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ABSTRACT 

Multicast helps to deliver data to multiple receivers efficiently. One scalability challenge faced by multicast 
is the per-channel forwarding states being maintained in the network layer, which increases linearly with 
the number of established multicast channels. MPLS helps to alleviate this problem by removing 
forwarding states from non-branch routers on the multicast tree and label switch packets in non-branch 
routers. To reduce the number of forwarding states in branch routers, many solutions were proposed to 
merge multicast trees/subtrees from different channels. Software Defined Network (SDN) decouples the 
control plane from the data plane, which enables low cost commodity design in routers and flexible 
network feature deployments through software implementation in centralized controllers. Equipped with 
SDN’s flexible policy and packet processing action installation, multicast tree/subtree merging becomes 
more convenient in SDN. This paper proposes a new scalable multicast solution in SDN to further reduce 
the number of forwarding states in routers. In the new solution, first a 2 level MPLS label switching scheme 
is used to reduce the extra point to point LSPs needed when multicast trees are merged.  Secondly, a new 
multicast tree construction algorithm is designed to pursue more aggressive subtree matching between 
channels by taking advantage of per channel packet dropping actions in SDN. Simulation results show that 
the new solution can achieve 10-20 percent reduction in the number of forwarding entries needed for 
multicast traffic’s forwarding. 

Keywords: Software Defined Network, OpenFlow, Multicast, MPLS, Scalability 

1 Introduction 
Multicast was proposed to deliver data from one or multiple sources to a set of destinations in a network 
efficiently. A set of destinations and the source(s) that receive/send the same data are identified by a 
multicast channel (group) [1]. A multicast channel is defined as a collection of packets identified by the 
same channel ID [2]. In case multiple sources exist, the multicast channel ID is a multicast IP address. For 
a single source multicast channel, a (S, G) address pair [3,4] is used as channel ID, where S is the source’s 
address and G is a multicast group address. A logical multicast tree is created by the multicast protocol 
for each channel to connect the source(s) to destinations. Data packets are forwarded along the tree and 
duplicated in the routers at the branch of the tree. For single source channel, the source is the root and 
all destinations are leaves on the tree, which is called a source specific multicast tree. For multiple source 
channels, a Rendezvous Point router is chosen as the root, which collects data from all sources [3,5]. 
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To forward packets of a channel properly along the multicast tree, routers on the multicast tree need to 
maintain a forwarding states for this channel. Forwarding state is composed of the channel ID and a list 
of the child routers on the multicast tree. The number of forwarding states increases linearly with the 
number of passing multicast channels, which causes scalability problems in routers. Multi-protocol label 
switching (MPLS) [6] is a network technology that promises to offer high speed packet forwarding, QoS, 
traffic engineering and many other new features to the current best-effort, IP-based Internet. MPLS can 
coexist with many existing network layer and data link layer protocols to provide scalability in today's 
networks. Scalable multicast in MPLS network has been proposed to reduce forwarding states in routers. 
MMT [7] removes forwarding states from non-branch routers. In [8], we proposed to replace forwarding 
states in branch routers with point to multipoint MPLS label switching when a tree or subtree could be 
used by multiple channels to reach the same set of destinations and a tree matching algorithm, TMST, 
was proposed in [8] to detect such multicast tree sharing. In [2], we proposed a multicast tree construction 
algorithm to further reduce forwarding states in branch routers by performing Partial Matching between 
SubTrees (PMST), which achieves higher matching rate between channels.  

Software Defined Network (SDN) is proposed to decouple the control plane from the data plane [9].  In 
SDN, data plane is still implemented by the device vendor in hardware while the control plane is realized 
by software in one or multiple centralized controllers. Software such as network management 
applications, network operating systems and OpenFlow protocols work together to control how packets 
are handled in each devices’ data plane. Deploying new internet architecture, network management, 
services or protocols is simplified to software update in the controllers and no change is needed in the 
large number of traffic forwarding devices. Network services such as QoS, virtualization, security, traffic 
engineering, Information centered networking, forensic analysis, transferrable network applications, 
deep packet inspection, cloud data center, dynamic middle box deployment, virtual collaborative working 
environment, VLAN, etc. are becoming more realistic in SDN [10][11].  

With SDN’s support, per-channel policies could be easily installed into any router in the network, which 
allows better, finer control over router’s per channel packet processing. First, SDN can help to reduce the 
number of point to point (P2P) LSPs between branch routers. In previous solutions [2][8], to share point 
to multipoint (P2MP) MPLS LSPs between channels, extra P2P LSPs need to be setup in non-branch routers 
so that the proper ingress MPLS label used by branch routers could be pushed into the packets by these 
new P2P LSPs. Such extra P2P LSPs hurt the scalability in non-branch routers. In this paper, a new 2 level 
MPLS label switching design is proposed to remove the need for extra P2P LSPs in non-branch routers. 
Secondly, in both TMST and PMST algorithms [2][8], exact destination set match is required in the tree or 
subtree to avoid any channel’s data being forwarded beyond the destination set G. In SDN, per channel 
packet dropping policies could be easily installed in any router using existing OpenFlow protocol [12]. In 
this paper, a new algorithm is proposed to merge subtrees between channels when they share enough 
common destinations. Such more aggressive sharing criteria enables more subtree sharing between 
channels and further reduces the number of forwarding states in branch routers. Simulations show that 
the new solution needs less branch router forwarding entries than both MMT and TMST/PMST solutions. 
The new solution needs a little bit more non-branch router forwarding entries than MMT but 21.8% less 
than that of TMST/PMST. Counting all forwarding entries, in both branch router and non-branch routers, 
the new solution has 16.38% less entries than MMT and 10.51% less than TMST/PMST. 
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The remainder of this paper is organized as follows. Section 2 presents the background review including 
network model, MPLS, SDN and existing scalable multicast solutions. In section 3 the new multicast 
solution, including a new 2 level MPLS label switching scheme and a new tree construction algorithm, is 
presented. Simulation results are shown and discussed in Section 4 and conclusion is drawn in Section 5. 

2 Related Works 
In this section, a brief review is given for the network model, MPLS networks, Software Defined Network 
and related works in scalable multicast.  

This paper focuses on the single source multicast model. A multicast tree is constructed for a channel with 
source as root and destinations as leaves. There are 3 types of routers on the tree 1) Branch Routers - root 
router and routers having more than one child on the tree, 2) Non-Branch Routers  - routers having only 
one child, and 3) Destination Routers - leaf routers that deliver data to end hosts. Data packets are 
duplicated in Branch Routers. Given a branch router BR1, its next hop Branch Routers are the branch 
routers reachable on the tree from BR1 via non-branch routers only. 

 MPLS Network 
MPLS [6] is a versatile data transport solution that addresses network problems such as scalability, QoS 
management, and traffic engineering. Ingress routers in MPLS networks compute and insert a 32-bit long 
MPLS shim header that includes a 20-bit long MPLS label, to each incoming packet. A MPLS enabled router, 
called Label Switching Router (LSR), maintains a MPLS label switching table, with each entry specifying an 
ingress MPLS label 𝐿𝐿𝑖𝑖𝑖𝑖, one or multiple egress MPLS labels 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜  and egress interface ID(s) 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜. When 
packet 𝑃𝑃 carrying MPLS label 𝐿𝐿𝑖𝑖𝑖𝑖 arrives at LSR 𝑅𝑅, 𝑅𝑅 searches for an entry with ingress label 𝐿𝐿𝑖𝑖𝑖𝑖 in the 
MPLS label switching table. For each pair (𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜, 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜) in the matched entry, 𝑅𝑅 swaps 𝐿𝐿𝑖𝑖𝑖𝑖 in 𝑃𝑃 with 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 
and forwards packet 𝑃𝑃 to neighbor router through egress interface 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 . Such process is called “label 
switching” of the packet. The specific path through the MPLS network that a packet follows based on its 
MPLS labels is called Label Switched Path (LSP). Label distribution protocol, such as LDP (Label Distribution 
Protocol) [13], or RSVP (Resource ReServation Protocol) [14] are used to setup LSPs. In this paper, all the 
routers in a MPLS network are LSRs. 

  Scalable Multicast 
Various solutions have been proposed to improve the scalability of multicast through reducing the 
number of forwarding states in the network layer. Network layer aggregation solutions [15-17] reduce the 
storage and routing complexity in routers through replacing multiple forwarding states in a router with 
one forwarding state. Due to the non-hierarchical allocation of multicast IP addresses, existing network 
layer aggregation solutions yield either insignificant reduction in the number of forwarding states or leaky 
bandwidth, in which multicast packets are transmitted to links not on the multicast tree. 

Smart packet solutions are proposed in [18], in which the information of packet forwarding is stored in 
packet headers to eliminate multicast forwarding states in routers. Routers forward packets based on 
information extracted from the packet headers. Smart packet solutions require changes in the format of 
packet headers, limit the number of branch routers, and cause problems due to excessive packet 
fragmentation. IP encapsulation solutions [19][20] transport packets from one branch router to its next 
hop BR through unicast IP encapsulation, in which the original packet is encapsulated in a new packet that 
has the next hop BR’s address as destination address. Forwarding states are removed from non-branch 
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routers. IP encapsulation solutions involve resource intensive extra IP packet en/decapsulation at branch 
routers. 

A framework that explains IP multicast deployment in MPLS environment was proposed by Ooms et al 
[21], which is a pure MPLS layer multicast routing solution. In this framework, a point to multipoint (P2MP) 
LSP is used for a multicast tree.  One P2MP LSP could be shared by multiple trees only if they have the 
same tree structure. Therefore, large number of multicast channels with various tree structures consumes 
too many MPLS labels to establish large number of P2MP LSPs and introduce scalability problem in MPLS 
layer.  

MPLS Multicast Tree (MMT) solution was proposed in [7] for scalable multicast in MPLS networks, in which 
packets are transported from one branch router to its next hop BRs by point to point (P2P) MPLS label 
switching. Forwarding states are only stored in branch routers. However, MMT made no effort to reduce 
the forwarding states in branch routers. We proposed tunnel sharing scheme in [8] to reduce the number 
of forwarding states and MPLS label consumption by using the same P2MP LSP for multiple channels’ 
forward. Such sharing is possible when the tree structures of different channels are similar enough. TMST 
solution was also proposed in [8] to merge Total Matched SubTree (TMST)’s LSPs to reduce the forwarding 
states and MPLS label consumption. In TMST solution, a centralized Network Information Management 
System (CNIMS) keeps records of all established multicast trees, branch routers and LSPs. When a new 
channel’s request comes in, CNIMS tries to find an existing multicast subtree, whose downstream 
destination list exactly matches to the new channel’s destination list. If such subtree exists, no new tree 
will be created. Instead, new channel’s data will be sent to the matched subtree’s root router through a 
newly established P2P LSP, and further delivered to destinations through the existing subtree’s existing 
LSPs. If no such subtree exists, a new tree will be built. The performance gain in tunnel sharing and TMST 
is based on the match rate between multicast trees, which is not always realistic in real network. Partially 
Matched SubTree (PMST) solution was proposed in [2] to improve the performance of TMST. PMST tries 
to match subset of new channel’s destinations to any existing subtree in the network. By doing this, the 
number of destinations remained in the new channel that need a new tree to deliver data to them could 
be further reduced.   

  Software Defined Network and OpenFlow Protocol 
Traditional network devices like switches or routers bound data plane (packet forwarding, dropping and 
modification) and control plane (QoS, routing, network monitoring, per-flow control) in the same 
equipment. When any new network service, protocol or architecture need to be deployed, the control 
plane usually requires significant modifications. Even when the change could be accommodated by 
reconfiguration, still all devices need to be reconfigured by the network administrator. More often, the 
change needed is too significant and go beyond what is allowed in reconfiguration. In such cases new 
devices that support the new control plane need to be purchased and deployed if you are lucky to find 
them on the market while most vendors are reluctant to implement new service into their products before 
the service become widely accepted on the market, which is not always the case for newly proposed 
services, protocols or architectures.  

Software Defined Network (SDN) was proposed to decouple the control plane and data plane [9]. In SDN, 
the data plane remains in network devices like switches/routers and the control plane is moved to one or 
multiple centralized controllers. The controllers install policies in the network devices to control how 
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network traffic are processed in each switch. Network device vendors can focus on improving the data 
plane performance and lowering the cost of the devices and don’t need worry about the constantly 
changing control plane [22]. Whenever the control plane needs to be changed, controllers could be 
reprogrammed (install a new software) to be capable of installing different policies in switches to realize 
the new services or protocols. With SDN, the network service that can be provided in a network is not 
limited by what the vendor implemented inside the devices anymore, which encourages and enables new 
network technology, services, protocols and architecture’s design.[23] 

In a SDN, one or multiple controllers are deployed to make network management decisions. Network 
management applications, network operating systems and protocol interfacing the controller and 
switches are installed in the controllers. Network management applications are responsible for making 
network control decision. Network operating systems provide API to allow quick and easy network 
management applications programming and shield the network management application from the 
heterogeneous network technology. Openflow [12] protocol is installed in both switches and controllers. 
Openflow defines how the rules from the controller could be installed, updated, and removed in the 
switches and how these rules can be used in the switches for packet processing.  

In an OpenFlow switch [12], there are one or multiple flow tables and one group table. Using OpenFlow 
protocol, the controller can add, modify and remove entries in the tables inside each switch. Each entry 
in any table consists of match fields, counters, and a set of instructions to apply to matching packets. 
Packets may need to be processed by multiple flow tables one by one when they come to a switch. When 
a packet is processed in a table, if a match is found, the associated instruction of that matched entry will 
be executed. If no match is found, a special miss entry in that table will determine the fate of the packet. 
The packet could be forwarded to the controller using Packet-in message, dropped or forwarded to the 
next flow table in the same switch depending on the policy installed in the miss entry. Controller can use 
Modify-State message to add flow entries in any table.  

For a matched packet, instructions associated with the matched flow entry are executed. Some of the 
instructions edit the action set associated with the packet. All actions in the action set will be executed 
after the packet finishes its processing in the last flow table in the same switch. In addition to the actions 
in the action set, “Apply-Action” instruction could execute action of choice during the table’s processing. 
Instruction “Goto” specify which table is the next to process the packet. Instructions also can send 
metadata to the next table to assist the packet processing there. Actions are defined in OpenFlow to 
describe the forwarding, modification of the packet, applying meters to the packet, sending the packet to 
specific queue for QoS purpose, etc.  

3 New Scalable Multicast Solution in Software Defined Network 
Software Defined Network (SDN) uses controllers to centralize network management. Controllers have 
complete picture of the whole network and can install forwarding policy in all routers in real time. In this 
section, a new scalable multicast solution in SDN is presented. The new solution uses a 2 level MPLS label 
scheme to share point to point LSPs on non-branch routers between channels and share point to multiple 
point LSPs on branch routers between channels without extra point to point LSP. The new solution also 
uses a newly proposed multicast tree construction algorithm to increase LSP sharing between channels to 
improve scalability. 

http://dx.doi.org/10.14738/tnc.73.6561


Transact ions on  Networks and Communications;  Volume 7,  No.  3,  June  2019 
 

Copyr ight © Socie ty  for  Sc ience  and Educat ion,  Uni ted  Kingdom 27 
 

 

  Multicast in SDN with 2 Level MPLS Label Switching 
SDN has one or multiple controllers responsible for control plane decisions, including multicast channel 
establishment, multicast membership management, MPLS policy setup, multicast tree construction, and 
forward states installation. After collecting membership information, the controller computes the 
multicast tree for that channel in the network. Using the TMST/PMST based multicast tree construction 
algorithm together with the new algorithm proposed in the next section to discover all branch and non-
branch routers.  

After identifying all routers on the tree, controller sends messages to all on tree routers to install policies 
to forward data along the multicast tree. In SDN using OpenFlow protocol [12], each incoming packet will 
be matched to one or multiple flow tables in a router. Table entries stored in these tables are used to 
specify traffic processing policy such as where to forward the packet, if the packet should be modified, if 
the packet should be dropped, etc. MPLS labels, IP addresses, TCP ports, etc. could be used to match flow 
entry in these tables.  

In this new solution, there are 3 kinds of forwarding table entries for multicast traffic, 1) Point to Point 
MPLS switch entry (P2P Entry), 2) network layer IP entry (IP Entry), and 3) Point to Multiple Point MPLS 
switch entry (P2MP Entry). P2P entry is used in non-branch routers to deliver traffic from one branch 
router to another. Such P2P LSPs could be statically or dynamically established between branch routers 
and can be shared by all channels trying to send between the same pair of branch routers. In SDN, each 
P2P entry applies following actions: pop ingress MPLS label, push egress MPLS label and forward the 
packets to the port toward the next hop router. 

IP entries are used in branch routers to forward single channel’s traffic. Routers match the packet’s 
channel ID against the IP entry. The table entry first duplicates the packet for each next hop branch router. 
For each next hop branch router BRnext, the table entry pushes MPLS label so that the packet could be 
label switched in a P2P LSP toward BRnext (pushes the chosen P2P LSP’s first ingress MPLS label). Then the 
packet is forwarded to the interface toward BRnext. 

In a branch router where multiple channels try to reach the same set of downstream destinations, IP 
entries for these channels are merged into one P2MP entry. A special MPLS label is used to identify packets 
from these channels in this branch router and all downstream branch routers. Let’s call such special MPLS 
label Aggregation Label (AG Label). In a branch router where a channel 𝐶𝐶1 starts to share another channel 
𝐶𝐶2’s sub multicast tree, the Aggregation Label used on the 𝐶𝐶2’s shared subtree will be pushed into the 
𝐶𝐶1’s packets. 𝐶𝐶1’s packets then will use P2MP entries for branch router routing in the rest of the shared 
subtree. In a branch router on the subtree, the table entry that matches Aggregation MPLS label specifies 
following actions: duplicate the packet for each next hop branch, push P2P LPS ingress label in each 
duplicate, forward all duplicates to corresponding egress interface. 

This 2 level MPLS label switching design, Aggregation Label and P2P Label, helps to reduce the number of 
P2P entries in non-branch routers. [2][8] use 1 level P2MP label switch in branch routers where the P2MP 
ingress labels need to be pushed into packets by the router at the end of each P2P LSP so that the label 
could be identified in the branch routers. Because each P2P LSP can only specify one last hop egress MPLS 
label therefore it can only be used to forward traffic for one tree/subtree. Such extra P2P LSPs cause 
scalability problem in non-branch routers. In the new 2 level MPLS label switching design, the last router 
on any P2P LSP doesn’t need to push any MPLS label into a packet, because the packets will be routed 
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based on 2nd level aggregation label or IP channel ID in branch routers. Such design totally relieves routers 
in P2P LSPs from being aware of their downstream subtree structure. Only one P2P LSP is needed between 
any pair of branch routers and it can be used by all channels that need deliver traffic between this pair 
branch routers.  

To establish a P2P LSP in a router, say the packet from ingress interface 𝐼𝐼𝑖𝑖𝑖𝑖 with label 𝐿𝐿𝑖𝑖𝑖𝑖 will be switched 
to egress interface 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 with label 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜. One entry is installed in the first flow table of the router using 
OpenFlow. The entry’s matching field uses 𝐼𝐼𝑖𝑖𝑖𝑖 and 𝐿𝐿𝑖𝑖𝑖𝑖 to identify packets with 𝐿𝐿𝑖𝑖𝑖𝑖 coming from interface 
𝐼𝐼𝑖𝑖𝑖𝑖 while set value ANY to any other parts of the matching field. A “Write Action” instruction is in the 
Instructions part of the flow entry.  The “Write Action” instruction writes following actions into this 
packet’s action set 1) pop MPLS label, 2) push MPLS label 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜, 3) output on interface 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜. After the flow 
table processing, the packet will leave the table processing and has all actions in the action set executed, 
where the MPLS label 𝐿𝐿𝑖𝑖𝑖𝑖 will be replaced by 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 and then the packet will be forwarded to interface 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜. 

To establish a P2MP entry (IP or aggregation label based) in a router, say the packet from ingress interface 
𝐼𝐼𝑖𝑖𝑖𝑖  with aggregation label 𝐿𝐿𝑎𝑎𝑎𝑎will be switched to egress interface 𝐼𝐼𝑖𝑖𝑖𝑖_1  with label 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜_1 , to 𝐼𝐼𝑖𝑖𝑖𝑖_2  with 
𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜_2… to 𝐼𝐼𝑖𝑖𝑖𝑖_𝑛𝑛 with 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜_𝑛𝑛. One entry is installed in the first flow table of the router. The entry’s matching 
field use 𝐼𝐼𝑖𝑖𝑖𝑖 and 𝐿𝐿𝑎𝑎𝑎𝑎 to identify packets with 𝐿𝐿𝑎𝑎𝑎𝑎 label coming from interface 𝐼𝐼𝑖𝑖𝑖𝑖 while set value ANY to 
any other parts of the matching field (or use channel ID instead of 𝐿𝐿𝑎𝑎𝑎𝑎 if it is an IP entry). An “Apply-
Actions” instruction is in the Instructions part of the flow entry.  The “Apply-Actions” instruction specifies 
a list of 3n actions, 3 actions for each branch. For 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖 and 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖, the 3 actions are 1) pop MPLS label, 2) 
push MPLS label 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖, 3) output on interface 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖. Each output action in the apply-action instruction 
makes a clone of the packet (with new MPLS label just pushed in) and forwarded to the corresponding 
output port. After all actions being executed, the packet will leave the flow table processing. Because 
there is no output action in its action set, the packet will be dropped.  

  OLST (Overlap SubTree) Algorithm 
Base on the discussion in subsection 3.1, it is obvious that the multicast scalability performance in SDN 
depends on the extent of MPLS LSP sharing between multicast channels. Such sharing could be achieved 
when trees or subtrees from different channels are identical. Both TMST and PMST algorithms [2][8] try 
to construct new multicast trees by reusing existing subtrees.  

However, TMST and PMST only reuse the existing subtrees whose destination set is a subset of the new 
channel’s destination set. Existing subtrees that reach any destination beyond the new channel’s 
designation list cannot be used on the new channel’s tree construction. This design makes sense on 
traditional network. Because when an existing subtree is used to forward data of a new channel, all 
destinations reachable from that subtree will receive data from this new channel. If any destination is not 
in the destination list of the new channel, the resource such as bandwidth and forwarding state used to 
forward the data to these undesired destinations are wasted. 

In SDN network, per channel packet processing (such as dropping) policy could be easily installed. Such 
flexibility allows the tree construction algorithm to reuse the existing subtree even if the tree reaches 
some non-destination routers. The resource waste could be limited to minimum by installing dropping 
policies in routers to drop the packets of this new channel to prevent them from being forwarded toward 
undesired destinations. To implement such drop policy in a router, a new table entry is created in the flow 
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table to match the multicast channel’s id (source address and port number). The entry has its priority field 
set to be greater than the P2MP entry or P2P entry. The priority field setting is necessary to guarantee 
that the packets from this channel be matched to this new entry but not the MPLS label switch entry. 
Action “Drop” is specified in this new entry to drop packets from this channel. Now the packets carrying 
the same ingress MPLS label could be matched to one of the two flow entries. If the packets belong to the 
new channel, they will match the channel ID entry with high priority and be dropped. If the packets belong 
to any other channel, they will match the MPLS label entry and be label switched to next hop router(s). 

Equipped with the capability of dropping specific channel’s packets on a shared subtree, I am proposing a 
new OverLap SubTree (OLST) algorithm in Software Defined Network to improve the multicast tree 
sharing between channels. OLST reuses existing subtrees whose downstream destination set overlaps 
significantly with new channels destination set. First let’s define overlap factor (OF) for an existing subtree 
and a new channel as the ratio between the number of destinations on the subtree that are not in the 
new channel’s destination set and the number of new channel’s destinations that reachable from the 
subtree. In PTMST, only the existing subtrees with OF = 0 can be used to build the tree for a new channel. 
Now, in SDN, the acceptable OF value could be set by the SDN controller based on historical multicast tree 
statistics. In next section, simulation results are used to demonstrate how the optimal OF value could be 
estimated. 

SDN controller maintains a list of existing subtrees in the network for existing multicast channels. Only 
subtrees rooted at branch routers are included in the list. A subtree rooted at branch router 𝐵𝐵𝐵𝐵1 for 
channel 𝐷𝐷 is denoted as 𝑇𝑇_𝑠𝑠𝑠𝑠𝑠𝑠(𝐷𝐷,𝐵𝐵𝐵𝐵1). It records the reachable destinations on this subtree, denoted 
as 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐷𝐷,𝐵𝐵𝐵𝐵1) . The list of subtrees is sorted based on the number of reachable destinations in 
descending order.  

Assume 𝐶𝐶 is a new arriving channel with source 𝑆𝑆. OLST algorithm builds a multicast tree using following 
steps: 

Step 1. Compute a temporary multicast tree 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐶𝐶, 𝑆𝑆)  rooted at source 𝑆𝑆  using any existing 
multicast tree algorithm to connect all destinations of channel 𝐶𝐶 (e.g. shortest path tree, Steiner 
tree) 

Step 2. For each branch router BR in 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐶𝐶, 𝑆𝑆): 
a. Compare set 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐶𝐶,𝐵𝐵𝐵𝐵) using every existing subtree record maintained by the controller. An 

existing subtree 𝑇𝑇_𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎,𝐵𝐵)  with 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎,𝐵𝐵)  is deemed as a match when 1) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐶𝐶,𝐵𝐵𝐵𝐵) ⊆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎,𝐵𝐵) and 2) |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎,𝐵𝐵)−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑐𝑐,𝐵𝐵𝐵𝐵)|
|𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎,𝐵𝐵)∩𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑐𝑐,𝐵𝐵𝐵𝐵)| ≤ 𝑂𝑂𝑂𝑂. 

b. For a matched 𝑇𝑇_𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎,𝐵𝐵), remove 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐶𝐶,𝐵𝐵𝐵𝐵) from 𝐿𝐿𝐶𝐶 , add 𝐵𝐵 into 𝐿𝐿𝐶𝐶  if 𝐵𝐵 was not there. 
Install drop policies for channel 𝐶𝐶 to prevent packets reach any destination in set 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎,𝐵𝐵) −
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐶𝐶,𝐵𝐵𝐵𝐵). 

Step 3. If 𝐿𝐿𝐶𝐶  is not empty, for every existing subtree 𝑇𝑇_𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎,𝐵𝐵) from controller’s subtree list 

a. Compare 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎,𝐵𝐵) against 𝐿𝐿𝐶𝐶, 𝑇𝑇_𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎,𝐵𝐵) is deemed as a match when |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎,𝐵𝐵)−𝐿𝐿𝑐𝑐|
|𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎,𝐵𝐵)∩𝐿𝐿𝑐𝑐| ≤ 𝑂𝑂𝑂𝑂  

b. If 𝑇𝑇_𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎,𝐵𝐵)  is a match, remove 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎,𝐵𝐵) ∩ 𝐿𝐿𝑐𝑐  from 𝐿𝐿𝐶𝐶  and add 𝐵𝐵  into 𝐿𝐿𝐶𝐶  if 𝐵𝐵  was not 
there. Install drop policies for channel 𝐶𝐶  to prevent packets reach any destination in set 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎,𝐵𝐵) − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑐𝑐,𝐵𝐵𝐵𝐵). 
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Step 4. Build a final tree 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 to connect all members in 𝐿𝐿𝐶𝐶  with source 𝑆𝑆. Install a new IP entry in 
every branch router on 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. On any leaf node on 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, if it is not the destination of channel 
𝐶𝐶, add push action in the upstream branch router’s IP entry to push Aggregation Label into 
channel 𝐶𝐶’s packets as discussed in section 3.1.  

Packets of channel 𝐶𝐶 are first label switched on the new tree 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓using the IP entries in branch routers. 
When the packets reach the leaf routers on 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, either they reach the destinations, or they will be 
switched on existing subtrees with an Aggregation MPLS Label, which is pushed into the packets in the 
last branch router before the leaf router. Drop policies for channel 𝐶𝐶 are installed in existing subtrees to 
prevent them from reaching destinations not in channel c. The cost added to the network from new 
channel 𝐶𝐶 includes the new IP entries on 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓and all the IP entries with drop actions. If the OF is set too 
large, the cost from the drop policy entries will surpass the save from sharing P2MP entries. In simulation 
section, such tradeoff will be further studied. 

Figure 1 depicts an example of this new solution. There are 2 channels. 𝐶𝐶1 has source 𝑆𝑆1 and 𝐶𝐶2 has 
source 𝑆𝑆2. Channel 𝐶𝐶1’s destination set is {𝑑𝑑1,𝑑𝑑2,𝑑𝑑3,𝑑𝑑4,𝑑𝑑5,𝑑𝑑6}. Before 𝐶𝐶2’s existence, 𝐶𝐶1’s traffic is 
identified in branch routers 𝐵𝐵𝐵𝐵1, 𝐵𝐵𝐵𝐵2, 𝐵𝐵𝐵𝐵3 and 𝐵𝐵𝐵𝐵4 using IP entry as Figure 2 shows. 10 P2P LSPs are 
used to deliver packets between branch routers. Branch routers need duplicate the packets, push P2P 
LSP’s labels and forward the packets toward each branch. 

S1

BR1 BR2

BR3 BR4

d1 d2 d3 d4

d5 d6

Match C1, Forward to LSP1, LSP2

LSP1
LSP2

LSP3 LSP4
LSP6LSP5

LSP7
LSP8

LSP10
LSP9

Match C1, Forward to LSP5, LSP6

Match C1, Forward to LSP3, LSP4

Match C1, Forward to LSP7, LSP8
Match C1, Forward to LSP9, LSP10

 

 

When channel 𝐶𝐶2  with destination set {𝑑𝑑2,𝑑𝑑3,𝑑𝑑4}  needs to be established, through running OLST 
algorithm, SDN controller decides to reuse the subtree including 𝐵𝐵𝐵𝐵1, 𝐵𝐵𝐵𝐵3 and 𝐵𝐵𝐵𝐵4. As shown in Figure 
2, the IP entries in 𝐵𝐵𝐵𝐵1, 𝐵𝐵𝐵𝐵2 and 𝐵𝐵𝐵𝐵4 are changed to P2MP entries with Aggregation Label 𝐿𝐿𝑎𝑎𝑎𝑎. In 𝐵𝐵𝐵𝐵1’s 
previous hop branch routers (𝑆𝑆2 for 𝐶𝐶2, 𝑆𝑆1 for 𝐶𝐶1), 𝐿𝐿𝑎𝑎𝑎𝑎 label is pushed into the packets of 𝐶𝐶1 and 𝐶𝐶2 
toward 𝐵𝐵𝐵𝐵1 so that they can be matched with 𝐿𝐿𝑎𝑎𝑎𝑎 on the subtree. Therefore, no new entry is added into 
branch routers for 𝐶𝐶2 in the subtree rooted at 𝐵𝐵𝐵𝐵1. Because 𝑑𝑑1 is not a destination of 𝐶𝐶2, an extra drop 
entry that match 𝐶𝐶2’s channel ID needs to be installed in the first router after 𝐵𝐵𝐵𝐵3 toward 𝑑𝑑1 to drop the 
traffic of 𝐶𝐶2 but let 𝐶𝐶1’s traffic pass.  

Figure 1: Single Channel without Tree Sharing 
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4 Simulation Results 
Simulations are used to evaluate the new multicast solution with OLST algorithm. In the simulations, 
topology is randomly generated with 4000 routers and 2000 multicast channels, each of which has one 
source and a maximum of 1200 destinations (the actual number of destinations for each channel is 
randomly selected between 500 and 1000). Shortest path multicast tree algorithm is used for tree 
construction. For the sake of controller’s processing burden, SDN controller only keeps records of any 
subtree whose destination size is greater than 10.  The number of flow entries in router’s tables is 
measured to evaluate the scalability.  

Three solutions’ are simulated and measured, 1) MMT solution [7] (label switch between branch routers, 
channel id forward state in branch routers without subtree reuse), 2) 1 level MPLS label solution with 
TMST/PMST tree construction algorithms [2] (shared P2MP LSPs with TMST/PMST algorithm), and 3)  2 
level MPLS label solution with OLST tree construction algorithm using different overlap factors.  

The results are plotted in Figure 3. MMT solution needs 588782 flow table entries in all routers to support 
all 2000 multicast channels, including 535226 point to multipole point IP entries in branch routers and 
53556 P2P MPLS label entries in non-branch routers. TMST/PMST solution installs 550187 table entries in 
all routers. Among these entries, there are 458245 point to multipoint entries in branch routers, which is 
fewer than MMT because of multicast tree sharing. However, as described in section 3.1, extra P2P LSPs 
are needed in 1 level label switching solutions to enable multicast tree sharing. In the TMST/PMST 
simulation, 91942 P2P entries are installed in non-branch routers, which is about 71% more than that of 
MMT. When the overlap factor is set to about 0.1-0.125, the newly proposed solution with 2 level MPLS 
label switching and OLST algorithm only installs 400798-403361 point to multiple points entries in branch 
routers (including both IP and Aggregation Label matched entries), 71591-71899 P2P entries in non-
branch routers and 17576-19669 dropping entries. The new solution reaches the best performance 
compared to MMT and TMST/PMST solutions. The overall table entry number is 16.38% less than that of 
MMT solution and is 10.51% less than that of the solution using 1 level label switching and TMST/PMST 
algorithm.  

Figure 2: Two Channels with Overlapped Subtree Sharing and 2 Level Label Switching 
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Figure 3: Overall Table Entry Number Comparison 

If the P2P LSPs between branch routers are statically setup and therefore have no effect on the scalability, 
the scalability is only affected by the number of dynamically created table entries (P2MP entries and IP 
entries for both forwarding and dropping). Figure 4 shows that the new solution’s dynamic table entry 
number is 21.44% less than that of MMT and 8.24% less than that of TMST/PMST algorithm. 

 

 Figure 3: Dynamic Table Entry Number Comparison 

The overlap factor plays an important role in the performance of the new solution. When the overlap 
factor becomes larger, new subtrees will be matched to existing subtrees with more unnecessary 
destinations, which requires more per channel drop policies to be installed on routers. The results in 
Figure 3 and 4 show that after overlap factor reaches 0.1, the new solution’s performance starts getting 
worse. Overall number of entries needed become worse than PMST solution after overlap value >0.35, 
and worse than MMT after overlap value >0.4. 

5 Conclusion 
Reducing the number of forwarding entries in branch routers and non-branch routers help to improve the 
scalability of multicasting. MPLS network allows traffic from different channel share the same point to 
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point or point to multipoint label switching entries in a network. Software Defined Network enables 
flexible per flow policy installation and MPLS label action in routers. In this paper, a 2 level MPLS label 
switching design and a new multicast tree construction algorithm are proposed to encourage more 
forwarding entry sharing in SDN MPLS network to improve multicast scalability. Simulations show that the 
new solution can reduce 10-20 percent table entries in the SDN network for multicast traffic forwarding. 
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