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ABSTRACT   

Many end-to-end TCP implementations have been presented in the past decade. Despite that they used 

different methods to improve transport protocols over wireless networks; they mostly shared the same 

original TCP principles. TCP Westwood introduced a novel end-to-end bandwidth estimation 

mechanism. Nevertheless, it maintains the same slow start phase presented in TCP Reno. For the initial 

slow start phase, there is no safe slow start threshold value. In this paper, we propose to use the 

bandwidth estimation to calculate the initial slow start threshold value after the second round trip time. 

Furthermore, we introduce a faster state in which TCP increases the transmission rate once the link is 

underutilizing. As a result, the new proposed method shows better performance comparing to TCP 

Westwood, and TCP NewReno techniques.  
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 Introduction  

TCP– Transmission Control Protocol is the most transport protocol used over internet. Inefficient TCP 

performance in wireless networks motivated a wide spectrum in research community to enhance its 

congestion control mechanisms. Several TCP variants have been introduced over the past decade to 

support different network technologies [5, 6]. These mechanisms can be classified into three main 

categories: a link level solutions (e.g. I-TCP, M-TCP, etc.), end-to-end solutions (e.g. Explicit Congestion 

Notification (ECN), TCP Westwood, TCP Casablanca, etc.), and split connection solutions (e.g. Forward 

Error Correction (FEC), Automatic Repeat Request (ARQ), and Hybrid ARQ (HARQ), etc.).  

TCP Westwood-TCPW presented a novel E2E bandwidth estimation mechanism by monitoring the rate 

of returning acknowledgments at the sender side [4]. TCPW inherent the basic TCP transmission control 

principles; flow control, congestion control, and error control mechanisms. The flow control tries to limit 

the transmission rate corresponding to the receiver’s buffer capacity. Whereas, the congestion control 

mechanisms tries to limit the transmission rate by the link capacity. Therefore, TCP uses a congestion 

window (cwnd) to limit the number of segments the sender can transmit whenever a new 

acknowledgment received. TCPW starts the connection in slow start phase. During this phase the sender 

increments its cwnd exponentially until cwnd equal to a predefined value called slow start threshold 

(ssthresh). After that, a congestion avoidance phase is started, during which the sender increments its 

cwnd linearly. Anytime a packet loss event occurs, TCP sets the ssthresh value to one half the cwnd and 

trigger the slow start again. For the initial slow start there is no safe ssthresh value. If the ssthresh value 

is too small, then the sender will immediately stops the exponential increment of the cwnd. Thus, it will 
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take long time to reach the optimal cwnd size using the Additive Increase/Multiplicative Decrease 

(AIMD) linear incrementing. On the other hand, using a large ssthresh value will aggressively increase 

the cwnd.  This as an effect causes more packet losses, unwanted retransmission events, and serious 

performance degradation.   

In this paper, we propose to modify the TCPW bandwidth estimation in order to properly set the 

ssthresh value for the initial slow start phase. In addition, we present a faster start phase in which the 

sender can rapidly increase its cwnd size to shorten the slow start phase.  

The rest of the paper is organized as follow; Section two presents a brief background study. We 

introduce our modifications in section three. Section four present a comparative simulation experiments 

to validate the proposed modifications. Then the conclusion is drawn in section five. 

 Background Study 

2.1 Introduction 

TCP Tahoe introduced the first congestion control mechanism in 1988 [1], including slow start, 

congestion avoidance, and fast retransmit. A new modification to the Tahoe’s fast retransmit was 

presented in TCP Reno [2]. This modification used a fast recovery mechanism every time a fast 

retransmit procedure is triggered. Further modification to Reno is presented as TCP New-Reno [3]. TCP 

NewReno enhanced the fast retransmit mechanism in case of multiple packets lost from a single 

window.  

The poor performance of TCP over wireless networks innovate a wide spectrum of research community 

to develop new solutions [8]. Many TCP variants have been presented to overcome this issue. One novel 

End-to-End bandwidth estimation method known as TCP Westwood [4] was presented. TCPW monitors 

the rate of the returning acknowledgments at the sender side to obtain an estimation of the link 

bandwidth. Then TCPW uses the estimation to set the slow start threshold value after a loss event 

occurs. 

2.2 The Slow Start 

Slow start algorithm used to gradually increase the number of packets in transit. The implementation of 

the slow start is accomplished through defining two variables to control the transmission; the 

congestion window (cwnd) and the receiver advertized window (rwnd). The cwnd is the number of 

packets the sender can send before receiving an acknowledgment (ACK). While the rwnd is the amount 

of packets the receiver can buffer. The sender limits the sending rate to the minimum of the cwnd and 

rwnd values.  

To avoid congesting in the transmission links with large amount of data, TCP slowly probe the network 

capacity using slow start. Usually, TCP star transmission by cwnd=1 segment. During the slow start 

phase, the sender side increments cwnd by 1 segment for each ACK received. This exponential growth of 

cwnd ends when the cwnd exceeds the slow start threshold (ssthresh) value or when congestion 

observed.  When packet loss event detects the value of ssthresh set to half of the cwnd size, the cwnd 

sets to 1 segment, and the TCP sender starts the slow start again. Figure 1 shows the cwnd growth 

during slow start phase.  
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Figure 1: The Chronology of Slow Start [1] 

 The Modification 

In this section we present a new method to properly set the ssthresh value in the initial slow start phase. 

Toward this end, we probe the link’s bandwidth by counting the bytes acknowledged between two 

sequences ACKs at the sender side. According to the following equation: 

1
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Where LC is the link capacity and Acked is the number of packets acknowledge within every ACK. Then 

we use the moving average method to update the computed ELC every ACK received according to 

following formula: 

 

1(1 ) *i iELC ELC ELC      

Where α = 0.9.  

To get the ssthresh in a form of congestion window we use the following equation: 

*ssthresh ELC MinRTT  
 
Where RTT is round trip time (the time when a packet is sent until the ACK is received). The computed 

ssthresh value will provide an accurate value for initial slow start threshold according to the link 

capacity. As seen, this value is not a constant number; however it varies according to the connection 

status. 

Furthermore, we proposed to use a state called the “Faster start” in which we can increase the cwnd 

according to a bandwidth utilization. Before sending new segment during the slow start, we check the 

values of the current cwnd and last round trip time. As following: 

 If the last RTT is less than or equal the estimated RTT, and cwnd less than the half of ssthresh, 

then cwnd = cwnd + (ssthresh DIV cwnd). 

 Else, cwnd =cwnd +1.  

The following section shows that, the new modifications improve TCPW congestion window and the 

throughput.  
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 Experiments and Analysis 

The performance of the new modifications is assessed in this section. We use two performance metrics 

to evaluate the proposed modifications, throughput, and congestion window. We compare the results 

with TCPW and TCP NewReno. For a consistence comparison we use the same simulation scenario that 

had been conducted to present the original TCPW [4]. Network Simulator NS-3 is used to option the 

results, and gnuplot used to plot the graphs. 

4.1 Simulation Setup 

The topology used in this experiment is shown in Figure 2. A single source and sink connected via a gat-

way (PGW).  

 

Figure 2: Simulation Topology [4]. 

Two links, a source-PGW link labeled access link, and PGW-sink link labeled bottleneck link. The access 

link bandwidth is 10Mbps with propagation delay of 45ms, where the bottleneck link bandwidth is 

2Mbps with propagation delay of 0.01ms. The NS3’s built-in PointToPointHelper [7] is used to represent 

a point to point (P2P) connection between the source-PGW and the PGW-sink. To simulate the wireless 

lose channel we used the RateErrorModel [7] class to generate sending errors over the bottleneck link. 

Errors are assumed to follow random distribution. A BulkSendApplication [7] is used to generate a single 

traffic along the simulation period started at the source and ended at the sink. Table1 summarizes the 

simulation parameters.  

Table 1. Simulation parameters. 

Parameter Value 

Mobility Fixed Position 

Access link bandwidth 10Mb/s 

Access link Propagation Delay 45 ms 

Bottleneck link bandwidth 2Mb/s 

Bottleneck link Propagation Delay 0.01 ms 

Error model Uniform Error Model 

Packet Error Rate (PER) 0.005 

Application type Bulk Send Application 

Simulation time 5 seconds 
 

We used 5 seconds as simulation time to focus our results on the initial slow start phase. 

4.2 Simulation Results 

For the first experiment, we used the same parameters listed in table 1. We compared the congestion 

window of the new modification referred to as Petra, TCPW, and TCP NewReno. The result is plotted in 

Figure 3. 
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Figure 3:Congestion Window comparison. 

As can be observed from this figure, a bigger cwnd values is achieved for the new modification algorithm 

comparing to TCPW and TCP NewReno. Moreover, we can see how fast the new modification reaches 

the optimal cwnd that is just about 1.75 seconds. While TCPW reached its maximum cwnd at 4.75 

seconds, and TCP NewReno recorded a very small congestion window size. 

Next we evaluate the total throughput achieved using the new modification, TCPW, and TCP NewReno 

as a function of increasing bottleneck bandwidth size. The results are plotted in                Figure 4. The 

same network topology given above is also used. 

 

Figure 4: Throughput vs. bandwidth 

It is clearly seen that a better throughput is achieved with Petra comparing to TCPW and TCP New Reno. 

However, weird throughput degradation is noticed after the 4Mbps bandwidth for both TCPW and 

Petra. One reason of this weird behavior could be due to the increasing retransmission procedures that 

occurred as responses to loss events. Such weird behavior did not appear for small bandwidth sizes 

since infrequent packet losses occurred. 

The simulation experiments were extended to study the impact of various propagation delay values on 

the throughput. Figure 5 shows the total throughput values achieved by Petra, TCPW, and TCP New 

Reno over different propagation delay values started from 1ms to 60ms. The bottleneck bandwidth is 

set 2Mbps and the simulation period is set to 5 seconds. A BER of 0.005 is still used. 
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Figure 5: Throughput vs. Propagation delay 

Figure 5 shows better throughput values recorded using the new modification over the other 

implementations. As expected, the throughput is decreased as the propagation delay is increased. 

 

Figure 6: Throughput vs. Packets Error Rate. 

In figure 6 we plotted the throughput recorded by the three implantations. We used various values of 

PER over the same bandwidth size and propagation delay 2Mbps and 45Ms respectively.   As we can be 

seen, the new modification outperformed other implementations significantly for the entire range of 

PER. 

 Conclusion 

In this paper, new modifications to TCPW slow start phase, referred to as Petra, were introduced. One 

modification suggested using bandwidth estimation in order to set the initial value of the slow start 

threshold. The other modification is represented by using a faster start to rapidly increase the 

congestion window size according to the link status. Simulation results in this paper slowed that, Petra 

improved TCP performance in terms of throughput and congestion window size. 

In future work, we could further extend the evaluation process to study the impact of more 

performance metrics including Jitters, delay, and packet loss. Moreover, we could compare Petra to 

other TCP implementations, in addition to investigating the fairness and the friendless of the new 

modifications. 
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