
DOI: 10.14738/tnc.75.7292
Publication Date: 17th November 2019
URL: http://dx.doi.org/10.14738/tnc.75.7292

VOLUME 7, NO . 5
ISSN: 2054 -7420

SOCIETY FOR SCIENCE AND EDUCATION

UNITED KINGDOM

TR A N S A CT I O N S ON

N E T W O R KS A N D CO M M U N I C AT I O NSTNC

Implementation and Verification of High Data Availability on

Database

Yen-Jen Chen , Han Tsai
Ming Chi University of Technology, Taiwan, R.O.C.

yjchen@mail.mcut.edu.tw; alsontsai@gmail.com

ABSTRACT

This study provides a low-cost and high-availability database management system architecture for general

Small/Medium Enterprises (SMEs) to backup database data access. To prove that the proposed

architecture can support the high availability of the database, and can effectively avoid data loss in

memory caused by failovers, this study applies the main test method of powering off the virtual machine

and verified three cases on two commonly used databases MySQL and PostgreSQL: Case 1 proves that

this study combines the database native disaster recovery mechanism to effectively achieve high

availability of the database. Case 2 proves that it effectively controls the WAL (Write Ahead Log) of the

PostgreSQL database and Redo log mechanism of the MySQL database, so that data correctness is

maintained during failovers. Case 3 proves that it can analyze and control the timing of the database in

writing data in the cache memory to the hard disk. This study also designed a failover process to avoid

data loss during failovers due to no enough time to write the data in the cache memory back to the hard

disk; and finally to realize the high-availability of the database management system architecture in a

practical way.

Keywords: Database, DBMS, High Availability, Failover, DRBD

1 Introduction

1.1 Motivation

Information technology infrastructure is an indispensable part of the information environment of modern

SMEs. The database (DB) for storing enterprise operational data is the most important part of the

information environment because it relates to the lifeblood of a company. In the course of business

operation, in order to avoid business interruption, enterprises adopt a backup mechanism so that the

network and system services in the information environment will be uninterrupted. Database service is

no exception. However, during the operation of the backup mechanism of the database, since the

database software has a mechanism for storing data in the memory to enhance the operational efficiency

of the system; this mechanism will also lead to data loss due to the switching of the database server while

the backup mechanism is in operation.

Therefore, the subject of this study is data loss caused by the operation of database backup mechanism,

and we discuss about high data availability mechanism on database management systems.

mailto:yjchen@mail.mcut.edu.tw
mailto:alsontsai@gmail.com

Yen-Jen Chen , Han Tsai; Implementation and Verification of High Data Availability on Database, Transactions on Networks
and Communications, Volume 7 No. 5, October (2019); pp: 1-12

http://dx.doi.org/10.14738/tnc.75.7292 2

1.2 Objective

In the past, the high availability mechanism of the database was divided into server parts and database

segments, and the two segments need to be separately constructed and maintained. Considering the data

consistency of the database, it is necessary to modify the internal source code or use the database

communication protocol. In order to achieve this effect, in addition to a certain understanding of the

source code, it is necessary to do a certain degree of secondary development, and the complexity is

relatively improved. Nowadays, the database of the high availability mechanism is not commonly. One

architecture can only achieve a database high availability mechanism for a database, and it needs to pay

a high amount of software authorization. Therefore, the architecture flexibility and scalability of the

enterprise at this part are in limited This study uses the Clustering and Virtualization technologies of open

source licensed Linux to achieve a system platform of high availability, scalability, flexibility, and efficiency,

in addition to support commercial software operations for business operations. Clustering is mean that at

least two homogeneous devices share a service, and the devices can support each other or share the

work. Clustering technology can make the platform have high availability and scalability; On the other

hand, Virtualization refers to virtualizing a physical machine into multiple virtual machines, so that

hardware resources can be fully utilized to achieve so-called efficiency. Since virtual machines can be

transferred between different physical machines, managers can flexibly schedule them. Thus achieving

the so-called flexibility. According to DB-Engines, the first global database ranking list [1] in the second

half of 2018 was released. The top 4 were found to be 1. "Oracle", 2. "MySQL", 3. "Microsoft SQL Server",

and 4. "PostgreSQL". This study uses two high market share databases: PostgreSQL and MySQL to discuss

the data high availability mechanism of the database system.

1.3 Organization

This paper is organized as follows. In the second section, the research is explained on the high availability

mechanism of the database in recent years. In section 3, the system architecture and research method of

proposed scheme is presented. Section 4 shows the analysis of the experimental results and three cases

of verifying that the high availability architecture is indeed implemented. Finally, section 5 gives the

conclusions of this study.

2 Background

In recent years, among studies on the high availability mechanism of database, C. Jaiswal et al. [2]

proposed a mechanism that regardless of whether the backup mechanism is activated, the database

system will complete the write operation and write the data to the disk. That mechanism is called Always

Ahead Processing (AAP). With this mechanism, high availability on database management system is

achieved; RH de Souza et al. [3] proposed an architectural model for assessing the reliability, availability,

and maintainability of decentralized databases. The model is based on an approach similar to service

quality, and provides database services based on the Service Level Agreement (SLA), to increase the

availability of the database.

The architecture design in this study has a high availability mechanism, so there will be two DBMS servers,

and the servers are connected to the storage via the ISCSI (Internet Small Computer System Interface)

[4][5] protocol. All data is uniformly stored in the storage unit to maintain data consistency. However, in

order to back up the data, the data is synchronized to another ISCSI storage by means of DRBD (Distributed

Replicated Block Device) [6] distributed mirror. Backup between the two DBMS systems is achieved

http://dx.doi.org/10.14738/tnc.75.7292

Transact ions on Networks and Communica tions; Volume 7, No. 5, October 2019

Copyr ight © Socie ty for Sc ience a nd Educat ion, Uni ted Kingdom 3

through the connection management software Keepalived [7] for the failover function [8][9]. Relevant

information such as technologies, systems, and open source software used are as follows:

2.1 DRBD

DRBD (Distributed Replicated Block Device) is based on a distributed storage system on the Linux platform.

It is also a technology for instantly synchronizing the data content of the inter-host block storage device

through the network. It can be regarded as a kind of network RAID1, that can use storage devices on two

independent server hosts through the network as RAID1. Management can be done via the two hosts,

and the two sides of RAID1 data are placed respectively on the storage device of these two hosts.

Therefore, even if the storage device of one of the hosts is damaged, it will not affect client end usage.

After the damaged host is repaired, the data can be recovered by synchronizing the data.

2.2 ISCSI

Internet SCSI (Internet Small Computer System Interface) is a standard developed by the IETF. The

principle is to use the network to transport SCSI commands for data transmission. Block-level data

transmission is used. The storage device and the host can be divided into two parts. The ISCSI Target, that

is the storage device side, is used to store data on the ISCSI disk array. The ISCSI Initiator, that is the client

side which uses the Target. The storage space provided by Target can only be used by installing the

Initiator.

2.3 Keepalived

A high availability solution is usually used to avoid single-node failures. The mechanism is generally divided

into two servers, a primary server and the secondary (i.e. backup) server. To maintain the connection, the

primary server sends specific messages to the backup server. When the backup server cannot receive the

message, the backup server will take over the virtual IP and continue to provide services to ensure high

availability.

2.4 Failover

Whenever a node in a cluster is unavailable, the current service providing node's resources is switched to

an available node. A procedure that moves a service from an active node in a cluster to a passive node. It

is also a backup. If one or more of the cluster nodes fail, the other nodes will start to take over and

continue to provide the service through a procedure called "Failover". There will also be at least one

monitoring node responsible for monitoring to confirm that the service is working properly. If the service

is not working properly, the user's connection to the service will be switched to another node.

2.5 WAL for PostgreSQL

WAL (Write ahead log) [10] is a technique used in relational database systems to provide Atomicity and

Durability, where both are in database ACID properties. The database system software has a mechanism

for storing data in the memory to improve the performance of the system. If the database server is

unexpectedly shut down, the data in the memory will lost. Then, when the database service is interrupted

by power, when the database is restored, it is restored to the hard disk according to the recorded content

of the WAL, so that the data remains consistent.

Yen-Jen Chen , Han Tsai; Implementation and Verification of High Data Availability on Database, Transactions on Networks
and Communications, Volume 7 No. 5, October (2019); pp: 1-12

http://dx.doi.org/10.14738/tnc.75.7292 4

2.6 Redo log for MySQL

MySQL's Redo log [11] and PostgreSQL's WAL have the same effect. If the database server is shut down

unexpectedly, the data in the memory is lost. Then, when the database service is interrupted, when the

database is restored, the contents of the Redo log are restored to the hard disk to keep the data

consistent.

3 Research Methods

In this research, we use the database, MySQL and PostgreSQL, to verify the proposed scheme. The

database management systems (DBMS) and databases are stored separately on servers and storage units;

the server utilizes ISCSI to connect to storage; for the system backup mechanism, two DBMS servers

utilizes high data availability mechanisms to toggle one on active and the other on standby. For the data

backup mechanisms, the two storage units are separated as primary and secondary storage with both

systems using DRBD mirroring mechanism to achieve data synchronization; in other words, whenever

DBMS writes data into primary storage, DRBD synchronizes the data into secondary storage. The further

details for the proposed design is shown in Fig. 1.

Figure. :1 Database System and Network Structure

MA and MB are master servers while SA and SB are salve servers; the slave is the DBMS server responsible

accessing and computing of database. One of the masters (i.e. MA and MB) is active while the other is on

standby; the active master always dispatches the database service request to a highly weighted (w=1)

slave, and thus the low weighted (w=0) slave is always on standby. The default weight value of SA and SB

are 1 and 0 respectively, and when database services of the SA cannot be provided normally, the master

will change the weight of SB from 0 to 1 and dispatches the database service request to SB to ensure no

data is lost during the failover process. This study was implemented in the PostgreSQL and MySQL

database system using its disaster recovery mechanism WAL and Redo log to prevent data loss during

failovers. It records all write activities of PostgreSQL and MySQL by recording writing to ensure that the

time of WAL and Redo log doesn’t fall behind the database. The WAL and Redo log and database are

placed in storage together. Since the database cache memory cannot be shut off, DBMS writes data in the

memory into database when shutting down normally, aside from the periodic writing of data in the

memory into the database. This is used as a reference to write a control program in the masters

responsible for activating and shutting off DBMSs in order so that when a failover occurs, the control

program will link the database to a new highly weighted slave, say, SB after shutting off DBMS in the other

slave, say, SA. If DBMS cannot be shut off, SA will be forced to shut down for flushing the database cache

http://dx.doi.org/10.14738/tnc.75.7292

Transact ions on Networks and Communica tions; Volume 7, No. 5, October 2019

Copyr ight © Socie ty for Sc ience a nd Educat ion, Uni ted Kingdom 5

memory. After shutdown is confirmed, the program activates SB’s DBMS to connect to the database and

perform the unwritten log in WAL and Redo log to avoid the loss of data in memory having not yet to be

written into the database.

The storage DRBD used in this paper adopts the single master mode, which refers to any resource at any

specific time. There is only one master node in this two-node cluster. Therefore, the DRBD has two states:

Primary and Secondary. As shown in Figure 2, Users’ requests will generally be handled by the Primary.

The Secondary node is in the Standby state and is responsible as a real-time backup for the Primary. When

a hardware failure occurs in the Primary, there is an immediate backup of the data in the Secondary that

can be restored.

Figure. 2: DRBD status display

In order to achieve High Availability (HA), the cluster monitoring software Keepalive in this study detects

the database’s udp port. When the SA cannot provide services, the master will trigger the control of

weight values through the utility “notify_down” as shown in Figure 3.

Figure. 3: Keepalived Failover set up

Figure 3 shows the Keepalived profile with control settings of connections and weights. Set the SB weight

value from 0 to 1, then the connections are directed to SB, which continues to provide the database

service for users. If the SA database returns to normal, with “notify_up” trigger to set the SB weight value

from 1 to 0, then connections will then be directed back.

In this study, the architecture integrates multiple open source software and database services

(PostgreSQL and MySQL). Usually every project here uses memory (cache). To avoid data loss caused by

Failover when the data is in memory, the ISCIS cache has been closed. By changing parameters in the ISCSI

Target profile, set the IOMode to wt to change the data writing mode as shown in Figure 4.

Yen-Jen Chen , Han Tsai; Implementation and Verification of High Data Availability on Database, Transactions on Networks
and Communications, Volume 7 No. 5, October (2019); pp: 1-12

http://dx.doi.org/10.14738/tnc.75.7292 6

Figure. 4: Data Access Mode Settings in an ISCSI Profile

IOMode is set to wt so that data will not pass through the memory, but will be directly written to the hard

disk. Some software including the operating system can not close the cache, such as PostgreSQL and

MySQL. PostgreSQL and MySQL does not read and write directly to the hard disk. Instead, it puts the data

in the hard disk into the Shared Buffers (cache), and uses the LRU (Least Recently Use) algorithm to make

the data access complete in memory to improve the performance. Data will then be flushed to the hard

disk at regular intervals.

4 Experiment and Verification

The purpose of this study is to ensure the high reliability and the status of the data transferred to the

database. There will be three cases in which a failover will be caused by powering off the virtual machines,

and the consistency of the data will be compared. The content and principles of each case will be explained

below:

Case 1 : Failover data consistency

Figures 5 verify the consistency of the data before and after failover. A dataset is transmitted continuously

every second, and the serial number and time recorded in the data is used to verify whether the data is

consistent. During the data transmission, the physical machine forces the virtual machine to power off via

the command “virsh destroy” to cause a Failover. Data in the user end and the database end are compared

for consistency.

(a) User end (PostgreSQL) (b) Database end

(b) User end (MySQL) (b) Database end

Figure. :5 (a), (b) Comparison of user-end and database-end’s data after a failover

It can be confirmed from Figure 5 that even if an unexpected accident (power outage) occurs, the data

can still remain consistent. The key to maintaining consistency is the WAL and Redo log, which records in

advance the dataset transmitted by the user into the database. Even if the data is lost in the memory,

data can still be recovered through the records in the WAL and Redo log. In order to verify the function of

http://dx.doi.org/10.14738/tnc.75.7292

Transact ions on Networks and Communica tions; Volume 7, No. 5, October 2019

Copyr ight © Socie ty for Sc ience a nd Educat ion, Uni ted Kingdom 7

the WAL and Redo log, this study uses the file system monitoring software Inotifywait [12] to monitor the

directory where the WAL and Redo log are located as shown in Figure 6.

(PostgreSQL)

(MySQL)

Figure. :6 Inotifywait WAL and Redo log record screen

It can be confirmed from Figure 6 that when the user transmits a dataset, a modification record will be

recorded in the WAL and Redo log file. Therefore, although the data has not been stored in the hard disk,

when a Failover occurs, master will connect the database to SB. SB can also recover data through WAL

and Redo log.

Case 2: Failover data recovery verification

In Case 1, during continuous data transfer, the virtual machine is powered off to cause a Failover and the

data consistency is verified, so as to confirm that a data loss can be recovered by WAL and Redo log.

However, in Case 2, only PostgreSQL can be tested because MySQL writes memory data back to its

database with an interval not bigger than 1 second. Before transferring the data, copy WAL to the

temporary folder first. The WAL saved in this folder has not recorded the data transferred yet. Then 10

datasets are transferred to the database. At this time, because there is a record in WAL about the 10

datasets just transferred, even after the failover, the data will remain consistent. Therefore, after the data

is transferred, copy the WAL in the temporary folder to overwrite the WAL in PostgreSQL. Then the virtual

machine is powered off to cause a Failover. Afterwards, verify again the state of the data on the user end

and database end as shown in Figure 7.

Yen-Jen Chen , Han Tsai; Implementation and Verification of High Data Availability on Database, Transactions on Networks
and Communications, Volume 7 No. 5, October (2019); pp: 1-12

http://dx.doi.org/10.14738/tnc.75.7292 8

(a) User end (b) Database end
Figure. :7 (a), (b) Comparison of user-end and database-end data after a Failover

It can be seen from Figure 7 that after the failover, the data in the database-end is inconsistent with the

user-end. The reason is that when the data is transferred to the database, the system will store the

frequently used data in the memory for access without directly storing it into the database, and copy the

WAL that has not recorded the incoming data to overwrite the WAL in PostgreSQL. At this time, if Failover

occurs, since the data is not stored into the database, nor has WAL recorded the incoming data, a data

loss will be caused. After verifying a Failover by replacing WAL, PostgreSQL uses WAL to recover lost data

in memory.

Case 3 : Checkpoint function data is written to the hard disk for verification

Checkpoint [13] is one of PostgreSQL's and MySQL's checkpoints for writing data back to the hard disk. It

will write the data in the memory back to the hard disk at intervals, based on the time set by the user. The

PostgreSQL default is every five minutes, while the MySQL default is every second. Since the MySQL

setting is forced to one second, MySQL is hard to be verified in Case2. After the data is written back to the

hard disk, the checkpoint record will be written to the WAL and Redo log. After the database service is

restarted, the latest checkpoint will be loaded, and the write operations after this checkpoint will be re-

executed to ensure that the data will not be lost. While the data before this point has been written back

from the memory to the hard disk by Checkpoint, therefore no action is required.

http://dx.doi.org/10.14738/tnc.75.7292

Transact ions on Networks and Communica tions; Volume 7, No. 5, October 2019

Copyr ight © Socie ty for Sc ience a nd Educat ion, Uni ted Kingdom 9

This is a recovery mechanism that PostgreSQL and MySQL does to avoid data loss. In order to verify that

the data is actually written to the hard disk after the checkpoint, the verification steps is as below. The

software Inotifywait monitors the folder where the WAL and Redo log are located to observe its status.

Before the data is transferred, copy the WAL and Redo log to the temporary folder, and then transfer 10

datasets to the database. Wait for five minutes until Checkpoint is executed. After that, the execution

record is written into the WAL and Redo log as shown in Figure 8.

(PostgreSQL)

(MySQL)

Figure. :8 Inotifywait Checkpoint record screen

For PostgreSQL, it can be observed from Figure 8 that there is a modification record in the WAL after five

minutes. This modification is to record the data in the memory being written back to the WAL after the

Yen-Jen Chen , Han Tsai; Implementation and Verification of High Data Availability on Database, Transactions on Networks
and Communications, Volume 7 No. 5, October (2019); pp: 1-12

http://dx.doi.org/10.14738/tnc.75.7292 10

Checkpoint execution is completed. In order to verify that the data in the memory has been written back

to the hard disk by Checkpoint, again, use the WAL which has not yet recorded the transferred data to

overwrite the WAL in PostgreSQL. Power off the virtual machine to cause a Failover. Afterwards, the

master will direct the database connection to SB to reconfirm the status of the data at user-end and the

database-end as shown in Figure 9.

For MySQL, it can be observed that there are twenty modified records in the Redo log, ten of which are

incoming data, and the other ten are completed by Checkpoint. The data in the memory is written back

to the hard disk and recorded to the Redo log. In order to verify that the data in the memory has been

written back to the hard disk by Checkpoint. Use the Redo log which has not yet recorded the transferred

data to overwrite the Redo log in MySQL. Power off the virtual machine to cause a Failover. Afterwards,

the master will direct the database connection to SB to reconfirm the status of the data at user-end and

the database-end as shown in Figure 9

(a) User-end (PostgreSQL) (b) Database-end

(a) User-end (MySQL) (b) Database-end
Figure. :9 (a),(b) Comparison of user-end and database-end data after a failover

From Figure 9 it can be observed that the data on the user-end and on the database-end is consistent.

PostgreSQL compared with Case 2, there is 5 minutes more waiting time for Checkpoint to complete and

http://dx.doi.org/10.14738/tnc.75.7292

Transact ions on Networks and Communica tions; Volume 7, No. 5, October 2019

Copyr ight © Socie ty for Sc ience a nd Educat ion, Uni ted Kingdom 11

to record the time in the WAL. No matter is PostgreSQL or MySQL. The result data of this experiment is

consistent.

Data still exists in memory and is not yet saved to the hard drive. Also, use the WAL before the data is

entered to overwrite the WAL in PostgreSQL; use the Redo log before the data is entered to overwrite the

Redo log in MySQL. Therefore, WAL and Redo log did not record the data entry. The data was lost in the

memory and WAL and Redo log did not record the written data. The data could not be recovered via the

WAL and Redo log. However, after the Failover, it was observed that the data still existed. This can prove

that Checkpoint writes data from the memory into the hard disk, and SB can display the ten datasets that

the user just entered after the failover.

5 Conclusions

This study proposes a high-availability database management system architecture. For the universality of

this research, two databases, MySQL and PostgreSQL, are used to increase the chances of combining with

various systems. In order to achieve the capabilities of data backup and system backup at the same time,

there are three system operating mechanisms proposed. First, the architecture combines the WAL and

Redo log mechanism of the database to implement a database disaster recovery mechanism. Next, this

study can control the WAL and Redo log mechanism of the database, so that the correctness of the data

is maintained even during a database failover. Finally, this study can analyze and control the timing when

the database system writes cached data to the hard disk, and to verify with three experimental cases that

the operation of the above three mentioned mechanisms are feasible. Based on the above three

mechanisms, this study designs a failover process to avoid data loss in the cache memory due to a failover,

so as to achieve a high availability database management system architecture.

REFERENCES

[1] DB-Engines. (2019). The first global database ranking list in the second half of the 2018,

https://buzzorange.com/techorange/2018/08/02/2018-july-database-ranking/

[2] C. Jaiswal and V. Kumar, "DbHAaaS: Database High Availability as a Service," 2015 11th International

Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Bangkok, 2015, pp. 725-732.doi:

10.1109/SITIS.2015.25

[3] R. H. de Souza, P. A. Flores, M. A. R. Dantas and F. Siqueira, "Architectural recovering model for Distributed

Databases: A reliability, availability and serviceability approach," 2016 IEEE Symposium on Computers and

Communication (ISCC), Messina, 2016, pp. 575-580.doi: 10.1109/ISCC.2016.7543799

[4] Adnan, A. A. Ilham and S. Usman, "Performance analysis of extract, transform, load (ETL) in apache

Hadoop atop NAS storage using ISCSI," 2017 4th International Conference on Computer Applications and

Information Processing Technology (CAIPT), Kuta Bali, 2017, pp. 1-5.doi: 10.1109/CAIPT.2017.8320716

[5] A. Elghazi, M. Berrezzouq and Z. Abdelali, "New version of iSCSI protocol to secure Cloud data

storage," 2016 2nd International Conference on Cloud Computing Technologies and Applications

(CloudTech), Marrakech, 2016, pp. 141-145.

doi: 10.1109/CloudTech.2016.7847690

https://buzzorange.com/techorange/2018/08/02/2018-july-database-ranking/

Yen-Jen Chen , Han Tsai; Implementation and Verification of High Data Availability on Database, Transactions on Networks
and Communications, Volume 7 No. 5, October (2019); pp: 1-12

http://dx.doi.org/10.14738/tnc.75.7292 12

[6] M. Riasetiawan, A. Ashari and I. Endrayanto, "Distributed Replicated Block Device (DRDB) implementation

on cluster storage data migration," 2015 International Conference on Data and Software Engineering

(ICoDSE), Yogyakarta, 2015, pp. 93-97.doi: 10.1109/ICODSE.2015.7436978

[7] Rahul k.(2018). How to Setup IP Failover with KeepAlived on Ubuntu & Debian. Retrieved from

https://tecadmin.net/setup-ip-failover-on-ubuntu-with-keepalive/

[8] Yen-Jen Chen & An-Liang Lo. Design and implementation of construction system with high-availability

application service environment, IJCEE 2015 Vol.7(6): 357-369 ISSN: 1793-8163 DOI:

10.17706/IJCEE.2015.7.6.357-369

[9] R. F. Gibadullin, I. S. Vershinin and R. S. Minyazev, "Realization of replication mechanism in PostgreSQL

DBMS," 2017 International Conference on Industrial Engineering, Applications and Manufacturing

(ICIEAM), St. Petersburg, 2017, pp. 1-6.

doi: 10.1109/ICIEAM.2017.8076380

[10] S. Ryu, K. Lee and H. Han, "In-memory write-ahead logging for mobile smart devices with NVRAM," in IEEE

Transactions on Consumer Electronics, vol. 61, no. 1, pp. 39-46, February 2015.doi:

10.1109/TCE.2015.7064109

[11] Peter Frühwirt , Peter Kieseberg, Sebastian Schrittwieser, Markus Huber, and Edgar Weippl, "InnoDB

Database Forensics: Reconstructing Data Manipulation Queries from Redo Logs," in Seventh International

Conference on Availability, Reliability and Security, 2012, doi:10.1109/ARES.2012.50

[12] Rohan McGovern.(2018). Home · rvoicilas/inotify-tools Wiki · GitHub. Retrieved from

https://github.com/rvoicilas/inotify-tools/wiki

[13] S. i. Sou and Y. b. Lin, "Modeling mobility database failure restoration using checkpoint schemes," in IEEE

Transactions on Wireless Communications, vol. 6, no. 1, pp. 313-319, Jan. 2007.doi:

10.1109/TWC.2007.05200

http://dx.doi.org/10.14738/tnc.75.7292
https://github.com/rvoicilas/inotify-tools/wiki

