

VOLUME 3, ISSUE 1

Software methods for fast hashing

Shay Gueron
University of Haifa, Israel;

Intel Corporation, Israel Development Center, Israel
shay@math.haifa.ac.il

ABSTRACT

The carry-less multiplication instruction, PCLMULQDQ, is a relatively recent addition to the x86-64
instructions set. It multiplies two binary polynomials of degree63, using 𝐺𝐺𝐺𝐺(2) arithmetic, and
produces a polynomial of degree126, stored in a 128-bit register. PCLMULQDQ is intended to speed
up computations in𝐺𝐺𝐺𝐺(2128), which are used for AES-GCM authenticated encryption. We show here
how PCLMULQDQ can be used for efficient software implementation of a 64-bit hash function that
has a low collision probability. While a 64-bit hash is normally not a meaningful security primitive,
the discussed hashing algorithm can be leveraged for other usages that enjoy fast hashing, e.g.,
querying/maintaining databases. On the latest Intel architecture (Codename Broadwell), our hash
function can process messages at the rate of ∼ 0.13 cycles per byte.

Keywords: hashing, universal hash functions, fast software implementations, PCLMUQDQ.

1 Introduction
Intel architectures introduced instructions that accelerate AES (AES-NI), and supplemented them
with the carry-less multiplication instruction𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. It was motivated by the desire to
accelerate AES-GCM authenticated encryption, but other usages (e.g., CRC computations) were also
considered (see details on 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and its applications in [5, 6]).

In this paper, we are interested in a non-cryptographic hashing algorithm that has a low collision
probability, and can be computed efficiently. In particular, we seek a 64-bit hash. Hash functions
with a relatively short digest have various usages, and a leading one is searching/updating
databases. For such usages, the hashed messages are relatively short. Typical entries from database
columns are, for example, zip code, name, address, salary, age, employer, and inventory. The
associated message lengths are: 5 bytes (zip code), 10 bytes (telephone number), 32 bytes (city
name).

There are many known (and used) hash functions. Two examples are LOOKUP3 [3], and Google’s
CityHash [2] (additional examples can be looked up, for example, in [1]). To the best of our
knowledge, the collision probability for these hash functions is either verified empirically, and/or
depends on some assumptions on the properties of the messages.

In this paper, we discuss a 64-bit hash function that has a provable low collision probability, and can
be computed efficiently on modern computer platforms.

DOI: 10.14738/tnc.31.918
Publication Date: 26th February 2015
URL: http://dx.doi.org/10.14738/tnc.31.918

Shay Gueron; Software methods for fast hashing, Transactions on Networks and Communications, Volume 3
No 1, Feb (2015); pp: 85-92

2 Preliminaries and notation
Let 𝑛𝑛 be a positive integer, denote𝑠𝑠 = 𝑛𝑛 − 1, and let 𝐺𝐺 = 𝐺𝐺𝐺𝐺(2𝑛𝑛)/𝑃𝑃(𝑥𝑥) be the finite field with 2𝑛𝑛
elements, represented via the irreducible polynomial 𝑃𝑃(𝑥𝑥) (of degree𝑛𝑛). A field element 𝐴𝐴 ∈ 𝐺𝐺 is a
binary polynomial of degree𝑠𝑠, 𝐴𝐴 = 𝐴𝐴(𝑥𝑥) = ∑ 𝑎𝑎𝑗𝑗𝑠𝑠

𝑗𝑗=0 𝑥𝑥𝑗𝑗 where 𝑎𝑎𝑗𝑗 ∈ {0,1}. We also view 𝐴𝐴 as the string
of 𝑛𝑛 bits, 𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠−1 …𝑎𝑎0 (by convention 𝑎𝑎𝑠𝑠 is at the leftmost position). For𝐴𝐴,𝐵𝐵 ∈ 𝐺𝐺 , 𝐴𝐴 = 𝐴𝐴(𝑥𝑥) =
∑ 𝑎𝑎𝑗𝑗𝑠𝑠
𝑗𝑗=0 𝑥𝑥𝑗𝑗 and𝐵𝐵 = 𝐵𝐵(𝑥𝑥) = ∑ 𝑏𝑏𝑗𝑗𝑠𝑠

𝑗𝑗=0 𝑥𝑥𝑗𝑗, define addition and multiplication as follows:

1. Addition (+): 𝐶𝐶 = 𝐴𝐴 + 𝐵𝐵 is the polynomial𝐶𝐶 = 𝐶𝐶(𝑥𝑥) = ∑ ��𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗� 𝑚𝑚𝑚𝑚𝑚𝑚 2 � 𝑥𝑥𝑗𝑗𝑠𝑠
𝑗𝑗=0 . The string

representation of 𝐶𝐶 is the bitwise XOR𝐴𝐴⊕𝐵𝐵.

2. Multiplication (⊗): 𝐶𝐶(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) ⊗𝐵𝐵(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) × 𝐵𝐵(𝑥𝑥) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃(𝑥𝑥), where “×” denotes
polynomial multiplication with coefficients added/multiplied in 𝐺𝐺𝐺𝐺(2). Specifically, if
𝑇𝑇(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) × 𝐵𝐵(𝑥𝑥), then 𝑇𝑇(𝑥𝑥) is the binary polynomial of degree 2𝑠𝑠, with coefficients 𝑡𝑡𝑖𝑖
satisfying 𝑡𝑡𝑖𝑖 = �∑ 𝑎𝑎𝑗𝑗𝑏𝑏𝑖𝑖−𝑗𝑗𝑖𝑖

𝑗𝑗=0 � 𝑚𝑚𝑚𝑚𝑚𝑚 2 for 0 ≤ 𝑖𝑖 ≤ 𝑠𝑠 and 𝑡𝑡𝑖𝑖 = �∑ 𝑎𝑎𝑗𝑗𝑏𝑏𝑖𝑖−𝑗𝑗𝑠𝑠
𝑗𝑗=𝑖𝑖−𝑠𝑠 � 𝑚𝑚𝑚𝑚𝑚𝑚 2 for

𝑠𝑠 < 𝑖𝑖 ≤ 2𝑠𝑠.

When 𝑛𝑛 = 8𝑚𝑚, an element 𝐹𝐹 = 𝐹𝐹(𝑥𝑥) = ∑ 𝑓𝑓𝑗𝑗𝑠𝑠
𝑗𝑗=0 𝑥𝑥𝑗𝑗 ∈ 𝐺𝐺 can be represented in a compact form, by a

sequence of 𝑚𝑚 bytes 𝐵𝐵𝑚𝑚−1𝐵𝐵𝑚𝑚−2 …𝐵𝐵0, and written in hexadecimal notation.

Hereafter, we focus on 𝑛𝑛 = 64 and choose the irreducible polynomial 𝑃𝑃(𝑥𝑥) = 𝑥𝑥64 + 𝑥𝑥4 + 𝑥𝑥3 + 𝑥𝑥 +
1. We call a 64-bit string a “quadword”.

To illustrate, we offer the following example.

Example 1: Use 𝑛𝑛 = 64, 𝑃𝑃(𝑥𝑥) = 𝑥𝑥64 + 𝑥𝑥4 + 𝑥𝑥3 + 𝑥𝑥 + 1.
The element 𝐹𝐹 = 𝑥𝑥63 + 𝑥𝑥4 + 𝑥𝑥3 + 𝑥𝑥 + 1 is written in hexadecimal (compact) notation as the 8
bytes string 800000000000001𝐵𝐵. If 𝐴𝐴 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0000000𝐹𝐹, 𝐵𝐵 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0000010𝐸𝐸, then
𝐴𝐴 × 𝐵𝐵 = 55555555555555𝐴𝐴𝐴𝐴000000𝐹𝐹𝐹𝐹00000𝐹𝐹5𝐴𝐴, and 𝐴𝐴⊗𝐵𝐵 = 000000𝐹𝐹𝐹𝐹00000615.

2.1 The instruction 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷
The instruction 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 operates on two 128-bit registers e.g., 𝑥𝑥𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥𝑥𝑥2 (the registers’
names are arbitrary, and the second operand can also be in a specified in a memory location). It
executes polynomial multiplication of two polynomials of degree 63, and writes the result (which is
polynomial of degree 126) into a third 128-bit register (see precise definitions in [5]). An
“immediate” byte selects the two 64-bit halves from 𝑥𝑥𝑥𝑥𝑥𝑥1 and 𝑥𝑥𝑥𝑥𝑥𝑥2, which are to be multiplied.
For example, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  𝑥𝑥𝑥𝑥𝑥𝑥0,  𝑥𝑥𝑥𝑥𝑥𝑥1,  𝑥𝑥𝑥𝑥𝑥𝑥2,   𝑖𝑖𝑖𝑖𝑖𝑖 = 0𝑥𝑥10 operates on 𝑥𝑥𝑥𝑥𝑥𝑥1[127: 64]
(top half of 𝑥𝑥𝑥𝑥𝑥𝑥1) and on 𝑥𝑥𝑥𝑥𝑥𝑥2[63: 0] (bottom half of 𝑥𝑥𝑥𝑥𝑥𝑥2), writing their carry-less product
into 𝑥𝑥𝑥𝑥𝑥𝑥0. With 𝐴𝐴,𝐵𝐵 from Example 1 (embedded in two 𝑥𝑥𝑥𝑥𝑥𝑥 registers),
invoking 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  𝑥𝑥𝑥𝑥𝑥𝑥0,  𝑥𝑥𝑥𝑥𝑥𝑥1,  𝑥𝑥𝑥𝑥𝑥𝑥2,   0𝑥𝑥01 with the registers contents
𝑥𝑥𝑥𝑥𝑥𝑥1 = 0000000000000000𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0000000𝐹𝐹and
𝑥𝑥𝑥𝑥𝑥𝑥2 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹0000010𝐸𝐸0000000000000000, results in the value
55555555555555𝐴𝐴𝐴𝐴000000𝐹𝐹𝐹𝐹00000𝐹𝐹5𝐴𝐴 in 𝑥𝑥𝑥𝑥𝑥𝑥0.

3 Efficient hash functions with 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷
To define the message space, over which we use 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and carry out computations in
𝐺𝐺𝐺𝐺(264), we need each message to be a string of quadwords. To this end, we pad messages of
arbitrary lengths (in bytes) to the 8 bytes boundary, with zero bytes. In addition, to distinguish
messages of variable lengths, we also append a quadword that encodes the message’s length. The
exact procedure is defined in the following subsections.

URL: http://dx.doi.org/10.14738/tnc.31.918
 86

http://dx.doi.org/10.14738/tnc.31.

Transact ions on Networks and Communications; Volume 3, Issue 1, February 2015

3.1 Message padding and length encoding
Consider a message 𝑀𝑀𝑀𝑀𝑀𝑀 whose length, in bytes, is 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, and write 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 8𝑢𝑢 + 𝑣𝑣, where
0 ≤ 𝑣𝑣 < 8. We encode 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 as a 64-bit quadword, denoted 𝐿𝐿𝐿𝐿𝐿𝐿. For example, if 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 4096,
then 𝐿𝐿𝐿𝐿𝐿𝐿 = 0000000000001000 (in hexadecimal notation).

If 𝑣𝑣 > 0, we pad 𝑀𝑀𝑀𝑀𝑀𝑀 up to the 8 bytes boundary, with 8 − 𝑣𝑣 zero bytes. After the (conditional)
padding, the padded message consists of ℓ1 = ⌈𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙/8⌉ = 𝑢𝑢 + 1 quadwords, say 𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋ℓ1 (concatenated quadwords, in this order). Finally, we set

𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀, 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋ℓ1 ,𝐿𝐿𝐿𝐿𝐿𝐿

𝑀𝑀 consists of ℓ = ℓ1 + 1 quadwords. We call 𝑀𝑀 the “formatted message”.

Example 2: Take a 9 bytes message 𝑀𝑀𝑀𝑀𝑀𝑀 = 090807060504030201. Here, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 9 = 8 ⋅ 1 + 1.
This implies that ℓ1 = ⌈9/8⌉ = 2, and 𝑋𝑋1 = 0908070605040302, 𝑋𝑋2 = 0100000000000000. Also,
𝐿𝐿𝐿𝐿𝐿𝐿 = 0000000000000009. Therefore,
𝑀𝑀𝑀𝑀𝑀𝑀 = 09080706050403020100000000000000, and the formatter message is 𝑀𝑀 =
𝑀𝑀𝑀𝑀𝑀𝑀,𝐿𝐿𝐿𝐿𝐿𝐿 = 0908070605040302, 0100000000000000, 0000000000000009 (ℓ =3 quadwords).

3.2 The two hash functions
Let ℓ𝑚𝑚𝑚𝑚𝑚𝑚 be a fixed value, and assume that the message space is the set of formatted messages of
length ℓ ≤ ℓ𝑚𝑚𝑚𝑚𝑚𝑚 quadwords. Let 𝑀𝑀𝑀𝑀𝑀𝑀 be a message and let 𝑀𝑀 be its formatted message, consisting
of ℓ quadwords. Denote 𝑀𝑀 = 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋ℓ . Consider a key 𝐾𝐾 that consists of ℓ𝑚𝑚𝑚𝑚𝑚𝑚 quadwords
𝐾𝐾 = 𝐾𝐾1,𝐾𝐾2, … ,𝐾𝐾ℓ𝑚𝑚𝑚𝑚𝑚𝑚 (each 𝐾𝐾𝑗𝑗 is a quadword). We define two hash functions (𝑆𝑆,𝑇𝑇) for 𝑀𝑀, using the
key 𝐾𝐾, as follows.

 𝑆𝑆 = 𝑆𝑆(𝑀𝑀,𝐾𝐾) = ∑ 𝑋𝑋𝑗𝑗ℓ
𝑗𝑗=1 × 𝐾𝐾𝑗𝑗  (𝑆𝑆 ∈ {0,1}128) (1)

𝑇𝑇 = 𝑇𝑇(𝑀𝑀,𝐾𝐾) = ∑ 𝑋𝑋𝑗𝑗ℓ
𝑗𝑗=1 ⊗𝐾𝐾𝑗𝑗  (𝑇𝑇 ∈ {0,1}64) (2)

The function 𝑇𝑇 is the well-known “inner product” XOR-universal hash function, defined over
(𝐺𝐺𝐺𝐺(264))ℓ𝑚𝑚𝑚𝑚𝑚𝑚. Note that 𝑇𝑇 = 𝑆𝑆 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃(𝑥𝑥).

3.3 Properties of 𝑺𝑺 and 𝑻𝑻
Proposition 1. Suppose that the 𝐾𝐾ℓ𝑚𝑚𝑚𝑚𝑚𝑚 quadword keys 𝐾𝐾1,𝐾𝐾2, … ,𝐾𝐾ℓ𝑚𝑚𝑚𝑚𝑚𝑚 are selected independently,
uniformly at random, from {0,1}64. Let 𝑀𝑀 be a (formatted) message of ℓ ≤ ℓ𝑚𝑚𝑚𝑚𝑚𝑚 quadwords (not
all of them are zero). Then,

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑆𝑆(𝑀𝑀,𝐾𝐾) = 0128) < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇(𝑀𝑀,𝐾𝐾) = 064) = 1
264

 (3)

Remark 1. 𝑇𝑇 is an “inner product” universal hash function (technically, the family of functions
𝑇𝑇 (𝑀𝑀,𝐾𝐾) is universal). Proposition 1 is a well-known property. The use of the quadword 𝐿𝐿𝐿𝐿𝐿𝐿, to
account for the message length, is essential in order to ensure “suffix-freeness”. To illustrate, note
that without appending 𝐿𝐿𝐿𝐿𝐿𝐿, a message of a single quadword 𝑄𝑄 would have the same digest as the
message of 2 quadwords 0000000000000000,𝑄𝑄 . This does not happen for the formatted
messages. Since 𝑇𝑇 = 𝑆𝑆 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃(𝑥𝑥), it follows that 𝑆𝑆 = 0 ⇒  𝑇𝑇 = 0, so the number of messages that
zero 𝑆𝑆 is smaller than the number of messages that zero 𝑇𝑇.

Remark 2. Due to the linearity of 𝑆𝑆 (and 𝑇𝑇), and to Proposition 1, the probability that two different

messages 𝑀𝑀1, 𝑀𝑀2 have the save value 𝑇𝑇 = 𝑇𝑇𝑇𝑇(𝑀𝑀,𝐾𝐾) is 1
264

.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 87

Shay Gueron; Software methods for fast hashing, Transactions on Networks and Communications, Volume 3
No 1, Feb (2015); pp: 85-92

Remark 3. Suppose that 𝐾𝐾0 is chosen uniformly at random from {0,1}64 , and define 𝐾𝐾𝑗𝑗 =
(𝐾𝐾0)𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃(𝑥𝑥), 𝑗𝑗 = 1, … , ℓ. Then, for a nonzero message 𝑀𝑀 of length ℓ quadwords, we have

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑆𝑆(𝑀𝑀,𝐾𝐾) = 064) ≤
ℓ

264

This bound is obtained by the following argument. 𝑆𝑆 is an evaluation of a single variable polynomial
in the field , whose degree is ℓ (𝐾𝐾0 is it variable). As such, it can have at most ℓ roots in the field.

3.4 The computational cost of computing 𝑺𝑺 and 𝑻𝑻
Software running on processors that support 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , can compute 𝑆𝑆 by means of ℓ
invocations of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, followed by no more than ℓ − 1 XOR operations (depending on the
method for XOR-ing the intermediate products; note that the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 instruction can XOR 128-bit
strings in a single 1-cycle invocation). To compute 𝑇𝑇, it suffices to compute 𝑆𝑆, and subsequently
reduce it modulo 𝑃𝑃(𝑥𝑥).

3.4.1 Estimating the computational cost of computing 𝑺𝑺

Suppose that the instruction 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 has latency of 𝐿𝐿 cycles, and throughput 1 (the
generalization to a different throughput is straightforward). Throughput 1 implies that the processor
is capable of dispatching a 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 instruction every cycle (if data to feed the instruction is
available). Code that computes 𝑆𝑆 can be written so that its flow interleaves (as much as it can) the
operations and assures that data is available to feed 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 every cycle. Consequently, it is
theoretically possible to compute ℓ polynomial multiplications (“× ") in ℓ + 𝐿𝐿 − 1 cycles. Since the
processors that we discuss here can execute two 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 operations in parallel to 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, we
neglect the additional overhead of the 𝑋𝑋𝑋𝑋𝑋𝑋 operations required for the summation. We conclude

that the rate at which the ℓ back-to-back “×” multiplications can be executed is ℓ+𝐿𝐿−1
8ℓ

 cycles per

byte (C/B hereafter), which approaches 1
8
 C/B for large ℓ. Therefore, the best throughput for

computing 𝑆𝑆, which we can expect, is 0.125 C/B. To illustrate, note that the latency of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
is 𝐿𝐿 = 7, and the throughput is 1, on the latest Intel architecture Codename Broadwell (BDW

hereafter), so ℓ+𝐿𝐿−1
8ℓ

~0.148 C/B already for ℓ = 32. The results shown in Section 4, indicate that the

theoretical performance can be approached in practice.

3.4.2 Estimating the computational cost of computing 𝑺𝑺

Deriving 𝑇𝑇 from 𝑆𝑆 requires one reduction step (modulo 𝑃𝑃(𝑥𝑥)). An efficient algorithm can carry out
the reduction by means of 2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 invocations, and it is demonstrated (as a real code
snippet) in Listing 1 of the Appendix. On BDW, this reduction algorithm consumes (only) ∼ 17 cycles.

A code example for computing 𝑆𝑆 (and 𝑇𝑇) is provided in Listing 2 of the Appendix.

3.4.3 Using the hash functions

For a real application, it is reasonable to assume that an upper bound on the message length (thus
on ℓ𝑚𝑚𝑚𝑚𝑚𝑚) is known in advance. Therefore, an application that needs to compute (efficiently) many
hashes, can generate, as a setup phase, ℓ𝑚𝑚𝑚𝑚𝑚𝑚 keys, and hold them in memory for the computations.
This involves generating, uniformly at random, 64 ⋅ ℓ𝑚𝑚𝑚𝑚𝑚𝑚 bits, but the cost is amortized over many
hash computations. Often, the computed hash digests are ephemeral, so the keys do not need to be
stored (to a disk) and retrieved in subsequent sessions. However, in cases they need to be stored, it
is possible to fix one (randomly selected) seed (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and derive the keys by using some pseudo-
random function. One example is to define 𝐾𝐾𝑗𝑗 = 𝐴𝐴𝐴𝐴𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗). An alternative is to use powers (in the

URL: http://dx.doi.org/10.14738/tnc.31.918
 88

http://dx.doi.org/10.14738/tnc.31.

Transact ions on Networks and Communications; Volume 3, Issue 1, February 2015

field) of a single key, as in Remark 3, but this comes at the expense a larger bound (depending on
ℓ𝑚𝑚𝑚𝑚𝑚𝑚) for the collision probability.

4 Results
To test the efficiency of our hash functions, we wrote optimized code and measured its performance
on the following three latest Intel processors: Architecture Codenames Sandy Bridge (SNB), Haswell
(HSW) and Broadwell (BDW).

In particular, we investigated the effect on the observed performance of the hash function, of the
different latency and throughput of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The relevant 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 latency/throughput
values on these processors are: 14/8 cycles in SNB, 7/2 cycles in HSW, and 7/1 cycles in BDW.

The performance results are reported in Table 1. It shows the performance of computing 𝑆𝑆 and 𝑇𝑇 for
short (from 1 bytes) messages up to 4KB messages, where the performance is already at its
asymptotic value. For large messages, we see that the performance approaches its theoretical limit.
For example, the reported code achieves 0.13 C/B on BDW, where the theoretical limit is 0.125 C/B.
The small gap between the achieved and the theoretical performance, can be attributed to
overheads such as, for example, function calls, data movement/alignment, and pointers arithmetic.
As expected, the performance on HSW and on SNB is almost linearly proportional to the
PCLMULQDQ throughput.

For long messages, we see that the difference between computing 𝑆𝑆 and 𝑇𝑇 is negligible. However,
for short message, the reduction overhead is noticeable, and leads the different costs for computing
𝑆𝑆 and versus computing 𝑇𝑇.

To test the collision properties, we wired the function to the Google Murmurhash test harness in [4]
(that tries to “challenge” hash functions). As expected, we did not find any collisions in a millions of
tests.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 89

Shay Gueron; Software methods for fast hashing, Transactions on Networks and Communications, Volume 3
No 1, Feb (2015); pp: 85-92

Table 1. The performance of computing 𝑺𝑺 and 𝑻𝑻 on three different architectures.

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1 5 10 16 20 32 64 128 1024 4096

 Cycles

SNB 𝑺𝑺 70 73 77 59 87 78 115 184 1,179 4,588

 𝑻𝑻 46 49 53 39 61 59 97 167 1,161 4,571

HSW 𝑺𝑺 50 54 54 18 57 22 29 45 270 1,053

 𝑻𝑻 34 38 38 16 41 18 24 38 263 1,044

BDW 𝑺𝑺 48 52 49 16 54 20 21 28 140 541

 𝑻𝑻 34 38 36 14 40 17 19 27 139 541

 C/B

SNB 𝑺𝑺 69.68 14.58 7.72 3.68 4.34 2.43 1.79 1.44 1.15 1.12

 𝑻𝑻 45.52 9.86 5.29 2.42 3.07 1.83 1.51 1.31 1.13 1.12

HSW 𝑺𝑺 50.32 10.84 5.42 1.15 2.85 0.70 0.46 0.35 0.26 0.26

 𝑻𝑻 34.32 7.66 3.84 1.01 2.07 0.58 0.38 0.30 0.26 0.26

BDW 𝑺𝑺 48.32 10.46 4.93 1.01 2.70 0.63 0.33 0.22 0.14 0.13

 𝑻𝑻 34.36 7.64 3.58 0.89 2.02 0.54 0.30 0.21 0.14 0.13

5 Discussion
This paper discussed two very simple hash functions that have two important properties: 1) They
have a low collision probability; 2) On the modern processors, they have efficient software
implementations. These hash functions can be useful in applications that manage databases.

For comparison, we point out that it is possible to compute 32-bit and 64-bit CRC’s with
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, and to approach the theoretical performance limit of 0.125 C/B (for large messages).
However, the collision rate characteristics of such hashing strategies are completely different from
what we have for 𝑆𝑆 and 𝑇𝑇 (and depend on what is assumed on the messages). Indeed, testing
verified that a CRC hashing strategy stumbles on collisions for the same sets of messages that were
used for challenging 𝑆𝑆 and 𝑇𝑇 (where we found no collisions).

The use of 𝑆𝑆 ∈ {0,1}128 (instead of 𝑇𝑇 ∈ {0,1}64) is more efficient for very short messages, and this
can be considered as the preferable approach in such cases. This approach trades the improved
performance with extra storage for longer hash digests. We point out that simply truncating 𝑆𝑆 to 64
bits also gives a 64-bit hash. However, the bound on the collision probability is no longer guaranteed
with this approach.

We conclude with two options to achieve further optimization for short message.

1. A single reduction step (see Listing 1 of the Appendix) consumes (on BDW) ∼ 17 cycles because
the latency of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is 7 cycles. However, the effect of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃’s latency can be
significantly reduced for cases that require computing hashes of multiple messages, hence

URL: http://dx.doi.org/10.14738/tnc.31.918
 90

http://dx.doi.org/10.14738/tnc.31.

Transact ions on Networks and Communications; Volume 3, Issue 1, February 2015

involving multiple reductions. This can be achieved by aggregating multiple hash computations
(and reductions), and interleaving the operations in the software flow, to get efficient pipelined
execution.

2. Note that our padding method pads a message to the 8 bytes boundary, and then appends an
additional quadword that encodes the message length.

1. The use of the 𝐿𝐿𝐿𝐿𝐿𝐿 quadword can be avoided completely if an application requires
hashing messages with a fixed length.

2. For variable length short messages, we can “compress” the length encoding. For
example, suppose that all the messages are shorter than 256 bytes (which is a
reasonable assumption for databases). Then, the lengths of hashed messages can be
encoded by a single byte. Now, consider a 5 bytes message. It will be padded with 2
zero bytes and appended with a 1-byte length encoding. Hashing it will require only 1
field multiplication, instead of 2 field multiplication that the current scheme involves.

REFERENCES

[1]. Choosing a Good Hash Function, http://research.neustar.biz/2011/12/05/choosing-a-good-hash-function-
part-1/ http://research.neustar.biz/tag/city-hash.

[2]. CityHash, https://code.google.com/p/cityhash.

[3]. R. Jenkins, http://burtleburtle.net/bob/c/frog.c.

[4]. SMHasher MurmurHash, https://code.google.com/p/smhasher.

[5]. S. Gueron and M. E. Kounavis. Intel Carry-Less Multiplication and Its Usage for Computing The GCM Mode,
Rev 2.01. Intel Software Network. http://software.intel.com/sites/default/files/article/165685/clmul-wp-
rev-2.01-2012-09-21.pdf.

[6]. S. Gueron and M. E. Kounavis. Efficient Implementation of the Galois Counter Mode Using a Carry-less
Multiplier and a Fast Reduction Algorithm. Information Processing Letters 110: 549–-553 (2010).

APPENDIX

Listing 1. Software flow for reducing a 𝟏𝟏𝟏𝟏𝟏𝟏-bit polynomial (string) modulo 𝑷𝑷(𝒙𝒙) = 𝒙𝒙𝟔𝟔𝟔𝟔 + 𝒙𝒙𝟒𝟒 + 𝒙𝒙𝟑𝟑 + 𝒙𝒙 + 𝟏𝟏.
(note the assembly AT&T syntax, where the destination register is the rightmost operand)

The flow uses two invocations of PCLMULQDQ. 𝑷𝑷(𝒙𝒙) is encoded as poly = 0x1b.

vpclmulqdq $0x01, .Lpoly(%rip), ACC, T0 # reduction phase 1
vpand .Land(%rip), ACC, ACC
vpxor T0, ACC, ACC
vpclmulqdq $0x01, .Lpoly(%rip), ACC, T0 # reduction phase 2
vpand .Land(%rip), ACC, ACC
vpxor T0, ACC, ACC

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 91

http://research.neustar.biz/tag/city-hash
https://code.google.com/p/cityhash
http://burtleburtle.net/bob/c/frog.c
https://code.google.com/p/smhasher/
http://software.intel.com/sites/default/files/article/165685/clmul-wp-rev-2.01-2012-09-21.pdf
http://software.intel.com/sites/default/files/article/165685/clmul-wp-rev-2.01-2012-09-21.pdf

Shay Gueron; Software methods for fast hashing, Transactions on Networks and Communications, Volume 3
No 1, Feb (2015); pp: 85-92

Listing 2. Software flow (C intrinsics) for computing 𝑺𝑺.

uint64_t UNIVERSAL_HASH_64_C(void *in, unsigned int len, uint64_t const_in){
__m128i ACC, DATA, T0;
__m128i KEY;
__m128i POLY = _mm_set_epi64x(0x00,0x1b);
__m128i ANDMASK = _mm_set_epi64x(0, 0xffffffffffffffff);
int len_save = len;
uint64_t rest = 0;
uint8_t *key_ptr = (uint8_t*)ks;
ACC = _mm_setzero_si128();

while(len>=16)
{
 DATA = _mm_loadu_si128(in);
 KEY = _mm_loadu_si128((__m128i*)key_ptr);
 ACC = _mm_xor_si128(ACC, _mm_clmulepi64_si128(DATA, KEY, 0x00));
 ACC = _mm_xor_si128(ACC, _mm_clmulepi64_si128(DATA, KEY, 0x11));
 in+=16;
 key_ptr+=16;
 len-=16;
}
if(len>=8)
{
 DATA = _mm_cvtsi64_si128(*(uint64_t*)in);
 KEY = _mm_cvtsi64_si128(*(uint64_t*)key_ptr);
 ACC = _mm_xor_si128(ACC, _mm_clmulepi64_si128(DATA, KEY, 0x00));
 in+=8;
 key_ptr+=8;
 len-=8;
}
if(len)
{
 uint8_t *r_ptr = (uint8_t*)&rest;
 while(len--)
 {
 *r_ptr++ = *(uint8_t*)in++;
 }
 DATA = _mm_cvtsi64_si128(rest);
 KEY = _mm_cvtsi64_si128(*(uint64_t*)key_ptr);
 ACC = _mm_xor_si128(ACC, _mm_clmulepi64_si128(DATA, KEY, 0x00));
 key_ptr+=8;
}
DATA = _mm_cvtsi64_si128(len_save<<3);
KEY = _mm_cvtsi64_si128(*(uint64_t*)key_ptr);
ACC = _mm_xor_si128(ACC, _mm_clmulepi64_si128(DATA, KEY, 0x00));
T0 = _mm_clmulepi64_si128(ACC, POLY, 0x01);
ACC = _mm_and_si128(ACC, ANDMASK);
ACC = _mm_xor_si128(ACC, T0);
T0 = _mm_clmulepi64_si128(ACC, POLY, 0x01);
ACC = _mm_and_si128(ACC, ANDMASK);
ACC = _mm_xor_si128(ACC, T0);
return _mm_cvtsi128_si64(ACC) ^ const_in;
}

URL: http://dx.doi.org/10.14738/tnc.31.918
 92

http://dx.doi.org/10.14738/tnc.31.

	Software methods for fast hashing
	ABSTRACT
	1 Introduction
	2 Preliminaries and notation
	2.1 The instruction 𝑷𝑪𝑳𝑴𝑼𝑳𝑸𝑫𝑸

	3 Efficient hash functions with 𝑷𝑪𝑳𝑴𝑼𝑳𝑸𝑫𝑸
	3.1 Message padding and length encoding
	3.2 The two hash functions
	3.3 Properties of 𝑺 and 𝑻
	3.4 The computational cost of computing 𝑺 and 𝑻
	3.4.1 Estimating the computational cost of computing 𝑺
	3.4.2 Estimating the computational cost of computing 𝑺
	3.4.3 Using the hash functions

	4 Results
	5 Discussion
	References
	Appendix

