
DOI: 10.14738/tnc.71.5939
Publication Date: 02nd February 2019
URL: http://dx.doi.org/10.14738/tnc.71.5939

VOLUME 7, NO. 1
ISSN: 2054 -7420

SOCIETY FOR SCIENCE AND EDUCATION
UNITED KINGDOM

TR A N S A C TI O N S ON
NE T WO R KS A N D CO M M U N I C A TI O NS

TNC
Merging Securely M2M Protocols, Internet of Things and Cloud

Computing

Dina Darwish
The International Academy for Engineering and Media Science, Egypt

dina.g.darwish@gmail.com

ABSTRACT

The Internet of Things provides new ways for communication through the Web world using object-
enabled networks. At the same time, M2M devices intercommunication and their communication through
the web if they were connected to the Internet, presents new challenges, especially in security, that
traditional communication models have not yet fully solved. Because of their inborn un-watched, minimal
effort and mass-sent nature, M2M devices, and remote communication architectures and solutions for
these devices, would encapsulate new dangers in security. These threats are not fully faced by use of
security technologies and methods implemented in existing wireless devices, cellular networks or WLANs.
The use of cloud computing gives a convenient, on demand and scalable network access to a shared pool
of configurable computing resources and devices. This paper concentrates on a secure method to
integrate the M2M protocols with the Internet of Things (IoT) and Cloud Computing under the name of
Secure Machine-to-Internet Clouding (SM2IC) architecture. The secure design for integrating M2M
protocols, along with IoT and cloud computing is proposed. To apply this design, an IoT enabled smart
home scenario was examined to analyze secure communication between M2M devices and IoT
applications. Also, the cloud computing is used to include different cloud applications, such as, IaaS, PaaS,
and SaaS for monitoring the quality of service of M2M devices through IoT applications. Then, simulations
were performed to test the proposed security technique, followed by conclusions and future work.

Keywords: Cloud computing; Internet of Things, M2M protocols, Secure Integration, Connected M2M
Devices.

1 Introduction
Internet of Things (IoT) is considered as a technology aimed at providing customers with smarter services
by linking different devices to the Internet and enabling these devices to exchange information with each
other. IoT has been distinguished as a developing technology in numerous IT trend reports [1], and the
number of IoT devices is proposed to increase [2,3]. It is suggested by some IT trend reports that the
worldwide IoT market will be worth billions of dollars by 2022 [4]. The interconnection between the
different kinds of IoT devices is a key issue for the achievement of IoT, in light of the fact that the numbers
of IoT devices is developing ceaselessly. IoT standardization bodies have completed several endeavors to
understand the interconnection issue. Numerous Web of Things (IoT) platforms were outlined and

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 2

executed over the previous decade. In any case, most platforms were applied in light of particular
solutions or created to address certain domain issues.

To interconnect different proprietary platforms and deliver common IoT services to customers, there is a
strong need to create a standardized IoT platform. To face interoperability issues, seven standard
development organizations (SDOs) started a global standards project named oneM2M [5], by providing
scalable and interoperable IoT standards for communication of devices and services. The goal of oneM2M
is to present a single horizontal service platform, that can be implemented in different industries to deliver
smarter IoT services to users and to exchange and share data among IoT applications. Machine-to-
machine (M2M) communication is one of the next frontiers in wireless communication. There exist a large
number of possibilities, in terms of new use cases, services and applications, that is suggested to result
from communication between M2M devices. M2M can present benefits for the production and market
opportunities for various manufacturers of M2M devices and components, service providers, and network
operators.

Due to the huge number of M2M devices expected to be used, in a highly distributed network,
enforcement of traditional security methods will not be practical because of the high cost of
implementation of these devices. Also, deploying the conventional centralized IT security network model,
protected by a firewall, is challenged by the need for a dispersed model, so, de-centralized methods for
realizing security must be accessed. The growing direction towards using de-centralized systems creates
a lot of situations in which enforcement of security, is accompanied by a controlled risk. The principles of
how to enforce security embraced by traditional concepts of access control are being changed by a shift
to implement “trust.” An entity is considered “trusted” if it behaves correctly as expected to achieve its
intended goal. By including pieces of the enforcement tasks to trusted elements distributed in a system,
trust relationships can be created. This is the most important part in the organizational method of
separate tasks within IT security. This security model, which is balanced between trust and enforcement,
produces a useful, practical and scalable approach and, can be used for M2M communication.

Security is one of the main problems in any information system, including M2M systems. With a big
market for M2M devices and networks, M2M systems require to be properly designed and implemented.
Many applications envisioned for M2M can be done if security is properly considered from the beginning.
There is a need for good security mechanisms and procedures, also, various characteristics of M2M
systems and applications may constitute challenges to the design of useful security mechanisms.

A few troubles, for example, the support of heterogeneous communication advancements and protocols
for communication between M2M devices, the restrictions on equipment of numerous M2M detecting
and actuating platforms, and security desires from clients require to be recognized. Numerous lessons
and specialized solutions have been achieved from research in many fields, for example, mobile ad hoc
networks [6] [7] or remote sensor networks [8], but, M2M frameworks still need new strategies in
security. The employment of different wired and wireless communication innovations guided by the
utilization of a typical service platform decides the careful assessment of the applied cryptographic
algorithms. The support of communication needs proper distinguishing strategies. The properties and
asset restrictions of M2M systems form difficulties to the plan of suitable security innovations, that can
deal with distinctive detecting and actuating M2M devices. Contingent upon security desires for the M2M

http://dx.doi.org/10.14738/tnc.71.5939

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 3

systems and applications, clients will require systems that permit the control of how much individual data
is anchored, while certain applications will require a specific level of individual data to be ensured [9].

Cloud computing is depicted by the National Institute of Standard and Technologies (NIST) [10] as follows:
"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or service provider interaction."
The fundamental thought behind Cloud computing began to pick up fame after that Google's Chief Eric
Shmidt utilized it in 2006 [11], and along the most recent years, Cloud computing has influenced IT
industry. The presence of virtually unlimited storage and processing capabilities at low cost has created a
new computing model, inside which virtual resources can be used on-demand.

Cloud computing [12] provides also a new method for design, development, test, deployment, run and
maintenance of applications on the Internet. It is required to take care of running operating systems,
networks, load balancing, routers, firewalls, and storage by the application developer, and at the same
time, integrating these things and, enabling them to interact with the system. Also, it is important to take
care by the developer of scalability, because it determines how the application can fit many geographically
distributed users. The Cloud user; developer or consumer, can reach the Cloud services over the Internet,
and the Cloud users must pay for time and services they are in need. The Cloud can also be expanded to
implement large numbers of service requests. Cloud computing considers the micro-lifecycle
management of applications, and enables application managers to concentrate on application design and
surveillance. The Cloud computing platform is composed of different services for developing, testing,
running, deploying, and maintaining applications on the Cloud. This direction for delivering services over
the Internet, has been widely used by large companies, such as, Amazon, Google and Facebook and so on
to gain both economic and technical benefits. Cloud Computing is considered as a disruptive technology
with huge impact on the delivery of Internet services as well as for the IT sector.

 The Internet of Things and Cloud computing are both considered as emerging technologies and they
possess their own features. Things are connected to their virtual representations on the Internet and are
reached through the Internet (i.e. Things as services) [13]. Cloud computing implements the utility model,
which allows end-users to use and consume services in an efficient and pay-per-use way.

However, various technical and business-related issues are still unsolved. Certain issues have been
determined for each service model, these issues are related to security, privacy, and service-level
agreements, which need to be addressed for users [14]. Moreover, the lack of standard APIs makes
extracting code and data from a site difficult for customers. Also, public Cloud customers are exposed to
price increases, reliability problems or even to providers going out of business.

In this paper, a secure approach for integrating M2M protocols with the internet of things through cloud
computing, namely secure machine-to-internet clouding (SM2IC) is proposed, and tested using the
appropriate software tools. In section 2, a background on work done in cloud computing, Internet of
Things and M2M communication was presented as well as the need for their integration. In section 3,
description of current M2M protocols adopted by ETSI. In section 4, a detailed description of the proposed
secure machine-to-internet clouding architecture is given. In section 5, description of simulation
environment was made. In section 6, description of parameters used during simulation was done. In

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 4

section 7, experimental results were provided. In section 8, conclusions and future work were given.
Finally, references were provided.

2 Merge of Cloud computing, Internet of Things, and M2M Communication
In the following sections, few important characteristics of Cloud are going to be described. The design of
Cloud can be partitioned into four layers: datacenter (equipment), infrastructure, platform, and
application [11]. Every one of them is considered as a service for the layer above and as a consumer for
the layer beneath. By and by, Cloud services can be gathered in three fundamental categories: Software
as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). SaaS is related to
the monitoring of applications running on Cloud environments. Applications can typically be reached by a
thin client or a web browser. PaaS is related to platform-layer resources (such as, operating system
support, software development frameworks, etc.). IaaS is related to delivering processing, storage, and
network resources, enabling the consumer to manage the operating system, storage and applications. It
has attracted the biggest interest so far. There are different types of Clouds’ deployment that have been
determined [10, 11], as mentioned in the following: (i) Private Cloud designed for use by a single
organization, typically possessed, directed, and operated by the organization itself; (ii) Community Cloud
– designed for use by a specific community of consumers that have common concerns; (iii) Public Cloud –
designed for open use by the public; (iv) Hybrid Cloud – is composed of two or more distinct Cloud
infrastructures (private, community, or public); (v) Virtual Private Cloud – designed to address issues
related to public and private Clouds, benefiting from advantage of virtual private network (VPN)
technologies for enabling business owners to setup desired network settings (such as, security, topology,
and so on).

Cloud computing model frees the business owner from the need to invest in the infrastructure, enabling
him to rent resources according to his needs and only pay for the usage, then, it becomes attractive. Also,
it enables decreasing operating costs, as service providers do not have to rent capacities according to peak
load, and resources are left when service demand becomes low. In addition to these economic
advantages, Cloud computing provides a number of technical benefits, such as, energy efficiency,
optimization of hardware and software resource utilization, elasticity, performance isolation, and
flexibility. The two terms of Cloud and IoT have evolved rapidly and independently. These terms are
different from each other and, their characteristics are complementary, as Table [15] shows.

Table 1. Complementary aspects of Cloud and IoT

 IoT Cloud
Displacement pervasive centralized
Reachability limited ubiquitous
Components Real world things Virtual resources
Computational capabilities Limited Virtually unlimited
Storage Limited or none Virtually unlimited
Role of the Internet Point of convergence Means for delivering services
Big data source Means to manage

For this reason, many researchers have suggested complementary characteristics of cloud and IoT, and
have proposed integration, generally to obtain benefits in specific application scenarios [16, 17].
Generally, IoT can benefit from the virtually unlimited capabilities and resources of Cloud to compensate
its technological limitations (such as, storage, processing, communication). Cloud can provide an efficient

http://dx.doi.org/10.14738/tnc.71.5939

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 5

solution for IoT service management and composition as well as for applying applications and services
that benefit from the things or the data generated by them. Also, cloud can exploit IoT by expanding its
scope to manage real world things in a more distributed and dynamic manner, and for presenting new
services in a large number of real life cases. Cloud can deliver the intermediate layer between the things
and the applications, preventing all the complexity and functionalities necessary to use the latter. This has
impact on future application design, because information collecting, executing, and transmission will
create new challenges, especially in a multi-cloud environment. It is believed that Cloud fills some gaps of
IoT (such as, the limited storage). And, some see IoT filling gaps of Cloud (such as, the limited scope). Most
of these drivers pushing cloud and IoT integration fall in three categories that are communication, storage,
and computation, while there exist other basic traversal drivers. IoT is characterized by a very high
heterogeneity of devices, technologies, and protocols, but, it lacks different important characteristics such
as scalability, interoperability, flexibility, reliability, efficiency, availability, and security. On the other hand,
Cloud has proved to deliver them [18, 19], then, they can be identified as some of the main transversal
drivers for cloud and IoT integration. There are two other transversal drivers, which are the ease of use
and the reduced cost delivered by both users and providers of applications and services [19].

3 M2M communication and high level architecture

3.1 Background on M2M communication
M2M communication tries to reach the vision of connected things, or what is meant by Internet of Things
(IoT) [20] [4], through a variety of possible uses in a world where intelligent applications provide a better
and safer world. Also, the number of connected devices is rapidly increasing. International Data
Corporation expects there will exist around 15 billion devices communicating over the network by the
year 2015 [21], while Cisco Internet Business Solutions Group (IBSG) expects 25 billion devices connected
to the Internet by 2015 and 50 billion by 2020 [22]. Machina Research white paper mentioned that by
2022, there will exist around 18 billion M2M connections in the world, up from approximately 2 billion
today [23]. Ericsson claims that their vision of more than 50 billion connected devices by 2020 may appear
realizable and within reach using the right approach [24]. Due to this rapid expansion, the concept of M2M
communication is having more and more significance. Interoperability, between devices based on various
access network technologies (e.g. mobile (2G/3G/4G), Wi-Fi, Bluetooth), with different platforms and data
models is still very limited.

M2M (Machine-to-Machine) communication is initiated between two or more entities without any direct
human intervention [25]. Actors in this environment are broad range of communication capable devices,
such as, computers, mobile phones, tablets, a variety of sensors, actuators, pieces of industrial and
medical equipment, and other everyday devices [26].

3.2 M2M high level architecture defined by ETSI
ETSI's work determined a high-level architecture view describing all constituents of M2M systems, their
roles, and relationships. The high-level architecture of M2M system is composed of two main parts, which
are Device and Gateway Domain, and a Network Domain, as shown in Figure 1 [27]. The device and
gateway domain is consisting of the following elements:

• M2M Device: executes M2M Device Applications (DA) using M2M Device Service Capabilities
Layer (DSCL).

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 6

• M2M Gateway: executes M2M Gateway Applications (GA) using M2M Gateway Service
Capabilities Layer (GSCL).

• M2M Area Network: conveys connectivity based on Personal or Local Area Network
technologies (e.g. ZigBee, Bluetooth) between M2M devices and M2M gateways.

The network domain is comprising of the following components:

• M2M Access Network: empowers M2M devices and M2M gateways to communicate with the
Core Network. It can rely upon any of the following existing access network solutions: Digital
Subscriber Line (DSL), satellite, GSM EDGE Radio Access Network (GERAN), Universal
Terrestrial Radio Access Network (UTRAN), evolved UTRAN (eUTRAN), Wi-Fi (IEEE 802.11), and
Worldwide Interoperability for Microwave Access (WiMAX), that can be used for M2M
communication when needed.

• M2M Core Network: allows interconnection with other networks, delivers IP connectivity or
other connectivity choices, service and control functions, and roaming. Similar to access
network, it can depend on different existing core networking (CN) solutions (3GPP CN, ETSI
Telecoms & Internet converged Services & Protocols for Advanced Networks (TISPAN) CN, and
3GPP2 CN) that can be changed to meet certain M2M communication requirements when
needed.

• M2M Network Service Capabilities Layer (NSCL): delivers shared M2M functions by different
M2M applications.

• M2M Applications: execute the service logic and implement M2M service capabilities available
through open interfaces.

• M2M Network Management Functions: is composed of all the functions, such as, provisioning,
supervision, and fault management needed to deal with access and core networks.

• M2M Management Functions: is composed of all the functions, such as, M2M Service
Bootstrap Function (MSBF) implemented to simplify the bootstrapping of permanent M2M
service layer security credentials needed to deal with M2M service capabilities in the network
domain.

Fig. 1. High-level architecture of M2M system defined by ETSI

http://dx.doi.org/10.14738/tnc.71.5939

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 7

4 The proposed Secure Machine-to-Internet Clouding (SM2IC) security
technique

4.1 Communication process in the proposed security technique
The idea proposed in this paper is based on presenting secure smart home connections between the user
and his home devices. So, any user can open, shut down and monitor his home devices from outside his
home using his smartphone or any similar device, besides, monitoring and controlling the quality of
service delivered from his home devices from abroad.

The proposed technique provides a detailed description of how to initiate a secure connection from a
user’s device, such as, PC or tablet and so on to a central controller home device. This central controller
device then sends signals to other desired home devices (e.g. microwave, TV, Lighting system and so on.)
to control the status of these devices. The user’s request communicates with the Internet using the
hypertext transfer protocol, known as HTTP, then, the internet passes this request to the central device
using the Https (or secure hypertext transfer protocol), also, the central controller device’s hardware is
Raspberry pi enabled, and this device can exchange data with the internet using Get and Post commands
through Https. In its turn, the central controller device communicates in both directions with home
devices previously mentioned using M2M network through one of the following technologies (Bluetooth,
ZigBee, radio waves, Wi-fi ……. and so on).

The user’s holding his device with cloud applications (such as, PaaS, IaaS and SaaS) receives a feedback
from the home devices to the central device then to the Internet to his device about the completion of
the secure connection and about the status of his home devices. The cloud applications residing in the
user’s device allow the user to monitor the quality of service (QoS) delivered through the whole process
at the end home devices through giving precise measurements about the different parameters relating to
the connection, internet, central device and controlled home devices, and this enables the user to control
and modify the desired parameters according to what he expects.

The whole process starting from the connection initiation to the connection completion, must be secure
and uncompromised. How security is achieved through this proposed security protocol, will be discussed
in details through the following subsections. Fig.2 shows the whole connection process of the proposed
security technique from the beginning to the end.

In Fig.3, the connection process of the proposed security technique is demonstrated focusing on the type
of networks supporting M2M communication used and at the same time showing the different layers of
the Internet of things. First, the user sends a request from his device containing cloud applications to
change the status of his home devices. In this case, the user carrying his device represents the IoT
application layer. The request traverses the Internet using Http protocol, then, the Internet forwards the
user’s request to M2M core network, which is responsible of connectivity with other networks, and
includes both M2M applications and M2M service capabilities. Then, the request passes to the access
network. The Internet, the M2M core network and the access network compose the IoT network layer.
The request goes then to the M2M gateway, which contains both M2M applications and M2M service
capabilities.

The M2M gateway represents the IoT service and application support layer. The user’s request then
reaches the M2M controller device, which contains M2M applications and M2M service capabilities. This

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 8

M2M controller device sends the user’s request to the M2M Area Network, which works according to one
of the following technologies (such as, Bluetooth, ZigBee, radio waves, Wi-fi …). In turn, the M2M Area
Network forwards the user’s request to the desired M2M devices, which include M2M applications and
M2M service capabilities. The M2M controller device, M2M Area Network and M2M devices constitute
the IoT device layer. Then, the feedback carrying the devices status is sent to the direction of the user,
traversing all the preceding layers. The user can monitor and modify the home devices state using cloud
applications according to his will. Then, the communication process in this technique occurs in both
directions (indicated by lines with arrows in both directions, in Fig.3).

In the following subsections, the proposed security technique is going to be described in details. Fig.4
illustrates the proposed security technique for M2M communication through steps. In the first step, the
user initiate a secure connection from his device, which contains cloud applications to monitor or modify
the parameters of the whole process. The encryption and decryption processes are performed according
to a proposed security technique in this paper, named Double Key Secure Internet (DKSI), and this new
security technique is going to be explained in section 4.2.

The user’s device must generate a connetion request number, composed of the user’s device ID encrypted
using the proposed Double Key Secure Internet (DKSI) tehnique and the key used to encrypt it, as well as,
an authentication setting number, containing the user’s password encrypted using the DKSI technique by
the same key used to encrypt the user’s device ID. The user’s connection request traverses the Internet,
the M2M core network, access network and M2M gateway to reach the M2M controller.

In the second step, the M2M controller checks the connection request number and the authentication
setting number by decrypting the device’s ID and the user’s password using DSA or RSA technique with
the first encryption key sent by the user. If the user’s device ID and the user’s password are verified,
then, the controlller device can transport the requested tasks to the desired devices.

In the third step, the M2M controller device generates a temporary conection key, containing the
controller device ID encrypted using the DKSI encryption technique by a new generated key from the M2M
controller, then, the temporary connection key is encrypted for the second time using the user’s first key
generated at the beginning of the connection with the DKSI encryption technique. Then, the user’s request
containing connection keys passes from the M2M controller device to the M2M required devices through
M2M area network.

In the fourth step, the required M2M devices have to check the temporary connection key containing the
controller device ID and the second encryption key generated by the controller device, as well as the first
encryption key sent from the user’s device. First, the connection key is decrypted using the user’s device
generated key, then, it is decrypted for the second time using the second key generated by the controller
device. Once, the controller device’s ID is checked and verified, then, the desired devices status can be
changed.

Also, each connected device has to create a new connection key, containing its ID encrypted with the
DKSI technique using the second key, which was generated by the controller device, then, this connection
key is encrypted for the second time using the user’s device generated key. Then, the new connection key
has to reach the controller device.

http://dx.doi.org/10.14738/tnc.71.5939

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 9

In the fifth step, the controller device checks the connected M2M devices IDs by decrypting the connected
devices IDs using firstly the user’s device generated key, then, secondly using the controller’s device
generated key with the DKSI technique. Once, their IDs are verified, then, the controller device encrypt
its own ID and the connected M2M devices IDs separately using the user’s device generated key with the
DKSI technique forming two new connection keys, and then relay them to the user’s device.

In the sixth step, the user decrypts the controller device’s ID and the connected M2M devices IDs, using
the key generated from his device with the DKSI technique to be verified. Then, the user can monitor the
connected devices from his device and send a feedback through his device to change connected devices
status. Apart from the different steps of the security technique, the desired devices status are sent from
the user at the connection initiation, to the M2M controller device by passing through the Internet, the
M2M core network, the access network, and the M2M gateway. Then, the M2M controller device
retransmits the desired devices required status to the requested devices by passing through the M2M
area network. Then, the requested devices resend back their encrypted IDs and their modified status to
the M2M controller device again through the M2M area netwok. Finally, the M2M controller device
resends the desired devices encrypted IDs and their modified status back to the user’s device by traversing
the M2M gateway, access network, M2M core network and the Internet. And, the user can modify the
home devices status again as desired.

Fig.2 Description of the whole connection process of the proposed security technique

Fig.3 The whole connection process of the proposed security technique focusing on the different networks
types and the IoT layers

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 10

Fig.4 the proposed security technique steps for M2M communication

4.2 Encryption and decryption techniques in the proposed security technique
4.2.1 Hash Function Used in the Proposed Security Technique

Most known cryptography techniques, such as RSA [28], DSA [29] or elliptic curve [30] encryption
techniques utilize hash functions to ensure security of the user’s data. Hash functions are created in one-
way and can not be reversed or decrypted. In the proposed security technique (DKSI), the hash function
SHA-2 was used. The SHA-2 is going to be described in the following section.

SHA-2 (Secure Hash Algorithm 2) [31] comprises of a set of cryptographic hash functions made by the
United States National Security Agency (NSA). Cryptographic hash functions are considered as
mathematical tasks that process digital data; by looking at the processed "hash" to a known and evaluated
hash value, a person can estimate the data's integrity.

Also, evaluating the hash of a downloaded document and contrasting the outcome with a formerly
created hash result can identify whether the download has been changed or altered. A key property of
cryptographic hash functions is their resistance against collision; no one is capable of discovering two
distinctive input values that deliver the same hash output. SHA-2 has huge changes from its antecedent,
SHA-1.

The SHA-2 family is comprising of six hash functions with digests (hash values) that are 224, 256, 384 or
512 bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256. SHA-2 was announced in
2001 by the National Institute of Standards and Technology (NIST) a U.S. federal standard (FIPS). Today,
the best public attacks break preimage resistance for 52 rounds of SHA-256, and collision resistance for
46 rounds of SHA-256. The table 2 below show the most common properties for sha-256 hash function.

http://dx.doi.org/10.14738/tnc.71.5939
https://en.wikipedia.org/wiki/Secure_Hash_Algorithm
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/National_Security_Agency_(NSA)
https://en.wikipedia.org/wiki/Collision_resistance
https://en.wikipedia.org/wiki/Cryptographic_hash_function#message_digest
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 11

Table 2. the most common properties for sha-256 hash function

Algorithm and
variant

Algorithm
size (bits)

Internal
state
size

(bits)

Block
size

(bits)

Max
message

size
(bits)

Rounds Operations Security
bits

(Info)

Example
Performance

(MiB/s)

First
published

SHA-
2

SHA-
224

SHA-
256

224

256

256

(8x 32)

512 264 - 1 64 And, Xor,
Rot, Add

(mod 232),
Or, Shr

112

128

139 2001

Based on its characteristics, Sha- 256 was chosen to be used as a hash function in the proposed technique,
due to its relative proven strength against attacks and collisions.

4.2.2 Proposed DKSI (named double key secure internet) encryption technique

In this paper, a new encryption technique to ensure security of data transactions is proposed. This
technique implements SHA-2 (as a hash function) instead of SHA-1, because SHA-2 provides better
security as explained in previous section 4.2.2. The proposed DKSI technique is performed on the user’s
ID, password and generated key. It depends on transforming the user’s device ID into binary
representation, then performing some transformations and logical operations on it, and retransforming
it using a hash function along with some mathematical operations. The steps of the proposed DKSI
encryption technique are described below as follows:

1. Take the user’s device ID in combined representation using letters and numbers, for example,
EAT56TYUI

2. Transform each letter or number to its ASCII code, then to its binary representation, composed of 8
bits; 0’s and 1’s

3. Generate the first user’s key of a random 0’s and 1’s, but it must be the same length of the Device ID
binary representation
using Key = rand(1, len), where len is the length of the Device ID binary representation

4. ANDing the binary representation of the Device ID and the generated key
5. Shift to the left twice the output result and the generated key and put 2 0’s at the left of both of them
6. The first two bits shifted from the left, can be: 00, 01, 10 and 11, and put them at the end of the right

of both of the result and the key
Note: the output result represents the Device ID primary encryption. Steps 5 and 6 is performed for both
the result from step 4 and the user generated key. The output length from step 6 is equal to the length of
the binary representation of the Device ID plus two bits, and the length of the key in binary is increased
by two bits.

7. Transform the primary encrypted device_id (Device ID’) to numerical representation
8. Make hash function of the primary encrypted device_ID using SHA-2/256(Device ID’)
9. Apply mathematical operations to the to the hashed primary encrypted device_ID after transforming

it to hexadecimal format and using the logarithmic function, as follows, Final encrypted Device_id =
 [(numerical (hashed Device_ID’))*log (len)] K
10. Transform the user generated shifted key from its binary representation to numerical representation

to become (key’)
11. Apply some modifications on the user generated key before sending it, by New_Key = (K*key’)/(M*P)

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 12

Assumptions for this encryption technique are described below:
 Where K, P and M are known numbers saved at the user’s device, central controller, home

devices,
 Also, the user_mobile_id and password are known to the central device
 The central device_id is known to the home devices
 The home devices ids are known to the the central device_id
 The central device_id and home devices ids are known to the user’s mobile

Note: the user password is encrypted the same way as user’s device ID following steps to 9 by using the
same user generated key, and finally, the encrypted Device_ID, the encrypted password along with the
transformed key are all sent to the central controller device for verification.

The proposed DKSI encryption technique would be applied later on central device ID, as well as home
devices IDs by using the same 9 steps performed on the user’s device_ID. At the central controller device,
the received encrypted Device_ID and user’s password are decrypted using the transformed user’s key
sent with them, once they are verified, the central controller device generates a second key using the
same steps 3, 5, 6, 10 and 11 as performed for the user generated key. But, in this case, there exist double
encryptions for the central device ID, by encrypting it using key 2 (central device generated key) then using
key 1 (user’s device generated key) implementing the same steps to 9 as done for the encryption of the
user’s Device_ID and password at the user’s device first, and the central Device ID, along with key 1 and
key 2 are sent to home devices for verification.

Then, at the home devices, once the central device _ID is verified after decrypting it, the home devices
status are changed as required by the user, and the home devices IDs are encrypted using the same steps
to 9 mentioned above using key2. Then, the encrypted home devices IDs are sent with key 2 back to the
central controller device. Then, the central controller device checks the home devices IDs by decrypting
them and comparing them to the IDs stored inside it, once, the home devices IDs are verified, the central
controller device Id and the home devices IDs are encrypted by key 1 using the proposed DKSI technique
steps to 9, and then, sent along with key 1 to the user’s device to be verified. Finally, at the user’s device,
the received central controller device ID and home devices IDs are decrypted using key 1 to be checked
and compared to the ones stored inside the user’s device, once they are verified, a monitoring feedback
can propagate easily from the user to the central controller device and the connected backend home
devices to enable the user easily to monitor the status of these devices. The decryption process is going
to be described in the following section.

4.2.3 Proposed DKSI (named double key secure internet) decryption technique

The inverse of the steps explained in the encryption is done in the decryption to recover the original user
Device_ID and password, to check them against saved ones in the central device. The following decryption
steps are reapplied every time there is a need for decryption in the proposed security DKSI technique. The
decryption steps of the proposed DKSI security technique are described below:

Recover first the key by using these steps;
1. Apply reverse mathematical operations to that performed in encryption on the received key such as,

Key’’ = (M*P)*received_key /K;
2. Transform the received modified key (key’’) from numerical representation to 8 bit binary

representation.
3. Remove the leftmost two bits in the binary representation that were added during the encryption

process.

http://dx.doi.org/10.14738/tnc.71.5939

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 13

4. Bring the rightmost two bits that were shifted during the encryption to the leftmost two bit locations,
then, the original key was restored and the original Device_ID need to be found.

Recover second the original Device_ID by implementing these steps;

1. Apply the steps to 9 mentioned in the encryption above using the recovered key on the user’s
Device_ID, which is stored inside the central controller device to encrypt it, the result of the encryption
is a vector.

2. Compare the newly encrypted user’s Device_ID by the central controller device with the received
encrypted user’s Device_ID from the user’s device, because the hash function SHA-2 cannot be
reversed, so we have to repeat the DKSI encryption steps on the stored user’s Device_ID. If the newly
encrypted user’s Device_ID matched the received encrypted user’s Device_ID, then, the user’s
Device_ID is verified, and same steps of encryption to 9 are applied on the user’s password stored
inside the central device using the recovered key, then, the newly encrypted password is compared to
the received encrypted user’s password to be verified. Once both the user’s Device_ID and password
are verified, then, encrypt the central controller device ID using key2 generated by it, then, by using
the recovered key 1, and send them to the home devices for verification, and so on as explained earlier
in the DKSI technique.

Note: the decryption steps are repeated every time there is a need during the DKSI security technique.
Fig. 5 illustrates encryption and decryption processes of the DKSI security technique.

Fig.5 Encryption and decryption of the DKSI security technique

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 14

5 Simulation Environment

5.1 MATLAB Simulink
Simulink [32] is made of a block diagram environment for multidomain simulation and Model-Based
Design. It allows simulation, automatic code generation, and continuous test and verification of
embedded systems. Simulink possesses a graphical editor, adaptable block libraries, and solvers for
modeling and simulating dynamic systems. It is converged with MATLAB, enabling the user to integrate
MATLAB algorithms into models and generate simulation results to MATLAB for investigation and
assessment. Engineers everywhere use Simulink to realize their ideas off the ground, including reducing
fuel emissions, developing safety-critical autopilot software, and designing wireless LTE systems.

Simulink delivers built-in support for prototyping, testing, and executing models on low-cost target
hardware, such as Arduino, LEGO MINDSTORMS NXT, and Raspberry Pi. A client can create algorithms in
Simulink for control systems, robotics, sound processing, and computer vision applications and see them
working progressively.

Using Simulink Desktop Real-Time, a user can run Simulink models in real time on Microsoft Windows PCs
and MacOS and link to a range of I/O boards to create and manage a real-time system. To process a model
in real time on a target computer, Simulink Real-Time for Hardware-In-the-Loop (HIL) simulation, rapid
control prototyping, and other real-time testing applications can be used.

With Simulink, the user can develop algorithms and models, and process them on low-cost embedded
hardware including Arduino, LEGO MINDSTORMS NXT and EV3, and Raspberry Pi. Development for a
range of embedded hardware applications such as control systems, robotics, audio processing, and
computer vision can be performed. Simulink support for low-cost embedded hardware is existing in
student and home-use versions.

5.2 Raspberry pi 3 general specifications
 The Raspberry Pi [33] is composed of a series of small single-board computers developed in the United
Kingdom by the Raspberry Pi Foundation to be used in teaching of basic computer science in schools and
in developing countries. The original model became far more popular than expected, selling outside of
its target market for uses such as robotics. Peripherals (including keyboards, mice and cases) are not
included with the Raspberry Pi. A few accessories anyway have been incorporated into several official and
informal bundles. A few generations of Raspberry Pis have been discharged. Raspberry Pi 3 Model B was
discharged in February 2016 and was packaged with on-board WiFi, Bluetooth and USB boot capacities.
As of January 2017, Raspberry Pi 3 Show B was the freshest mainline Raspberry Pi.

All Raspberry Pi models possess a Broadcom system on a chip (SoC), which includes
an ARM compatible central processing unit (CPU) and an on-chip graphics processing unit (GPU,
a VideoCore IV). CPU speed varies from 700 MHz to 1.2 GHz for the Pi 3, and on board memory varies
from 256 MB to 1 GB RAM. Secure Digital(SD) cards are utilized to store the operating system and
program memory in either the SDHC or MicroSDHC sizes. Most boards possess between one and four USB
slots, HDMI and composite video output, and a 3.5 mm phono jack for audio. Lower level output is
provided by a number of GPIO pins which support common protocols like I²C. The B-models have
an 8P8C Ethernet port, and the Pi 3 has on board Wi-Fi 802.11n and Bluetooth. The Raspberry Pi 3, has a
quad-core Cortex-A53 processor. This model was expected to be highly dependent upon

http://dx.doi.org/10.14738/tnc.71.5939
https://www.mathworks.com/solutions/model-based-design.html
https://www.mathworks.com/solutions/model-based-design.html
https://www.mathworks.com/discovery/simulink-embedded-hardware.html
https://www.mathworks.com/discovery/arduino-programming-matlab-simulink.html
https://www.mathworks.com/discovery/raspberry-pi-programming-matlab-simulink.html
https://www.mathworks.com/products/simulink-desktop-real-time.html
https://www.mathworks.com/products/simulink-real-time.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/discovery/arduino-programming-matlab-simulink.html
https://www.mathworks.com/academia/student_version.html
https://www.mathworks.com/products/matlab-home.html
https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/Raspberry_Pi_Foundation
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Developing_countries
https://en.wikipedia.org/wiki/Target_market
https://en.wikipedia.org/wiki/Robotics
https://en.wikipedia.org/wiki/Broadcom
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit#Integrated_graphics
https://en.wikipedia.org/wiki/VideoCore
https://en.wikipedia.org/wiki/Secure_Digital
https://en.wikipedia.org/wiki/HDMI
https://en.wikipedia.org/wiki/Composite_video
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/8P8C
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Bluetooth

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 15

task threading and instruction set use. The Raspberry Pi 3 is equipped with 2.4 GHz WiFi 802.11n (150
Mbit/s) and Bluetooth 4.1 (24 Mbit/s) based on Broadcom BCM43438 FullMAC chip with no official
support for Monitor mode but used through unofficial firmware patching and also has a 10/100 Ethernet
port.

The Raspberry Pi Foundation recommends the use of Raspbian, a Debian-based Linux operating system.
Other third party operating systems available via the official website are Ubuntu MATE, Snappy Ubuntu
Core, Windows 10 IoT Core, RISC OS and specialised distributions for the Kodi media center and
classroom management. It presents Python and Scratch as the main programming language, with support
for many other languages. The default firmware is closed source, while an unofficial open source is
available. Many other operating systems can also execute on the Raspberry Pi.

5.3 Simulink Support Package for Raspberry pi capabilities and features
Simulink Support Package for Raspberry Pi empowers you to create algorithms in Simulink, a block
diagram environment for designing dynamic systems and creating algorithms, and execute them
independently on your Raspberry Pi. The support package broadens Simulink with blocks for adjusting
your Raspberry Pi, sending and accepting UDP packets, and reading and writing information from sensors.
This includes writing information to the free ThingSpeak information aggregation service for Internet of
Things applications.

In the wake of making your Simulink demonstrate, you can simulate it, tune algorithm parameters until
you get it just right, and download the finished algorithm for independent execution on the device. With
the MATLAB Function block, you can incorporate MATLAB code into your Simulink model. Using Simulink
support package for Raspberry Pi, you compose the algorithm in Simulink and implement it to the
Raspberry Pi utilizing automatic code generation. Execution is then performed on the Raspberry Pi.
Utilizing Simulink for Raspberry Pi programming empowers you:

• Create and mimic your algorithms in Simulink and utilize automatic code generation to execute
them on the device

• Incorporate signal processing, control configuration, state logic, and other advanced math and
engineering schedules in your Raspberry Pi programming projects

• Intelligently tune and advance parameters as your algorithm runs on your Raspberry Pi

Notwithstanding utilizing Simulink Support Package for Raspberry Pi, you can deliver clear and convenient
C code from MATLAB algorithms and actualize it on a Raspberry Pi utilizing Raspberry Pi support from
MATLAB Coder. Simulink Support Package for Raspberry Pi influences you to create algorithms that
execute independent on your Raspberry Pi. The support package broadens Simulink with blocks to guide
Raspberry Pi digital I/O and read and write information from them. In the wake of building up your
Simulink model, you can mimic it and download the finished algorithm for independent execution on the
device. One particularly useful (and unique) capability provided by Simulink is the ability to tune
parameters live from your Simulink model while the algorithm executes on the hardware.

5.4 Laptop specifications
Simulation of the smart home scenario was accomplished on a Dell laptop model Inspiron 15500 series,
having the following specifications illustrated in table m below. A 64-bit operating system was used in
simulation, because Matlab R2017a must be installed on 64-bit operating system machine. The Laptop

https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/IEEE_802.11n-2009
https://en.wikipedia.org/wiki/Bluetooth_4.1
https://en.wikipedia.org/wiki/Wireless_network_interface_controller#FULLMAC
https://en.wikipedia.org/wiki/Monitor_mode
https://en.wikipedia.org/wiki/Raspbian
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Ubuntu_MATE
https://en.wikipedia.org/w/index.php?title=Snappy_Ubuntu_Core&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Snappy_Ubuntu_Core&action=edit&redlink=1
https://en.wikipedia.org/wiki/Windows_10_IoT_Core
https://en.wikipedia.org/wiki/RISC_OS
https://en.wikipedia.org/wiki/Kodi_(software)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Scratch_(programming_language)
https://en.wikipedia.org/wiki/Firmware
https://en.wikipedia.org/wiki/Closed_source
https://en.wikipedia.org/wiki/Open_source
https://www.mathworks.com/hardware-support/raspberry-pi-simulink.html
https://www.mathworks.com/hardware-support/thingspeak.html
https://www.mathworks.com/help/simulink/ug/what-is-a-matlab-function-block.html?s_cid=srchtitle
https://www.mathworks.com/products/simulink/features.html
https://www.mathworks.com/discovery/control-design-software.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/hardware-support/raspberry-pi-matlab-coder.html
https://www.mathworks.com/hardware-support/raspberry-pi-matlab-coder.html
https://www.mathworks.com/discovery/raspberry-pi-programming-matlab-simulink.html
https://www.mathworks.com/products/simulink.html

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 16

used in simulation has 8 GB RAM and 2.40 GHz speed, since Matlab R2017a requires a computer with
good speed and acceptable RAM. The rest of the Dell Laptop specifications is mentioned in the following
table 3.

Table 3. Operating System Specifications

Laptop Model Dell model Inspiron 15 5000 series
includes Nvidia Geoforce and Ubuntu

Laptop processor Intel(R) Core(TM) i7-5500 CPU @
2.40GHz 2.40 GHz

System Type 64 bit operating system

Maximum possible array MATLAB can
create

12445 MB

Memory available for all arrays and data 12445 MB
Memory used by MATLAB 2402 MB
Computer Physical Memory (RAM) 8102 MB
Physical memory and paging system 14263 MB

5.5 Smart home scenario to be implemented using MATLAB
The proposed security technique to be implemented in a smart home scenario can be built using MATLAB
R207a Simulink Raspberry pi toolbox. The scenario begins when the user clicks from his android mobile
phone a button to request the change of home devices status or switching them ON using android toolbox
blocks; which provides blocks enabling user interaction inside his android enabled smartphone. Raspberry
pi toolbox provides blocks to simulate a Wi-Fi UDP send and receive blocks for wireless communication.
So, the proposed security technique is composed of three main parts; the first part represents the user
clicking on his smartphone button to switch on/off home devices, then the request is sent wirelessly to
the Raspberry pi enabled controller device. The second part represents the raspberry pi enabled controller
device sending wirelessly the user request to the raspberry pi enabled home devices, after verifying the
coming data. The third part represents the raspberry pi enabled home devices after verifying received
data, change the status of home devices; here switching Raspberry pi LED ON/OFF. Figure 6 represents
the main blocks of the smart home scenario to be implemented using MATLAB Simulink illustrating how
they exchange data wirelessly. The figures of three parts constituting the proposed security technique are
provided in the experimental results section.

Fig.6 Real life scenario to be implemented using MATLAB Simulink blocks and Raspberry pi toolbox

http://dx.doi.org/10.14738/tnc.71.5939

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 17

6 Description of parameters used in simulation
The parameters evaluated during simulations are going to be described in the following subsections.

6.1 Response time
Real-time systems exist in the world around us. A modern car is considered as an example of a real-time
system. Any person using the car will most likely want to have guarantees about the car’s behavior. If the
brakes need to be replaced in a nearby future, a lamp should indicate this, and not by the user who
declares that there no longer exists any braking effect. A task is a program that performs some service or
functionality in the system, like checking the brakes. A task’s reaction time can be portrayed as the
required time for checking the brakes. To be fit for giving ensures in continuous real-time systems, one
must know the response times of tasks. If a message is sent from a source to a destination, the response
time can be calculated as the time the message takes from the source to the destination. The factors are
considered for evaluating the response time are the bandwidth of the network and the message size, and
both are determined by symbols as follows:

M: the message size
Bwireless: the bandwidth of the wireless network

Response time = M / Bwireless

6.2 Memory consumption
To calculate the total memory consumed [34], it is necessary to calculate the number of concurrent users,
the domain of the system, the amount of memory required per user, the buffer cache compensation, the
number of virtual machines allocated and the system excess rate to estimate the memory size based on
the data obtained through the investigation. Also, the system domain contains spaces for the OS, DMBS,
engine, middleware engine, and other utilities. The result of the estimation of the memory amount can
be expressed as follows.

Total Consumed Memory =(T1+M∗ q)∗ p ∗ o

T1= The total memory for the system domain
M = The number of the virtual machines allocated
q = The amount of the required memory per user
p = Buffer cache compensation
o = system excess rate
By using the formula above, the result can be calculated as (384 + 959 * 2) * 1. 2 * 1. 3 = 3,591 MB. In
consideration of the unit of memory expansion, the amount will be estimated as to b be 8,192MB.

6.3 Power consumption of transmitted signals
There exist cell phone base station tower networks across many nations globally, but there are still many
areas within those nations that do not have good reception. Some provincial regions are probably not
going to be successfully covered, in light of the fact that the cost of raising a cell tower is too high for just
a couple of clients. In high reception zones, it is discovered that basements and the insides of vast buildings
have poor reception. Weak signal strength can likewise be caused by damaging interference of the signals
from nearby towers in urban territories, or by the construction materials used in few buildings, bringing
about fast weakening of signal strength. Vast buildings for example warehouses, hospitals and
manufacturing plants regularly have no usable signal more distant than a couple of meters from the

https://en.wikipedia.org/wiki/Destructive_interference

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 18

outside walls. This is especially valid for the networks, which work at higher frequency, in light of the fact
that these signals are lessened quickly by mediating obstacles, despite the fact that they can utilize
reflection and diffraction to go around obstacles. The estimated received signal strength [35] in a mobile
device can be calculated as follows:

More general, you can take the path loss exponent into consideration:

If the mobile device exists at cell radius distance from the cell tower, the received power is calculated as
−113 dBm. The effective path loss is based on the frequency, the topography, and the environmental
conditions. Actually, one could use any known signal power dBm0 at any distance r0 as a reference:

Table 4 ilustrates the parameters of the received power signal.

Table 4. The parameters of the received power signal

Parameter Description

dBme Estimated received power in mobile device

−113 Minimum received power

40 Average path loss per decade for mobile networks

r Distance mobile device - cell tower

R Mean radius of the cell tower

γ Path loss exponent (average value of 4 for mobile networks)

6.4 Bit error rate
In digital transmission, the number of bit errors [36] is considered as the number of received bits of an
information flow over a communication channel that have been altered because of noise, interference,
distortion or bit synchronization errors. The bit error rate (BER) is the number of bit errors per unit time.
The bit error ratio (also BER) is the number of bit errors partitioned by the total number of exchanged
bits amid an examined time interval. Bit error ratio is a unitless performance measure, frequently
introduced as a percentage. The bit error probability pp is the normal estimation of the bit error ratio. The
bit error ratio can be resolved as a rough estimate of the bit error probability. This estimate is precise for
quite a long time interval and a high number of bit errors.

Estimating the bit error ratio empowers individuals to choose the convenient forward error rectification
codes. Since most such codes rectify just bit-flips, but not bit-inclusions or bit-erasures, the Hamming
distance metric is considered as the proper technique to gauge the number of bit errors. Numerous FEC
coders additionally constantly measure the current BER. A more broad technique for estimating the

http://dx.doi.org/10.14738/tnc.71.5939
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Path_loss
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Cell_tower
https://en.wikipedia.org/wiki/Path_loss
https://en.wikipedia.org/wiki/Radio_frequency
https://en.wikipedia.org/wiki/Topography
https://en.wikipedia.org/wiki/Mobile_network
https://en.wikipedia.org/wiki/Digital_transmission
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Communication_channel
https://en.wikipedia.org/wiki/Noise_(telecommunications)
https://en.wikipedia.org/wiki/Interference_(communication)
https://en.wikipedia.org/wiki/Distortion
https://en.wikipedia.org/wiki/Bit_synchronization
https://en.wikipedia.org/wiki/Percentage
https://en.wikipedia.org/wiki/Expectation_value
https://en.wikipedia.org/wiki/Forward_error_correction
https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Hamming_distance

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 19

number of bit errors is the Levenshtein distance. The Levenshtein distance measurement is more
appropriate for estimating raw channel performance before frame synchronization, and when utilizing
error correction codes created to amend bit-inclusions and bit-erasures, such as Marker Codes and
Watermark Codes. The BER is depicted as the likelihood of a bit distortion due to electrical noise .
On the account of a bipolar NRZ transmission, we have for a "1" and
for a "0". Every one of and has a period of . Realizing that the noise has a bilateral spectral

density ,

 is

and is .
Coming back to BER, we have the likelihood of a bit distortion .

 and
where is considered as the threshold of choice, set to 0 when .
We can use the average energy of the signal to suggest the last expression:

6.4 Strength of the password

6.4.1 Password Cracking

In cryptanalysis and computer security, password cracking [37] is considered as the way toward
recuperating passwords from information that have been stored or transferred by a computer system. A
common technique (brute-force attack) is to attempt surmises over and again for the password and check
them against an accessible cryptographic hash of the password. The objective of password cracking can
be to enable a client to recoup a forgotten password (introducing a totally new password is to a lesser
degree a security hazard, but it needs System Administration privileges), to get unauthorized access to a
system, or as a preventive measure by system executives to check for easily crackable passwords. On a
file-by-file premise, password cracking is made to gain access to digital evidence, for which a judge has
empowered access however the specific file's access is confined. The best cracking password techniques
are; dictionary attack, brute force attack, rainbow table attack, blogs, phishing, social engineering,
malware, offline cracking, shoulder surfing, spidering, guess, and port scan attack.

6.6.2 Password Strength

Password strength [38] is depicted as the measure of a password’s ability to resist password cracking
attacks. In its typical shape, it estimates how many attempts an assailant who does not have direct access
to the password would need, overall, to get it accurately. The strength of a password is considered a
function of length, complexity, and unpredictability. Utilizing strong passwords diminishes large danger
of a security break, yet strong passwords do not eliminate the requirement for other viable security
controls.The strength of a password is defined by;

• Length: the number of characters the password incorporates.
• Complexity: does it utilize a blend of letters, numbers, and symbols?
• Unpredictability: is it something that can be speculated effectively by an assailant?

https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Frame_synchronization
https://en.wikipedia.org/wiki/Cryptanalysis
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Password
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Brute-force_attack
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/System_administrator
https://en.wikipedia.org/wiki/Security_controls
https://en.wikipedia.org/wiki/Security_controls

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 20

Let’s now look at a practical example. We will use three passwords namely
1. password
2. password1
3. #password1$

The higher the strength number, better the password. Let’s suggest that we have to save our above
passwords using md5 encryption. We will use an online md5convertor to convert our passwords into

md5 hashes. The table 5 below shows the password hashes.

Table 5. the passwords’ hashes

Password MD5 Hash

password 5f4dcc3b5aa765d61d8327deb882cf99

password1 7c6a180b36896a0a8c02787eeafb0e4c

#password1$ 29e08fb7103c327d68327f23d8d9256c

We will now use http://www.md5this.com/ to crack the above hashes. The images below illustrate the
password cracking results for the above passwords. Fig.7 illustrates passwords’ hashes.

Fig.7 passwords’ hashes

From the above outcomes, we figured out how to break the first and second passwords. We didn't figure
out how to break the third password which is longer, perplexing and unexpected.

6.6.3 Types of Attacks against hash functions used in Passwords Encryption and their resistance

1. Collision attack
In cryptography, a collision attack [39] on a cryptographic hash tries to find two inputs generating the
same hash value, i.e. a hash collision. This is different than a preimage attack where a specific target hash
value is determined. There are briefly two types of collision attacks:

Collision attack
Find two different messages m1 and m2 such that hash(m1) = hash(m2).

Chosen-prefix collision attack
Given two different prefixes p1, p2 find two appendages m1 and m2 such that hash(p1 ∥ m1) = hash(p2 ∥
m2) (where ∥ is the concatenation operation).

http://dx.doi.org/10.14738/tnc.71.5939
http://md5converter.com/
http://www.md5this.com/
https://en.wikipedia.org/wiki/Cryptographic_hash
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/Preimage_attack
https://en.wikipedia.org/wiki/Concatenation
https://cdn.guru99.com/images/EthicalHacking/Password_cracking1.png
https://cdn.guru99.com/images/EthicalHacking/Password_cracking2.png
https://cdn.guru99.com/images/EthicalHacking/Password_cracking3.png

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 21

2. Preimage Attack
In cryptography, a preimage attack [40] on cryptographic hash functions attempts to discover
a message, that has a specific hash esteem (value). A cryptographic hash function should resist attacks on
its preimage. With regards to attack, there exist two kinds of preimage resistance:

• preimage resistance: for basically all pre-determined outputs, it is considered as computationally
infeasible to discover any input that hashes to that output, i.e., given y, it is hard to discover an x
to such an extent that h(x) = y.

• second-preimage resistance: it is considered computationally infeasible to discover any second input
which has an indistinguishable output as that of a predetermined input, i.e., given x, it is hard to
discover a second preimage x′ ≠ x with the end goal that h(x) = h(x′).

3. Collision resistance
Collision resistance [41] is considered as a property of cryptographic hash functions: a hash function H is
collision resistant, if it is hard to find two inputs that hash to the same output; that is, two
inputs a and b such that H(a) = H(b), and a ≠ b.

Collision resistance is an even harder property, which we still need for most usages of hash functions:
It is hard to find a pair of messages x1≠x2x1≠x2 with H(x1)=H(x2)H(x1)=H(x2).

Each hash function with bigger number of inputs than outputs will essentially cause collisions. Considering
a hash function for example SHA-256, that produces 256 bits of output from an (discretionarily) arbitrarily
extensive input. It must produce one of 2256 outputs for every member of a much bigger set of inputs.
Collision resistance does not imply that no collisions exist; essentially that they are elusive.

4. Preimage resistance
 Preimage resistance [42] is considered as the most fundamental characteristic of a hash function, which
can be thought. It implies:
For a given h in the output space of the hash function, it is difficult to discover any message x with H(x)=h.
Hard means takes additional time/costs than any (speculative aggressor) hypothetical attacker can
contribute. In practice, uniqueness is not characterized by the (dynamic) abstract theoretical non-
presence of collisions, but by the (pragmatic) practical non-presence of collisions. So as to discover a
collision in SHA-256, you would (presumably) probably need to run the algorithm somewhere in the range
of 2128 times. It is far-fetched that this will happen at any point in the near future, regardless of whether
you check the total number of times SHA-256 will ever be processed by anybody in the whole universe
combined. SHA-256 is thought to be practically difficult to "crack", that is, to recover the original plaintext
from the hash.

7 Experimental Results
In the following subsections, the main parts of the security proposed technique are described. Then, each
parameter of the five parameters described in the previous section 6 resulting from simulation is
explained below.

7.1 Proposed security technique main parts
Part 1: android enabled device sending user’s device id and password to controller device

https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Message
https://en.wikipedia.org/wiki/Preimage#Inverse_image
https://en.wikipedia.org/wiki/Cryptographic_hash_functions
https://en.wikipedia.org/wiki/SHA-256

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 22

Fig.8 Process of sending user data from android device to controller device during simulation

In part 1, the user’s sends the device id and password and key used for encryption to the controller device
during simulation. Part 1 is represented in Fig.8. Main blocks of part 1 are: Android control button (from
android toolbox and used for turning on/off remote devices through the controller device), double block
(used to convert data to double), Level 2 MATLAB s-function (used for performing encryption), the To
workspace block (carries yout1 3D array; which results after encryption data as mentioned in the
proposed technique and represents the encrypted signal,and its role is to output the encrypted signal in
the workspace), the rate transition block (to transform data in way that it can appear in the spectrum
analyzer), the spectrum analyzer 1 block (to show signal), the android UDP send block (to send encrypted
signal wirelessly to the controller device).

Part 2: controller device sending the controller device id and encryption keys to home devices

Fig.9. Process of controller device sending data to home devices during simulation

Part 2 represents the process of controller device sending data to home devices wirelessly during
simulation. Part 2 is illustrated in Fig.9. Main blocks of part 2 are: the raspberry pi UDP receive block inside
the controller device (from the raspberry pi toolbox (raspberry pi 3 model B); used to receive wirelessly
the signal coming from the android device), the level-2 MATLAB function block (used for verifying the
encrypted received signal and then sending encrypted device id and encryption keys to raspberry pi
enabled home devices after verification), the rate transition block (used to enable encrypted signal that
results from the level-2 MATLAB function to be displayed in the spectrum analyzer 2), the to workspace
block (carries yout2 3D array; which results after encryption data and represents the second encrypted
signal,and its role is to output the second encrypted signal in the workspace to be displayed), the

http://dx.doi.org/10.14738/tnc.71.5939

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 23

raspberry pi UDP send block (from the raspberry pi toolbox (raspberry pi 3 model B), used to send data
wirelessly to the raspberry pi enabled home device/s).

Part 3: the home devices verify the coming data and turn on/off connected device/s

Fig.10 Process of homes devices verifying data and turning device LED ON/OFF during simulation

Part 3 represents the process of home devices verifying data and turning device LED ON/OFF during
simulation. Fig.10. illustrates part 3. The main blocks of part 3 are: raspberry pi UDP receive block (from
the raspberry pi toolbox (raspberry pi 3 model B); and shows the raspberry pi home enabled device
receiving data wirelessly from the raspberry pi controller device), the Level-2 MATLAB s-function block
(verify the received encrypted controller device id, after verification, send signals to next checkFCn block),
the checkFCn MATLAB block (used to change the home device status if received data are true), the to
workspace block yout3 (outputs 3D array resulting from the Level-2 s-function to the workspace), the to
workspace block yout4 (outputs 3D array resulting from thr checkFcn block to the workspace), the rate
transition block (allows received signal to be displayed in the spectrum analyzer 3), the spectrum analyzer
3 (displays received signals), the display block (display the received signal as a numerical array), the
relational operator block (checks if the signal is greater than 0, its outputs 1 and then turns on the LED
conncted to the device; else if the the signal is smaller than 0; it outputs 0 then turn off the LED device),
the submatrix block (changes the size of the array to fit the LED input), the raspberry pi LED block (from
the raspberry pi toolbox (raspberry pi 3 model B), represents the LED of the raspberry pi connected
enabled home device).

Let’s look at signals as they appeared in the spectrum analyzer. Signals appear as a line means devices
receiving 0’s or no data sent or received. The below two figures show the signal carrying the encrypted
data as well as the keys when sent and received. Fig.11 shows spectrum analyzer 1 & 2 when receiving
signal carrying encrypted data in parts 1 & 2. Fig.12 illustrates spectrum analyzer 3 upon receiption of
signal carrying encrypted data in part 3.

The received signal in part 3 named yout 3 as appearing in the MATLAB interface in numerical
representation is shown in Fig.13 below. The sent signals gives 1’s after sending the encrypted data and
keys during simulation.

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 24

Fig.11. Spectrum analyzer 1 & 2 showing encrypted signal receiption

Fig.12. Spectrum anlyzer 3 showing encrypted signal receiption

Fig.13. Encrypted received signal in part 3 named yout3 in the MATLAB interface

7.2 Response time
To know simulation time from the beginning of part 1, when the user presses the button to change
connected home devices passing through the controller device to the end of part 3 when the home device
LED is turned ON in case the received data carrying user device’s id and user’s password, and controller
device id are all correct, a stop block is added in part 3; which represents the connected enabled raspberry
pi home device with a LED. The role of the stop block is to stop simulation when a signal carrying data
greater than 0’s is entered, it means when the encrypted verified signal arrives to turn ON (in this case)

http://dx.doi.org/10.14738/tnc.71.5939

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 25

the home device’s LED. There are two display blocks; one display to show the signal after transforming it
to fit the LED size to 1’s, the other display to show the final encrypted signal received in numerical
representation; which is connected to the stop block. After stopping the simulation, the response time is
given, with analysis on the time partitioning across different tasks; in other words, how each task takes
time during simulation obtained from report analyzer tool inside MATLAB. A stop block is added in part
3 to stop simulation when the received encrypted data are verified and the LED is turned ON to measure
the response time. The response time here from the beginning to the end of the simulation is 24.24 s, but
it is organized across many tasks, it means that each task takes an amount of time to be executed during
simulation. So that, the compile and link task takes approximately more than 80% of the total response
time, but some other tasks; such as display.outputs.major task takes a very small percentage of the
response time not increasing than 1% of it. Also, Fig.14 shows the response time; as explained in section
6, organized across different tasks as obtained from the report analyzer tool in MATLAB. Table 6 illlustrates
the tasks composing the total simulation time, and the percentage of each task from simulation time.

Table 6. The percentage of each task from simulation time

Task Time(%)

total simulation time from start to end 100

simulation Phase 77.3

compile and link Phase 10.2

initialization phase 8.6

simulation.outputs.major 7.9

simulation.setupruntimeresources 6.3

spectrumanalyzer.setupruntimeresources 6.1

M-S-function.outputs.major 4

termination phase 3.9

simulation.cleanupruntimeresources 3

M-S-function2.outputs.major 2.8

simulation.update 0.6

spectrumanalyzer.update 0.6

toworkspace.outputs.major 0.3

spectrumanalyzer.cleanupruntimeresources 0.2

M-S-function3.outputs.major 0.2

display.setupruntimeresources 0.1

display.cleanupruntimeresources 0.1

stop.outputs.major 0.1

S-function4.outputs.major 0.1

display.outputs.major 0.1

s-function5.outputs.major 0.1

toasyncqueueblock.setupruntimeresources 0.1

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 26

Fig.14 shows the response time organized across different tasks during simulation

7.3 Memory consumption
During the simulation, when the simulation time increases from 100 s to 1000 s, memory consumed
increases gradually from below 5 MB to near 35 MB as shown in Fig.15. The experimental results proved
that increasing the simulation time, increases the amount of memory consumed in Megabytes. Fig.15
shows memory consumption in Megabytes when the simulation time increases from 100, 200, 300, 400,
500, 600, 700, 800, 900 to 1000 seconds. But the amount of memory consumed expressed in Megabytes
in general is good, and not very large. Table 7 shows memory consumption in (MB) versus simulation
time.

Table 7. Memory consumption in (MB) versus simulation time

time 100 200 300 400 500 600 700 800 900 1000
Memory
consumption
during
simulation
(MB)

3.443
8

6.281
9

10.310
2 13.7435 17.1767

20.701
7

24.150
1

27.598
6

31.047
1

34.495
6

Fig.15 Memory consumption (in Megabytes) versus simulation time (in seconds)

7.4 Power of signals consumed
The experimental results showed that increasing the simulation time gradually from 100, 200, 300, 400,
500, 600, 700, 800, 900 to 1000 s, increases slightly by small portions the amount of power consumed in
decibels of signals sent; either at the android device, the raspberry pi enabled controller device or the
the raspberry pi enabled home device, and in some cases, the consumed power can decrease a little and
increase again; for example at a simulation time of 600 seconds in the android device. In general, the

http://dx.doi.org/10.14738/tnc.71.5939

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 27

power of signals consumed during simulation proved to be good and reasonable at the android device,
the controller device and the home device, and ranges from 152 dB to 156 dB. Fig.16, Fig.17, Fig.18 and
Fig.19 illustrates the power of signals consumed expressed in Megabytes in the android device, controller
device, the home device and all the mentioned three graphs are added in the last graph respectively.
Table 8 shows power consumed in (dB) versus simulation time.

Fig.16 Power consumed (in Megabytes) versus the simulation time (in seconds) at the android device

Fig.17 Power consumed (in Megabytes) versus the simulation time (in seconds) at the raspberry pi controller device

Fig.18 Power consumed (in Megabytes) versus the simulation time (in seconds) at raspberry pi home device

Fig.19 Power consumed (in Megabytes) versus the simulation time (in seconds) at the android device, the

controller device and the home device

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 28

Table 8. Power consumed in (dB) versus simulation time

Time 100 200 300 400 500 600 700 800 900 1000
Power
consumed
for signals
sent from
android
mobile
(dB) 155.768 156.1378 156.2714 156.0421 156.0652 155.5702 156.3233 156.0253 156.1118 156.1221
Power
consumed
for signals
sent at
raspberry
controller
(dB) 152.9724 152.9094 152.9071 153.5063 153.0104 153.7477 152.0055 152.1923 154.1718 152.4356
Power
consumed
for signals
sent at
raspberry
home
device
(dB) 152.9724 152.9094 152.9071 153.5063 153.0104 153.7477 152.0055 152.1923 154.1718 152.4356

7.5 Bit error rate during simulation
To measure bit error rate, it is required to make some adjustments on the three main parts of the
proposed security technique blocks. First, a packet Output block is added at part 1 before the android
UDP send block (from the android toolbox), the block has three outputs; number of ticks, data_ready and
data_error; which represents the third output of the packet output block and is used to measure errors
that occurred during sending data wirelessly from the android device to the raspberry pi enabled
controller device. Also in part 1, a packet input block is added; which has four outputs, captured data at
the controller device, the data_ready, the data_error and the number of ticks. Also, the data_error in
packet input block is used to measure errors in data received wirelessly at the IP address of the controller
device. The spectrum analyzer shows signal at the android device, and the scope shows signal data at the
controller device. In part 2, a packet input block is added, with four outputs; which are captured data at
the controller device, data_ready, data_error and number of ticks. The data error output of the packet
input block represents errors in data sent wirelessly from the controller device. Also in part 2, a packet
output block is added, which has three outputs, number of ticks, data_ready and data_error. The data
error represents errors in data received wirelessly at the IP address of the home device. The error of data
sent from the android device and errors of data received at the controller device are measured. The error
of data sent from the controller and errors of data received at the home device are measured. Fig.20,
Fig.21, Fig.22, Fig.23, Fig.24 illustrate the percentage of data errors that occurred versus a simulation time
of 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 s, at the android device (sender), the controller
device (receiver), the controller device (sender), the home device (receiver), and all the preceding graphs
grouped in one graph respectively. The experimental results showed that the errors that occurred during
transmission wirelessly is in general good, since it ranges from 0.5% to 20%. Table 9 shows data error
percentage versus simulation time.

http://dx.doi.org/10.14738/tnc.71.5939

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 29

Fig.20 Percentage of data errors that occurred versus the simulation time at the android device as a sender

Fig.21 Percentage of data errors that occurred versus the simulation time at the controller device as a
receiver

Fig.22 Percentage of data errors that occurred versus the simulation time at the controller device as a sender

Fig.23 Percentage of data errors that occurred versus the simulation time at the home device as a receiver

Fig.24 Percentage of data errors that occurred versus the simulation time at the android device (sender), the

controller device (receiver), the controller device (sender), the home device (receiver)

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 30

Table 9. Data error percentage versus simulation time

data error percentage
Time 100 200 300 400 500 600 700 800 900 1000
at android
(sender) % 7.0929 14.7426 9.2636 7.1482 11.2777 16.9805 14.0409 7.2491 8.7657 8.0992

at controller
(receiver) % 4.2957 2.4988 1.4329 1.1497 0.7199 1.3498 1.3141 0.9124 0.8666 0.7499
at controller
(sender) % 15.3846 20.09 12.1293 13.7716 9.1782 20.0133 9.9843 12.0985 13.4207 14.2986
at home devices
(receiver) % 4.6953 2.4488 2.2659 1.6746 0.9998 0.9332 0.5999 2.2122 1.4998 0.9799

7.6 Password strength checking
In the final parameter, it is required to test the strength of the device id for example, using mathematics
once, and using the simulation inside the MATLAB R2017a. To find the possible combinations of finding a
device id (for example). The basic formula used for finding a given combination is given by:

C(n,k) = n!/(k!(n–k)!)

Here, n is the total number of items and k is the number of members or items chosen from total number
of given n. This can also be written as the binomial coefficient (n k) as below:

(n(n–1)(n–2)…(n–k+2)(n–k+1))(k(k–1)(k–2)…2.1)(n(n–1)(n–2)…(n–k+2)(n–k+1))(k(k–1)(k–2)…2.1)

So, in our case the total number of possible combinations is calculated as follows, we have 127 (n)
characters at the computer keyboard, and the device id is composed of 10 (k) items (numbers and letters;
capital or small), we have:

C(127,10) = 127!/10!(127-10)! =
127.126.125.124.123.122.121.120.119.118.117!/1.2.3.4.5.6.7.8.9.10.117!

= 7.588684395810302e+20/3628800 = 209123798385425 possible combinations.

After 209 trillion trials 209123798385425/5100290 = 20501167.42238432 hours of trials/24=
854215.3092660131 days of trials/365 = 2340.315915797296 years of trials. On an ordinary computer it
means it is very difficult to regenerate the device_id in an ordinary computer using trials due to the huge
number of possible combinations. Generating a code inside MATLAB R2017a to try to find the device id,
and giving the number of trials or iterations during the simulation, gives us the below figures. Fig.25 shows
the total number of trials to find the device id (in this case) versus the total number of hours of simulation.
After all these trials, the device id was not found. Table 10 shows number of trials versus number of
simulation hours.

Fig.25 Number of trials to find the device id versus the number of hours of simulation taken

http://dx.doi.org/10.14738/tnc.71.5939

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 31

Table 10. Number of trials versus number of simulation hours

Number of hours 25 52 70 93 118 150 168 175

Number of trials 2.03E+08 4.39E+08 5.99E+08 7.99E+08 1.02E+09 1.20E+09 1.46E+09 1.52E+09

8 Conclusion and Future Work
From the results obtained from experimental simulations, it is concluded that the proposed security
technique (SMI2C) provides good response time, reasonable amount of memory consumed, and power
consumed during simulation, good bit error rate and strong technique for protecting passwords without
any additional overheads on the proposed system. So, the proposed technique is useful in encryption as
it protects user data during transmission between different devices and has many benefits.

In the Future work, a secure technique for internet could be developed taking into consideration reducing
energy consumed during transmission; also, reducing memory consumed during signals transmissions
could be studied. There are a lot of other parameters that can be considered as areas of research while
designing a secure technique for online data transmissions in the future; such as speed of transmission,
bit error rate and so on.

REFERENCES

[1] Gartner’s hype cycle special report for 2015, Gartner Inc., 2015. [Online]. Available:
http://www.gartner.com/technology/research/hype-cycles/.

[2] Gubbi J., et al., Internet of Things (IoT): A vision, architectural elements, and future directions, Future
Gener. Comput. Syst., 2013. 29 (7): p. 1645–1660.

[3] Miorandi D., et al., Internet of things: Vision, applications and research challenges, Ad Hoc Network, 2012.
10 (7):p. 1497–1516.

[4] Yasumoto K., Yamaguchi H., and Shigeno H., Survey of real-time processing technologies of IoT data
streams, J. Inf. Process, 2016. 24 (2):p. 195–202.

[5] Husain S., et al., Recent trends in standards related to the internet of things and machine-to-machine
commun., 2014, 4 (6).

[6] Djenouri D., Khelladi L., and Badache N., A Survey of Security Issues in Mobile Ad-hoc Networks and Sensor
Networks, IEEE Communications Surveys, 2005. 7 (4):p. 2-28.

[7] Cho J.-H., Swami A., and Chen R., A Survey on Trust Management for Mobile Ad-hoc Networks, IEEE
Communications Surveys & Tutorials, 2011. 13 (4):p. 562-583.

[8] Wang Y., Attebury G., and Ramamurthy B., A Survey of Security Issues in Wire-less Sensor Networks, IEEE
Communications Surveys Tutorials, 2006. 8 (2):p: 2-23.

[9] Cha I., et al., Trust in M2M Communication, IEEE Vehicular Technology Magazine, 2009. 4 (3): p. 69-75.

[10] Mell P. and Grance T., The nist definition of cloud computing, National Institute of Standards and
Technology, 2009. 53 (6) article 50.

Dina Darwish; Merging Securely M2M Protocols, Internet of Things and Cloud Computing, Transactions on Networks and
Communications, Volume 7 No. 1, February (2019); pp: 1-33

http://dx.doi.org/10.14738/tnc.71.5939 32

[11] Zhang, Q., Cheng, L., and Boutaba, R., Cloud computing: state-of-the-art and research challenges. Journal
of internet services and applications, 2010. 1 (1):p. 7-18.

[12] Zhou J., et al., Cloud Architecture for Dynamic Service Composition, International Journal of Grid and High
Performance Computing, 2012. 4 (2):p. 17-31.

[13] Christophe, B., et al., The web of things vision: Things as a service and interaction patterns. Bell Labs
Technical Journal, 2011. 16 (1):p. 55-61.

[14] Subashini, S., and Kavitha, V., A survey on security issues in service delivery models of cloud computing.
Journal of Network and Computer Applications, 2011. 34 (1):p. 1-11.

[15] Botta A., et al., Integration of Cloud Computing and Internet of Things: a Survey, Journal of Future
Generation Computer Systems, September 18, 2015.

[16] Gomes, M. M., Righi, R. d. R., and da Costa, C. A., Future directions for providing better iot infrastructure.
In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct Publication (UbiComp '14 Adjunct.), 2014, p. 51-54.

[17] Alhakbani, N., ei al., A framework of adaptive interaction support in cloud-based internet of things (iot)
environment. In: Internet and Distributed Computing Systems. Springer, 2014, p. 136-146.

[18] Fox, G. C., Kamburugamuve, S., and Hartman, R. D., Architecture and measured characteristics of a cloud
based internet of things. In: Collaboration Technologies and Systems (CTS), 2012 International Conference
on. IEEE, 2012, p. 6-12.

[19] Dash, S. K., Mohapatra, S., and Pattnaik, P. K., A Survey on Application of Wireless Sensor Network Using
Cloud Computing. International Journal of Computer science & Engineering Technologies, 2010. 1 (4):p.
50-55.

[20] Atzoria L. and Giacomo Morabito A.I., The Internet of Things: A Survey, Computer Networks, 2010. 54
(15):p. 2787-2805.

[21] Gantz J., The Embedded Internet: Methodology and Findings, 2009. [Online]. Available:
https://www.bryankorourke.com/blog/2010/3/11/the-embedded-internet-15-billion-devices-by-
2015.html

[22] Evans D., The Internet of Things: How the Next Evolution of the Internet Is Changing Everything, 2011.
[Online]. Available: http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

[23] Hatton M., The Global M2M Market in 2013, Machina research whitepaper, 2013.

[24] Emmerson B., M2M: The Internet of 50 Billion Devices, Win-Win, 2010, pp. 19-22.

[25] M2M. [Online]. Available: SingTel M2M, http://info.singtel.com/large-enterprise/about-m2m.

[26] Watson D.S., et al., Machine-to-Machine (M2M) Technology in Demand Responsive Commercial Buildings,
in Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings, 2004, pp.1-14.

http://dx.doi.org/10.14738/tnc.71.5939

Transact ions on Networks and Communications; Volume 7, No. 1, February 2019

Copyr ight © Socie ty for Sc ience and Educat ion, Uni ted Kingdom 33

[27] ETSI, TS 102 690 M2M Functional Architecture, 2011.

[28] RSA. [Online]. Available: https://en.wikipedia.org/wiki/RSA

[29] Digital signature algorithm. [Online]. Available:
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm

[30] Elliptic curve cryptography. [Online]. Available: https://en.wikipedia.org/wiki/Elliptic-curve_cryptography

[31] SHA-2. [Online]. Available: https://en.wikipedia.org/wiki/SHA-2

[32] MATLAB Simulink. [Online]. Available: https://www.mathworks.com/products/simulink

[33] Raspberry Pi. [Online]. Available: https://en.wikipedia.org/wiki/Raspberry_Pi

[34] Choil K.-H., et al., Method of Calculating the Server Capacity for Cloud Computing for SaaS, International
Journal of Software Engineering and Its Applications, 2015. 9 (11):p. 117-126 .

[35] Signal strength. [Online]. Available:

https://en.wikipedia.org/wiki/Signal_strength_in_telecommunications

[36] Bit error rate. [Online]. Available: https://en.wikipedia.org/wiki/Bit_error_rate

[37] Password cracking. [Online]. Available: https://en.wikipedia.org/wiki/Password_cracking

[38] Password cracking of an application. [Online]. Available:]https://www.guru99.com/how-to-crack-
password-of-an-application.html

[39] Collision attack. [Online]. Available: https://en.wikipedia.org/wiki/Collision_attack

[40] Preimage attack. [Online]. Available:

[41] Collision resistance. [Online]. Available: https://en.wikipedia.org/wiki/Collision_resistance

[42] Preimage resistance and collision resistance. [Online].Available:
https://crypto.stackexchange.com/questions/1173/what-are-preimage-resistance-and-collision-
resistance-and-how-can-the-lack-ther

	Merging Securely M2M Protocols, Internet of Things and Cloud Computing
	ABSTRACT
	1 Introduction
	2 Merge of Cloud computing, Internet of Things, and M2M Communication
	3 M2M communication and high level architecture
	3.1 Background on M2M communication
	3.2 M2M high level architecture defined by ETSI

	4 The proposed Secure Machine-to-Internet Clouding (SM2IC) security technique
	4.1 Communication process in the proposed security technique
	4.2 Encryption and decryption techniques in the proposed security technique
	4.2.1 Hash Function Used in the Proposed Security Technique
	4.2.2 Proposed DKSI (named double key secure internet) encryption technique
	4.2.3 Proposed DKSI (named double key secure internet) decryption technique

	5 Simulation Environment
	5.1 MATLAB Simulink
	5.2 Raspberry pi 3 general specifications
	5.3 Simulink Support Package for Raspberry pi capabilities and features
	5.4 Laptop specifications
	5.5 Smart home scenario to be implemented using MATLAB

	6 Description of parameters used in simulation
	6.1 Response time
	6.2 Memory consumption
	6.3 Power consumption of transmitted signals
	6.4 Bit error rate
	6.4.1 Password Cracking

	6.5
	6.6
	6.6.1
	6.6.2 Password Strength
	6.6.3 Types of Attacks against hash functions used in Passwords Encryption and their resistance

	7 Experimental Results
	7.1 Proposed security technique main parts
	7.2 Response time
	7.3 Memory consumption
	7.4 Power of signals consumed
	7.5 Bit error rate during simulation
	7.6 Password strength checking

	8 Conclusion and Future Work
	REFERENCES

