

DOI: 10.14738/tnc.25.601
Publication Date: 25rd October, 2014
URL: http://dx.doi.org/10.14738/tnc.25.601

Enhanced TCP Westwood Slow Start Phase

Mohanad Al-Hasanat, Kamaruzzaman Seman and Kamarudien Saadan
University Sains Islam Malaysia, Malaysia

mohanad.hasanat@gmail.com; {drkzaman, kamarudin}@usim.edu.my

ABSTRACT

Many end-to-end TCP implementations have been presented in the past decade. Despite that they used

different methods to improve transport protocols over wireless networks; they mostly shared the same

original TCP principles. TCP Westwood introduced a novel end-to-end bandwidth estimation

mechanism. Nevertheless, it maintains the same slow start phase presented in TCP Reno. For the initial

slow start phase, there is no safe slow start threshold value. In this paper, we propose to use the

bandwidth estimation to calculate the initial slow start threshold value after the second round trip time.

Furthermore, we introduce a faster state in which TCP increases the transmission rate once the link is

underutilizing. As a result, the new proposed method shows better performance comparing to TCP

Westwood, and TCP NewReno techniques.

Keywords: TCP Westwood; Congestion Control; Slow Start; Slow Start Threshold, TCP Enhancement.

 Introduction

TCP– Transmission Control Protocol is the most transport protocol used over internet. Inefficient TCP

performance in wireless networks motivated a wide spectrum in research community to enhance its

congestion control mechanisms. Several TCP variants have been introduced over the past decade to

support different network technologies [5, 6]. These mechanisms can be classified into three main

categories: a link level solutions (e.g. I-TCP, M-TCP, etc.), end-to-end solutions (e.g. Explicit Congestion

Notification (ECN), TCP Westwood, TCP Casablanca, etc.), and split connection solutions (e.g. Forward

Error Correction (FEC), Automatic Repeat Request (ARQ), and Hybrid ARQ (HARQ), etc.).

TCP Westwood-TCPW presented a novel E2E bandwidth estimation mechanism by monitoring the rate

of returning acknowledgments at the sender side [4]. TCPW inherent the basic TCP transmission control

principles; flow control, congestion control, and error control mechanisms. The flow control tries to limit

the transmission rate corresponding to the receiver’s buffer capacity. Whereas, the congestion control

mechanisms tries to limit the transmission rate by the link capacity. Therefore, TCP uses a congestion

window (cwnd) to limit the number of segments the sender can transmit whenever a new

acknowledgment received. TCPW starts the connection in slow start phase. During this phase the sender

increments its cwnd exponentially until cwnd equal to a predefined value called slow start threshold

(ssthresh). After that, a congestion avoidance phase is started, during which the sender increments its

cwnd linearly. Anytime a packet loss event occurs, TCP sets the ssthresh value to one half the cwnd and

trigger the slow start again. For the initial slow start there is no safe ssthresh value. If the ssthresh value

is too small, then the sender will immediately stops the exponential increment of the cwnd. Thus, it will

Transact ions on Networks and Communications; Volume 2, Issue 5, October 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 195

take long time to reach the optimal cwnd size using the Additive Increase/Multiplicative Decrease

(AIMD) linear incrementing. On the other hand, using a large ssthresh value will aggressively increase

the cwnd. This as an effect causes more packet losses, unwanted retransmission events, and serious

performance degradation.

In this paper, we propose to modify the TCPW bandwidth estimation in order to properly set the

ssthresh value for the initial slow start phase. In addition, we present a faster start phase in which the

sender can rapidly increase its cwnd size to shorten the slow start phase.

The rest of the paper is organized as follow; Section two presents a brief background study. We

introduce our modifications in section three. Section four present a comparative simulation experiments

to validate the proposed modifications. Then the conclusion is drawn in section five.

 Background Study

2.1 Introduction

TCP Tahoe introduced the first congestion control mechanism in 1988 [1], including slow start,

congestion avoidance, and fast retransmit. A new modification to the Tahoe’s fast retransmit was

presented in TCP Reno [2]. This modification used a fast recovery mechanism every time a fast

retransmit procedure is triggered. Further modification to Reno is presented as TCP New-Reno [3]. TCP

NewReno enhanced the fast retransmit mechanism in case of multiple packets lost from a single

window.

The poor performance of TCP over wireless networks innovate a wide spectrum of research community

to develop new solutions [8]. Many TCP variants have been presented to overcome this issue. One novel

End-to-End bandwidth estimation method known as TCP Westwood [4] was presented. TCPW monitors

the rate of the returning acknowledgments at the sender side to obtain an estimation of the link

bandwidth. Then TCPW uses the estimation to set the slow start threshold value after a loss event

occurs.

2.2 The Slow Start

Slow start algorithm used to gradually increase the number of packets in transit. The implementation of

the slow start is accomplished through defining two variables to control the transmission; the

congestion window (cwnd) and the receiver advertized window (rwnd). The cwnd is the number of

packets the sender can send before receiving an acknowledgment (ACK). While the rwnd is the amount

of packets the receiver can buffer. The sender limits the sending rate to the minimum of the cwnd and

rwnd values.

To avoid congesting in the transmission links with large amount of data, TCP slowly probe the network

capacity using slow start. Usually, TCP star transmission by cwnd=1 segment. During the slow start

phase, the sender side increments cwnd by 1 segment for each ACK received. This exponential growth of

cwnd ends when the cwnd exceeds the slow start threshold (ssthresh) value or when congestion

observed. When packet loss event detects the value of ssthresh set to half of the cwnd size, the cwnd

sets to 1 segment, and the TCP sender starts the slow start again. Figure 1 shows the cwnd growth

during slow start phase.

Mohanad Al-Hasanat, Kamaruzzaman Seman and Kamarudien Saadan; Enhanced TCP Westwood Slow Start Phase,

Transactions on Networks and Communications, Volume 2 No 5, Oct (2014); pp: 194-200

URL: http://dx.doi.org/10.14738/tnc.25.601 196

Figure 1: The Chronology of Slow Start [1]

 The Modification

In this section we present a new method to properly set the ssthresh value in the initial slow start phase.

Toward this end, we probe the link’s bandwidth by counting the bytes acknowledged between two

sequences ACKs at the sender side. According to the following equation:

1

*

k k

Acked SegmentSize
ELC

t t 




Where LC is the link capacity and Acked is the number of packets acknowledge within every ACK. Then

we use the moving average method to update the computed ELC every ACK received according to

following formula:

1(1) *i iELC ELC ELC    

Where α = 0.9.

To get the ssthresh in a form of congestion window we use the following equation:

*ssthresh ELC MinRTT

Where RTT is round trip time (the time when a packet is sent until the ACK is received). The computed

ssthresh value will provide an accurate value for initial slow start threshold according to the link

capacity. As seen, this value is not a constant number; however it varies according to the connection

status.

Furthermore, we proposed to use a state called the “Faster start” in which we can increase the cwnd

according to a bandwidth utilization. Before sending new segment during the slow start, we check the

values of the current cwnd and last round trip time. As following:

 If the last RTT is less than or equal the estimated RTT, and cwnd less than the half of ssthresh,

then cwnd = cwnd + (ssthresh DIV cwnd).

 Else, cwnd =cwnd +1.

The following section shows that, the new modifications improve TCPW congestion window and the

throughput.

http://dx.doi.org/10.14738/tnc.25.601

Transact ions on Networks and Communications; Volume 2, Issue 5, October 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 197

 Experiments and Analysis

The performance of the new modifications is assessed in this section. We use two performance metrics

to evaluate the proposed modifications, throughput, and congestion window. We compare the results

with TCPW and TCP NewReno. For a consistence comparison we use the same simulation scenario that

had been conducted to present the original TCPW [4]. Network Simulator NS-3 is used to option the

results, and gnuplot used to plot the graphs.

4.1 Simulation Setup

The topology used in this experiment is shown in Figure 2. A single source and sink connected via a gat-

way (PGW).

Figure 2: Simulation Topology [4].

Two links, a source-PGW link labeled access link, and PGW-sink link labeled bottleneck link. The access

link bandwidth is 10Mbps with propagation delay of 45ms, where the bottleneck link bandwidth is

2Mbps with propagation delay of 0.01ms. The NS3’s built-in PointToPointHelper [7] is used to represent

a point to point (P2P) connection between the source-PGW and the PGW-sink. To simulate the wireless

lose channel we used the RateErrorModel [7] class to generate sending errors over the bottleneck link.

Errors are assumed to follow random distribution. A BulkSendApplication [7] is used to generate a single

traffic along the simulation period started at the source and ended at the sink. Table1 summarizes the

simulation parameters.

Table 1. Simulation parameters.

Parameter Value

Mobility Fixed Position

Access link bandwidth 10Mb/s

Access link Propagation Delay 45 ms

Bottleneck link bandwidth 2Mb/s

Bottleneck link Propagation Delay 0.01 ms

Error model Uniform Error Model

Packet Error Rate (PER) 0.005

Application type Bulk Send Application

Simulation time 5 seconds

We used 5 seconds as simulation time to focus our results on the initial slow start phase.

4.2 Simulation Results

For the first experiment, we used the same parameters listed in table 1. We compared the congestion

window of the new modification referred to as Petra, TCPW, and TCP NewReno. The result is plotted in

Figure 3.

Mohanad Al-Hasanat, Kamaruzzaman Seman and Kamarudien Saadan; Enhanced TCP Westwood Slow Start Phase,

Transactions on Networks and Communications, Volume 2 No 5, Oct (2014); pp: 194-200

URL: http://dx.doi.org/10.14738/tnc.25.601 198

Figure 3:Congestion Window comparison.

As can be observed from this figure, a bigger cwnd values is achieved for the new modification algorithm

comparing to TCPW and TCP NewReno. Moreover, we can see how fast the new modification reaches

the optimal cwnd that is just about 1.75 seconds. While TCPW reached its maximum cwnd at 4.75

seconds, and TCP NewReno recorded a very small congestion window size.

Next we evaluate the total throughput achieved using the new modification, TCPW, and TCP NewReno

as a function of increasing bottleneck bandwidth size. The results are plotted in Figure 4. The

same network topology given above is also used.

Figure 4: Throughput vs. bandwidth

It is clearly seen that a better throughput is achieved with Petra comparing to TCPW and TCP New Reno.

However, weird throughput degradation is noticed after the 4Mbps bandwidth for both TCPW and

Petra. One reason of this weird behavior could be due to the increasing retransmission procedures that

occurred as responses to loss events. Such weird behavior did not appear for small bandwidth sizes

since infrequent packet losses occurred.

The simulation experiments were extended to study the impact of various propagation delay values on

the throughput. Figure 5 shows the total throughput values achieved by Petra, TCPW, and TCP New

Reno over different propagation delay values started from 1ms to 60ms. The bottleneck bandwidth is

set 2Mbps and the simulation period is set to 5 seconds. A BER of 0.005 is still used.

http://dx.doi.org/10.14738/tnc.25.601

Transact ions on Networks and Communications; Volume 2, Issue 5, October 2014

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 199

Figure 5: Throughput vs. Propagation delay

Figure 5 shows better throughput values recorded using the new modification over the other

implementations. As expected, the throughput is decreased as the propagation delay is increased.

Figure 6: Throughput vs. Packets Error Rate.

In figure 6 we plotted the throughput recorded by the three implantations. We used various values of

PER over the same bandwidth size and propagation delay 2Mbps and 45Ms respectively. As we can be

seen, the new modification outperformed other implementations significantly for the entire range of

PER.

 Conclusion

In this paper, new modifications to TCPW slow start phase, referred to as Petra, were introduced. One

modification suggested using bandwidth estimation in order to set the initial value of the slow start

threshold. The other modification is represented by using a faster start to rapidly increase the

congestion window size according to the link status. Simulation results in this paper slowed that, Petra

improved TCP performance in terms of throughput and congestion window size.

In future work, we could further extend the evaluation process to study the impact of more

performance metrics including Jitters, delay, and packet loss. Moreover, we could compare Petra to

other TCP implementations, in addition to investigating the fairness and the friendless of the new

modifications.

Mohanad Al-Hasanat, Kamaruzzaman Seman and Kamarudien Saadan; Enhanced TCP Westwood Slow Start Phase,

Transactions on Networks and Communications, Volume 2 No 5, Oct (2014); pp: 194-200

URL: http://dx.doi.org/10.14738/tnc.25.601 200

REFERENCES

[1]. Van Jacobson and M. J. Karels, Congestion Avoidance and Control. ACM Computer Communication, 1988. 18:

p. 314-329.

[2]. V. Jacobson. Modified TCP Congestion avoidance algorithm, end2end-interest mailing list, April 30, 1990.

[3]. Floyd, S., et al., The NewReno Modification to TCP's Fast Recovery Algorithm. RFC 3782, April 2004.

[4]. S. Mascolo, C., et al., TCP westwood: Bandwidth estimation for enhanced transport over wireless inks. ACM

SIGMOBILE, 2001. p. 287-297.

[5]. H. Xie, A., et al., A Novel Cross Layer TCP Pacing Protocol for Multi-hop Wireless Networks. IEEE Wireless

Communications and Networking Conference, 2013.

[6]. C. Hu, X., et al., WiTracer: A Novel Solution to Improve TCP Performance overWireless Network. IEEE, 2013.

[7]. The ns-3 Network Simulator Doxygen Documentation. http://www.nsam.org/doxygen/group_tcp.html,

December 2013.

[8]. M. Al-Hasanat, K., et al.. Enhanced TCP Westwood Congestion Control Mechanism over Wireless Networks.

In International Conference on Advanced Technology & Sciences. 12-15 August, 2014. Antalya, T

http://dx.doi.org/10.14738/tnc.25.601
http://tools.ietf.org/html/rfc3782
http://www.nsam.org/doxygen/group_tcp.html

