝑙𝑙𝑠𝑠, and write 𝑙𝑙𝑏𝑏𝑙𝑙𝑡𝑡𝑙𝑙𝑠𝑠 = 8𝑢𝑢 + 𝑣𝑣, where 
0 ≤ 𝑣𝑣 < 8. We encode 𝑙𝑙𝑏𝑏𝑙𝑙𝑡𝑡𝑙𝑙𝑠𝑠 as a 64-bit quadword, denoted 𝑃𝑃𝐸𝐸𝐿𝐿. For example, if 𝑙𝑙𝑏𝑏𝑙𝑙𝑡𝑡𝑙𝑙𝑠𝑠 = 4096, 
then 𝑃𝑃𝐸𝐸𝐿𝐿 = 0000000000001000 (in hexadecimal notation). 

If 𝑣𝑣 > 0, we pad 𝑃𝑃𝑀𝑀𝐺𝐺 up to the 8 bytes boundary, with 8 − 𝑣𝑣 zero bytes. After the (conditional) 
padding, the padded message consists of ℓ1 = ⌈𝑙𝑙𝑏𝑏𝑙𝑙𝑡𝑡𝑙𝑙𝑠𝑠/8⌉ = 𝑢𝑢 + 1  quadwords, say 𝑃𝑃𝑀𝑀𝐺𝐺 =
𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋ℓ1  (concatenated quadwords, in this order). Finally, we set 

𝑃𝑃 = 𝑃𝑃𝑀𝑀𝐺𝐺, 𝑃𝑃𝐸𝐸𝐿𝐿 = 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋ℓ1 ,𝑃𝑃𝐸𝐸𝐿𝐿 

𝑃𝑃 consists of ℓ = ℓ1 + 1 quadwords. We call 𝑃𝑃 the “formatted message”. 

Example 2: Take a 9 bytes message 𝑃𝑃𝑀𝑀𝐺𝐺 = 090807060504030201. Here, 𝑙𝑙𝑏𝑏𝑙𝑙𝑡𝑡𝑙𝑙𝑠𝑠 = 9 = 8 ⋅ 1 + 1. 
This implies that ℓ1 = ⌈9/8⌉ = 2, and 𝑋𝑋1 = 0908070605040302, 𝑋𝑋2 = 0100000000000000. Also, 
𝑃𝑃𝐸𝐸𝐿𝐿 = 0000000000000009. Therefore, 
𝑃𝑃𝑀𝑀𝐺𝐺 = 09080706050403020100000000000000, and the formatter message is 𝑃𝑃 =
𝑃𝑃𝑀𝑀𝐺𝐺,𝑃𝑃𝐸𝐸𝐿𝐿 = 0908070605040302, 0100000000000000, 0000000000000009 (ℓ =3 quadwords). 

3.2 The two hash functions 
Let ℓ𝑚𝑚𝑚𝑚𝑚𝑚 be a fixed value, and assume that the message space is the set of formatted messages of 
length ℓ ≤ ℓ𝑚𝑚𝑚𝑚𝑚𝑚 quadwords. Let 𝑃𝑃𝑀𝑀𝐺𝐺 be a message and let 𝑃𝑃 be its formatted message, consisting 
of ℓ quadwords. Denote 𝑃𝑃 = 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋ℓ . Consider a key 𝐾𝐾  that consists of ℓ𝑚𝑚𝑚𝑚𝑚𝑚  quadwords 
𝐾𝐾 = 𝐾𝐾1,𝐾𝐾2, … ,𝐾𝐾ℓ𝑚𝑚𝑚𝑚𝑚𝑚  (each 𝐾𝐾𝑗𝑗 is a quadword). We define two hash functions (𝑀𝑀,𝑇𝑇) for 𝑃𝑃, using the 
key 𝐾𝐾, as follows.  

  𝑀𝑀 = 𝑀𝑀(𝑃𝑃,𝐾𝐾) = ∑ 𝑋𝑋𝑗𝑗ℓ
𝑗𝑗=1 × 𝐾𝐾𝑗𝑗               (𝑀𝑀 ∈ {0,1}128)                               (1)  

𝑇𝑇 = 𝑇𝑇(𝑃𝑃,𝐾𝐾) = ∑ 𝑋𝑋𝑗𝑗ℓ
𝑗𝑗=1 ⊗𝐾𝐾𝑗𝑗               (𝑇𝑇 ∈ {0,1}64)                                (2) 

The function 𝑇𝑇  is the well-known “inner product” XOR-universal hash function, defined over 
(𝐺𝐺𝐺𝐺(264))ℓ𝑚𝑚𝑚𝑚𝑚𝑚. Note that 𝑇𝑇 = 𝑀𝑀 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃(𝑥𝑥).  

3.3 Properties of 𝑺𝑺 and 𝑻𝑻 
Proposition 1. Suppose that the 𝐾𝐾ℓ𝑚𝑚𝑚𝑚𝑚𝑚  quadword keys 𝐾𝐾1,𝐾𝐾2, … ,𝐾𝐾ℓ𝑚𝑚𝑚𝑚𝑚𝑚  are selected independently, 
uniformly at random, from {0,1}64. Let 𝑃𝑃 be a (formatted) message of ℓ ≤ ℓ𝑚𝑚𝑚𝑚𝑚𝑚 quadwords (not 
all of them are zero). Then, 

𝑃𝑃𝑃𝑃𝑚𝑚𝑏𝑏 (𝑀𝑀(𝑃𝑃,𝐾𝐾) = 0128) < 𝑃𝑃𝑃𝑃𝑚𝑚𝑏𝑏 (𝑇𝑇(𝑃𝑃,𝐾𝐾) = 064) = 1
264

                          (3) 

Remark 1. 𝑇𝑇 is an “inner product” universal hash function (technically, the family of functions  
𝑇𝑇 (𝑃𝑃,𝐾𝐾) is universal). Proposition 1 is a well-known property. The use of the quadword 𝑃𝑃𝐸𝐸𝐿𝐿, to 
account for the message length, is essential in order to ensure “suffix-freeness”. To illustrate, note 
that without appending 𝑃𝑃𝐸𝐸𝐿𝐿, a message of a single quadword 𝑃𝑃 would have the same digest as the 
message of 2  quadwords 0000000000000000,𝑃𝑃 . This does not happen for the formatted 
messages. Since 𝑇𝑇 = 𝑀𝑀 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃(𝑥𝑥), it follows that 𝑀𝑀 = 0 ⇒  𝑇𝑇 = 0, so the number of messages that 
zero 𝑀𝑀 is smaller than the number of messages that zero 𝑇𝑇. 

Remark 2. Due to the linearity of 𝑀𝑀 (and 𝑇𝑇), and to Proposition 1, the probability that two different 

messages 𝑃𝑃1, 𝑃𝑃2 have the save value 𝑇𝑇 = 𝑇𝑇𝑀𝑀(𝑃𝑃,𝐾𝐾) is 1
264

. 
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Remark 3. Suppose that 𝐾𝐾0  is chosen uniformly at random from {0,1}64 , and define 𝐾𝐾𝑗𝑗 =
(𝐾𝐾0)𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃(𝑥𝑥), 𝑗𝑗 = 1, … , ℓ. Then, for a nonzero message 𝑃𝑃 of length ℓ quadwords, we have 

𝑃𝑃𝑃𝑃𝑚𝑚𝑏𝑏 (𝑀𝑀(𝑃𝑃,𝐾𝐾) = 064) ≤
ℓ

264
 

This bound is obtained by the following argument. 𝑀𝑀 is an evaluation of a single variable polynomial 
in the field , whose degree is ℓ (𝐾𝐾0 is it variable). As such, it can have at most ℓ roots in the field. 

3.4 The computational cost of computing 𝑺𝑺 and 𝑻𝑻 
Software running on processors that support 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , can compute 𝑀𝑀  by means of ℓ 
invocations of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, followed by no more than ℓ − 1 XOR operations (depending on the 
method for XOR-ing the intermediate products; note that the 𝑃𝑃𝑋𝑋𝑃𝑃𝑃𝑃 instruction can XOR 128-bit 
strings in a single 1-cycle invocation). To compute 𝑇𝑇, it suffices to compute 𝑀𝑀, and subsequently 
reduce it modulo 𝑃𝑃(𝑥𝑥). 

3.4.1 Estimating the computational cost of computing 𝑺𝑺 

Suppose that the instruction 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  has latency of 𝑃𝑃  cycles, and throughput 1  (the 
generalization to a different throughput is straightforward). Throughput 1 implies that the processor 
is capable of dispatching a 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 instruction every cycle (if data to feed the instruction is 
available). Code that computes 𝑀𝑀 can be written so that its flow interleaves (as much as it can) the 
operations and assures that data is available to feed 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 every cycle. Consequently, it is 
theoretically possible to compute ℓ polynomial multiplications (“× ") in ℓ + 𝑃𝑃 − 1 cycles. Since the 
processors that we discuss here can execute two 𝑃𝑃𝑋𝑋𝑃𝑃𝑃𝑃 operations in parallel to 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, we 
neglect the additional overhead of the 𝑋𝑋𝑃𝑃𝑃𝑃 operations required for the summation. We conclude 

that the rate at which the ℓ back-to-back “×” multiplications can be executed is ℓ+𝐿𝐿−1
8ℓ

 cycles per 

byte (C/B hereafter), which approaches 1
8
 C/B for large ℓ. Therefore, the best throughput for 

computing 𝑀𝑀, which we can expect, is 0.125 C/B. To illustrate, note that the latency of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
is 𝑃𝑃 = 7, and the throughput is 1, on the latest Intel architecture Codename Broadwell (BDW 

hereafter), so ℓ+𝐿𝐿−1
8ℓ

~0.148 C/B already for ℓ = 32. The results shown in Section 4, indicate that the 

theoretical performance can be approached in practice.  

3.4.2 Estimating the computational cost of computing 𝑺𝑺 

Deriving 𝑇𝑇 from 𝑀𝑀 requires one reduction step (modulo 𝑃𝑃(𝑥𝑥)). An efficient algorithm can carry out 
the reduction by means of 2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 invocations, and it is demonstrated (as a real code 
snippet) in Listing 1 of the Appendix. On BDW, this reduction algorithm consumes (only) ∼ 17 cycles.  

A code example for computing 𝑀𝑀 (and 𝑇𝑇) is provided in Listing 2 of the Appendix. 

3.4.3 Using the hash functions 

For a real application, it is reasonable to assume that an upper bound on the message length (thus 
on ℓ𝑚𝑚𝑚𝑚𝑚𝑚) is known in advance. Therefore, an application that needs to compute (efficiently) many 
hashes, can generate, as a setup phase, ℓ𝑚𝑚𝑚𝑚𝑚𝑚 keys, and hold them in memory for the computations. 
This involves generating, uniformly at random, 64 ⋅ ℓ𝑚𝑚𝑚𝑚𝑚𝑚 bits, but the cost is amortized over many 
hash computations. Often, the computed hash digests are ephemeral, so the keys do not need to be 
stored (to a disk) and retrieved in subsequent sessions. However, in cases they need to be stored, it 
is possible to fix one (randomly selected) seed (𝑠𝑠𝑙𝑙𝑙𝑙𝑚𝑚) and derive the keys by using some pseudo-
random function. One example is to define 𝐾𝐾𝑗𝑗 = 𝐴𝐴𝐸𝐸𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗). An alternative is to use powers (in the 
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field) of a single key, as in Remark 3, but this comes at the expense a larger bound (depending on 
ℓ𝑚𝑚𝑚𝑚𝑚𝑚) for the collision probability.  

4 Results 
To test the efficiency of our hash functions, we wrote optimized code and measured its performance 
on the following three latest Intel processors: Architecture Codenames Sandy Bridge (SNB), Haswell 
(HSW) and Broadwell (BDW). 

In particular, we investigated the effect on the observed performance of the hash function, of the 
different latency and throughput of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The relevant 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 latency/throughput 
values on these processors are: 14/8 cycles in SNB, 7/2 cycles in HSW, and 7/1 cycles in BDW. 

The performance results are reported in Table 1. It shows the performance of computing 𝑀𝑀 and 𝑇𝑇 for 
short (from 1 bytes) messages up to 4KB messages, where the performance is already at its 
asymptotic value. For large messages, we see that the performance approaches its theoretical limit. 
For example, the reported code achieves 0.13 C/B on BDW, where the theoretical limit is 0.125 C/B. 
The small gap between the achieved and the theoretical performance, can be attributed to 
overheads such as, for example, function calls, data movement/alignment, and pointers arithmetic. 
As expected, the performance on HSW and on SNB is almost linearly proportional to the 
PCLMULQDQ throughput. 

For long messages, we see that the difference between computing 𝑀𝑀 and 𝑇𝑇 is negligible. However, 
for short message, the reduction overhead is noticeable, and leads the different costs for computing 
𝑀𝑀 and versus computing 𝑇𝑇. 

To test the collision properties, we wired the function to the Google Murmurhash test harness in [4] 
(that tries to “challenge” hash functions). As expected, we did not find any collisions in a millions of 
tests. 
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Table 1. The performance of computing 𝑺𝑺 and 𝑻𝑻 on three different architectures. 

𝑙𝑙𝑏𝑏𝑙𝑙𝑡𝑡𝑙𝑙𝑠𝑠  1 5 10 16 20 32 64 128 1024 4096 

 Cycles 

SNB 𝑺𝑺 70 73 77 59 87 78 115 184 1,179 4,588 

 𝑻𝑻 46 49 53 39 61 59 97 167 1,161 4,571 

HSW 𝑺𝑺 50 54 54 18 57 22 29 45 270 1,053 

 𝑻𝑻 34 38 38 16 41 18 24 38 263 1,044 

BDW 𝑺𝑺 48 52 49 16 54 20 21 28 140 541 

 𝑻𝑻 34 38 36 14 40 17 19 27 139 541 

 C/B 

SNB 𝑺𝑺 69.68 14.58 7.72 3.68 4.34 2.43 1.79 1.44 1.15 1.12 

 𝑻𝑻 45.52 9.86 5.29 2.42 3.07 1.83 1.51 1.31 1.13 1.12 

HSW 𝑺𝑺 50.32 10.84 5.42 1.15 2.85 0.70 0.46 0.35 0.26 0.26 

 𝑻𝑻 34.32 7.66 3.84 1.01 2.07 0.58 0.38 0.30 0.26 0.26 

BDW 𝑺𝑺 48.32 10.46 4.93 1.01 2.70 0.63 0.33 0.22 0.14 0.13 

 𝑻𝑻 34.36 7.64 3.58 0.89 2.02 0.54 0.30 0.21 0.14 0.13 

 

5 Discussion 
This paper discussed two very simple hash functions that have two important properties: 1) They 
have a low collision probability; 2) On the modern processors, they have efficient software 
implementations. These hash functions can be useful in applications that manage databases. 

For comparison, we point out that it is possible to compute 32-bit and 64-bit CRC’s with 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, and to approach the theoretical performance limit of 0.125 C/B (for large messages). 
However, the collision rate characteristics of such hashing strategies are completely different from 
what we have for 𝑀𝑀 and 𝑇𝑇 (and depend on what is assumed on the messages). Indeed, testing 
verified that a CRC hashing strategy stumbles on collisions for the same sets of messages that were 
used for challenging 𝑀𝑀 and 𝑇𝑇 (where we found no collisions).  

The use of 𝑀𝑀 ∈ {0,1}128 (instead of 𝑇𝑇 ∈ {0,1}64) is more efficient for very short messages, and this 
can be considered as the preferable approach in such cases. This approach trades the improved 
performance with extra storage for longer hash digests. We point out that simply truncating 𝑀𝑀 to 64 
bits also gives a 64-bit hash. However, the bound on the collision probability is no longer guaranteed 
with this approach.  

We conclude with two options to achieve further optimization for short message. 

1. A single reduction step (see Listing 1 of the Appendix) consumes (on BDW) ∼ 17 cycles because 
the latency of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is 7 cycles. However, the effect of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃’s latency can be 
significantly reduced for cases that require computing hashes of multiple messages, hence 
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involving multiple reductions. This can be achieved by aggregating multiple hash computations 
(and reductions), and interleaving the operations in the software flow, to get efficient pipelined 
execution.  

2. Note that our padding method pads a message to the 8 bytes boundary, and then appends an 
additional quadword that encodes the message length. 

1. The use of the 𝑃𝑃𝐸𝐸𝐿𝐿 quadword can be avoided completely if an application requires 
hashing messages with a fixed length.  

2. For variable length short messages, we can “compress” the length encoding. For 
example, suppose that all the messages are shorter than 256 bytes (which is a 
reasonable assumption for databases). Then, the lengths of hashed messages can be 
encoded by a single byte. Now, consider a 5 bytes message. It will be padded with 2 
zero bytes and appended with a 1-byte length encoding. Hashing it will require only 1 
field multiplication, instead of 2 field multiplication that the current scheme involves. 
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APPENDIX  

Listing 1. Software flow for reducing a 𝟏𝟏𝟏𝟏𝟏𝟏-bit polynomial (string) modulo 𝑷𝑷(𝒙𝒙) = 𝒙𝒙𝟔𝟔𝟔𝟔 + 𝒙𝒙𝟔𝟔 + 𝒙𝒙𝟑𝟑 + 𝒙𝒙 + 𝟏𝟏. 
(note the assembly AT&T syntax, where the destination register is the rightmost operand)  

The flow uses two invocations of PCLMULQDQ. 𝑷𝑷(𝒙𝒙) is encoded as poly = 0x1b. 

vpclmulqdq $0x01, .Lpoly(%rip), ACC, T0 # reduction phase 1 
vpand  .Land(%rip), ACC, ACC 
vpxor  T0, ACC, ACC 
vpclmulqdq $0x01, .Lpoly(%rip), ACC, T0 # reduction phase  2 
vpand  .Land(%rip), ACC, ACC 
vpxor  T0, ACC, ACC 
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Listing 2. Software flow (C  intrinsics) for computing 𝑺𝑺. 

uint64_t UNIVERSAL_HASH_64_C(void *in, unsigned int len, uint64_t const_in){ 
__m128i ACC, DATA, T0; 
__m128i KEY; 
__m128i POLY = _mm_set_epi64x(0x00,0x1b); 
__m128i ANDMASK = _mm_set_epi64x(0, 0xffffffffffffffff); 
int len_save = len; 
uint64_t rest = 0; 
uint8_t *key_ptr = (uint8_t*)ks; 
ACC = _mm_setzero_si128(); 
 
while(len>=16) 
{ 
  DATA = _mm_loadu_si128(in); 
  KEY = _mm_loadu_si128((__m128i*)key_ptr); 
  ACC = _mm_xor_si128(ACC, _mm_clmulepi64_si128(DATA, KEY, 0x00)); 
  ACC = _mm_xor_si128(ACC, _mm_clmulepi64_si128(DATA, KEY, 0x11)); 
  in+=16; 
  key_ptr+=16; 
  len-=16; 
} 
if(len>=8) 
{ 
  DATA = _mm_cvtsi64_si128(*(uint64_t*)in); 
  KEY = _mm_cvtsi64_si128(*(uint64_t*)key_ptr); 
  ACC = _mm_xor_si128(ACC, _mm_clmulepi64_si128(DATA, KEY, 0x00)); 
  in+=8; 
  key_ptr+=8; 
  len-=8; 
} 
if(len)  
{ 
  uint8_t *r_ptr = (uint8_t*)&rest; 
  while(len--) 
  { 
    *r_ptr++ = *(uint8_t*)in++; 
  } 
  DATA = _mm_cvtsi64_si128(rest); 
  KEY = _mm_cvtsi64_si128(*(uint64_t*)key_ptr); 
  ACC = _mm_xor_si128(ACC, _mm_clmulepi64_si128(DATA, KEY, 0x00)); 
  key_ptr+=8; 
} 
DATA = _mm_cvtsi64_si128(len_save<<3); 
KEY = _mm_cvtsi64_si128(*(uint64_t*)key_ptr); 
ACC = _mm_xor_si128(ACC, _mm_clmulepi64_si128(DATA, KEY, 0x00)); 
T0 = _mm_clmulepi64_si128(ACC, POLY, 0x01); 
ACC = _mm_and_si128(ACC, ANDMASK); 
ACC = _mm_xor_si128(ACC, T0); 
T0 = _mm_clmulepi64_si128(ACC, POLY, 0x01); 
ACC = _mm_and_si128(ACC, ANDMASK); 
ACC = _mm_xor_si128(ACC, T0); 
return _mm_cvtsi128_si64(ACC) ^ const_in; 
} 
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