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ABSTRACT 

A new concept of holomorphy in pseudo-Euclidean spaces is briefly presented. The set of extended 

Cauchy-Riemannn differential equations, which are verified by the holomorphic functions, is obtained. A 

form of the general pseudo-rotation matrix was developed. The generalized d’Alembert- operator and 

extended Poisson’s equations are defined. Applying these results to the relativistic space-time, the charge 

conservation and general Maxwell equations are derived. 

1 Introduction 

In a paper [1], published in 1981, Salingaros proposed an extension of the Cauchy-Riemann equations of 

holomorphy to fields in higher-dimensional spaces. He formulated the theory of holomorphic fields by 

using Clifford algebras [2]. In  the Minkowski space-time he found out that the equations of holomorphy 

are identical with the Maxwell equations in vacuum.  

In the present article we introduce a different definition of monogenity/holomorphy applied to vector 

functions in a pseudo-Euclidean space. This enables us to obtain a set of equations, which applied to the 

Minkowski space-time, lead to general Maxwell equations and to the charge conservation law. All physical 

quantities involved in the ongoing presentation are expressed in geometric units [3], i.e. meters.  

2 Preliminary 

2.1    Pseudo-rotation and its transformation matrix  

Let us consider a Riemannian n-dimensional space with the metric [4]: 





n

1ki,
kiikx

2 dxdxgsd                         (1.1) 

If the gik coefficients are constant, then the space is called pseudo-Euclidean and the coordinate system 

is rectilinear. Using linear transformations we obtain a new coordinates system: 

)..x,.........x,(xxx n21
'
i

'
i                (1.2) 
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Below we have the expression of the Jacobian matrix of this transformation.          
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If the value of dsx remains unmodified, then this transformation will be generally named a pseudo-

rotation. The transformation becomes pure rotation in the case of Euclidean spaces. 
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  (1.4) 

We will consider further only transformations where
'
ikik gg  .   

Developing the differentials in the right side of the first equation (1.4) and identifying, it obtains the 

following important relationship: 
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2.2  Holomorphy in n-dimensional spaces  

If it considered a vector field ),.....,( 21 nffff , defined on an n-dimensional space, then its Jacobi matrix 

is as follows: 
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The differential of this field function can be written as: 

),......,( 21 ndfdfdfd f                (1.7) 
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Using the metric definition (1.1) we may write the norm of this differential expression





n

1ki,
kiikf

2 dfdfgsd

Definition 

A vector field (x)]....f(x),......(x),f[f n21f , where )x,....x,x(f)x(f n21ii  , is said to be monogenic at 

point x of the space if the ratio: 
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exists and is unique at this point.  If a vector field f is monogenic in all the points belonging to a set D in 

space, then f is holomorphic in the set D. 

For further developments we consider only the sign + in the right side of the equation (1.8). The 

uniqueness condition (1.8) requires that: 
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 Comparing with (1.5) and (1.3) it obtains the following set of equations: 
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                                                    (1.10) 

 where ....n.1,2,......ji, 

Equations (1.10) can be considered as the extension of the Cauchy-Riemann equations to an n-

dimensional space. Further it will be considered only pseudo-Euclidean spaces where: 

iiiii

kiik

cgg

gg


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'

0'

More than that we may state, for simplicity, that ci is either 1 or -1. 

2.3 Pseudo-rotation matrices and associated Cauchy-Riemann equations  

Let us consider a nn  matrix M, which performs the coordinate transformation x'x   in an n-

dimensional space: 
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M is a pseudo-rotation matrix if and only if its columns verify the equation (1.5). This is the necessary and 

sufficient condition for M to be a called a pseudo-rotation matrix.  

a. As a first example we consider one of the rotation matrices in the two dimensional Euclidean 
space, where c1 =c2=1. 
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
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


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M

Using (1.10) it obtains the original Cauchy-Riemann equations, known from complex analysis  
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Considering the definition (1.8), the conditions (1.12) are not unique. An alternate valid form of a rotation 

matrix in this space could be: 
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Consequently the extended Cauchy-Riemann equations look differently: 
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 In both cases the functions are harmonic and satisfy the Laplace’s equations: 
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b. A pseudo-rotation matrix in a two-dimensional pseudo-Euclidean space, where c1 =-1 and c2=1, 
can have the following form : 
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M is the matrix of the Lorenz transformations in the two dimensional space(x2)-time(x1), and the 

corresponding Cauchy-Riemann equations system is shown below: 
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 The above functions satisfy the wave equation in one space dimension.  
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2.4 Generalized d’Alembert operator and extended Poisson’s equations 

As we have seen in the previous paragraph, the pseudo-rotation matrices on the same space are not 

identical and their freedom degree grows with the dimensions number, n. This implies that for the same 

type of space there are different Cauchy-Riemann equations which provide necessary conditions for a 

vector field f to be holomorphic. One of possible forms of a general pseudo-rotation matrix may be as 

follows: 
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It can be verified that all columns of M satisfy the equation (1.5), and also that: 

kiik aa                      (1.17) 

Now let us process the elements of the diagonal which starts with α1, in according with the following 

relationship  
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For the four-dimensional Minkowski space-time,  c1=-1, c2=c3=c4=1, the corresponding matrix becomes: 
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Taking the appropriate substitutions and computing, it obtains the matrix of the standard Lorenz 

transformations as you can see in the reference [5] (equations 1.17 and the corresponding matrix).  

Using the equations (1.17), (1.18) and (1.10) it obtains the following   relationships: 
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Processing (1.19) it arrives to the following expression: 
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Further the symbol 
2 will be named d’Alembert operator of the n-dimensional pseudo-Euclidean space.  

The equation (1.20) is denominated the extended Poisson’s equation in the same space. 

For n=2 it obtains the Laplace equations and the wave equations, previously developed in the paragraph 

1.2.  

For the Minkowski space-time, with the signature (-1, 1, 1, 1), it will be used further the standard 

denomination of the coordinates, i.e. 321 ,,, xxxt . 

The corresponding vector field has the following expression: 

),,,( 321 XXXTf     (1.21) 

Using equations (1.20) it obtains:                                                                   
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                  (1.22) 

The symbol  2  represents a function at the point )x,x,x,t(P 321 .   

X1, X2, X3 are the components of the following vector in the three-dimensional Euclidean space: 
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



3

1i
iX ieX            (1.23) 

where ie  are unit vectors along the Cartesian axes of this space. 

The last three equations of the system (1.22) will be packed together, and so the system takes the 

following format: 

t
T2

2






 X

           (1.24) 

In the system above it was used the “del” operator in the three dimensional Euclidean space.  

If we consider the pair of inhomogeneous wave equations6 for electromagnetic potentials, then the 

system (1.24) shows a perfect similarity. We are very tempted to identify T with the electro-magnetic 

scalar potential and the vector X with the vector potential, but it does not work because the first equation 

of the system (1.19) requires that the curl-operator or rotation-operator of X must be zero. This is not 

generally valid for a real electro-magnetic vector-potential.   

3  Classical Electrodynamics and Maxwell equations  

3.1 Alternative Cauchy-Riemann equations in Space-Time. 

There is a class of matrices in the Minkowski space-time which fulfills the following relations: 
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Replacing by partial derivatives, in according with equations (1.10) and using the usual coordinate’s 

notation for Minkowski space-time, it obtains:        
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We also can obtain the equations system (2.2) considering a vector field, )'X,'X,'X,T( 321f  in 

Minkowski space-time which fulfils the conditions (1.19).  If 'X represents the corresponding vector in the 

three dimensional Euclidean space, then respective equations become: 
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Now let us make the substitution: 'XCX 

Replacing in (2.3) we arrive again at the system (2.2).  The second equation of the system (2.2) implies 

that: 

CX      (2.4) 

Now let us convert to the SI system (see reference [3]) identifying the scalar part with the scalar potential 

and the vector part with the vector potential. Further we will use the symbols shown in the reference [6] 

for these potentials. It obtains the following system of equations: 
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Where c is the velocity of light in SI units system. Processing further we get: 
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3.2 Charge conservation and Maxwell’s Equations 

Identifying (2.7) with inhomogeneous wave equations presented by Feynman [6] we find the expressions 

for charge and current density.  
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Processing the equations (2.8) it obtains immediately the well known equation of charge conservation: 
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t


 j               (2.9) 

Using the equations (2.5 we can write further the expressions of electric field intensity E and the magnetic 

induction B: 
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B

E ,
tt                   (2.10)    

a. The first Maxwell’s law 
Taking the divergence of E and using the first equation of the system (2.8) it obtains the first Maxwell’s 

law: 

0


 E (2.11)

b. The second Maxwell’s law 
Taking the curl of E and comparing with the expression of B we get immediately the second law: 

t




B
E      (2.12) 

c. The third Maxwell’s law 

The third Maxwell’s equation is evident because B is curlC : 

0 B    (2.13) 

d. The fourth Maxwell’s law 
Processing the second equation of the system (2.8) and taking into consideration (2.10) we found finally 

the fourth law: 

t
c







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E
B

0

2 j
       (2.14) 

4 Conclusion 

The Lorenz Transformation equations have been initially derived searching for a transformation, which 

leaves the Maxwell’s equations invariant [7].   The immediate consequence of the Lorenz transformations 

is Einstein’s Special Relativity.     In the present contribution we found that any four-vector, which is 

holomorphic in a domain of the space-time, must verify the system (1.10). As a first application we 

rediscovered the law of charge conservation and all four Maxwell’s equations.  
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