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ABSTRACT

In this article, Very Crucial subject discussed cylindrical (closed) RF network antennas for coupled plasma
sources copper legs delayed in time system stability analysis. Resonant RF network antennas are
important to plasma sources with many applications. The cylindrical resonant RF network antennas run
as large volume plasma sources and have stability switching due to system's copper legs parasitic
effects. The cylindrical RF network antenna structure is 16-leg cylindrical (Birdcage) RF antenna which
has electrical circuit and opposite points of RF feeding and grounding. The vacuum vessel is a glass
cylinder closed at the top and bottom by grounding metal plates. Generally there are two popular
different resonant RF network assemblies: a cylindrical and a planar RF antenna. The cylindrical RF
antenna is built as a high-pass Birdcage coil. The antenna is mounted outside a glass tube. The RF
antenna consists of 16 copper legs equally spaced interconnected with capacitors. Due to RF antenna
copper leg parasitic effect we get copper leg's current and current derivative with delay T1.« and T.« (k is
leg number index, k=1,...,16). The uncooled antenna is fed at the midpoint and operated with opposite
grounded. Alternatively, it can be fed by another transmitter unit. Due to cylindrical antenna parasitic
delayed in time, there is a stability issue by analyzing its operation. We consider for simplicity that all
copper leg's current parasitic time delayed are equal (t1-1= T1-2=... =T1.16) and current derivative parasitic
time delayed are equal (T21= T2-2=... =T2116). The cylindrical RF network antennas delayed in time
equivalent circuit can represent as a delayed differential equations which depend on variable
parameters and delays. The investigation of our cylindrical network antenna with copper leg system, a
differential equation is based on bifurcation theory [1], a study of possible changes in the structure of
the orbits of a delayed differential equation depending on variable parameters. Cylindrical RF network
antenna analysis is done under two series of different time delays respect to antenna's copper legs
current and current derivative. All of that for optimization of a cylindrical RF network antenna circuit
parameter analysis to get the best performance. The cylindrical network antenna with copper leg system
can be represented as delayed differential equations which, depending on variable parameters and
delays. There is a practical guideline that combines graphical information with analytical work to
effectively study the local stability of models involving delay dependent parameters. The stability of a
given steady state is determined by the graphs of some function of iy, ..,Ti-16 (i=1, 2) [2] [3] [4].

Index Terms — Cylindrical RF network antenna, Delay Differential Equations (DDE), Stability, Bifurcation,
Orbit.
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1 Introduction

In this article, Very Critical and useful subject is discussed: cylindrical (closed) RF network antennas for
coupled plasma sources copper legs delayed in time. The resonant RF networks can be arranged to form
large-area or large-volume plasma sources with properties similar to Inductive Coupled Plasma (ICP)
devices. There are medical applications of Birdcage coils and closed and open configurations of the
antenna for plasma production are possible and can be analyzed by using mathematical formulation.
There are systems of an open network antenna as a large-area planar plasma source and of a closed
network antenna as a cylindrical plasma source. Both are composed of similar electrical meshes.
Operation at different normal modes shows the capability of this antenna type of large-volume plasma
applications.

Copper
legs
delays Ty
(k=1..16)

Figure 1. Schematic of the 16-leg cylindrical (Birdcage) RF Network antenna (closed).

An important issue of proper antenna operation is the location of the RF feeding and grounding
connections on the antenna. There are a large number of different RF antenna arrangements possible in
view of the geometry and RF operation and of plasma obtained. In this paper, we investigated only
cylindrical RF antenna which built following a high-pass Birdcage coil. The antenna is mounted outside a
glass tube. The RF antenna consists of 16 copper legs (Fig. 1), equally spaced interconnected with
capacitors, each copper leg current has parasitic time delayed (t1-1... T1-16). We consider for simplicity
that all copper legs parasitic time delayed are equal (t1.1= T1-2=... =T1.16) and the voltages on delay units

(V,) are neglectedV, — & . There is a delay in each Copper leg current |, (t =7, ,),..., s (t—7, 45) . We

consider all interconnected capacitor values are the same (C) and all antenna elements inductance
values are the same (L).

Cu=Cip==Cys=C 1 Gy =Cgp =..=Cyys =C (1)

L=L=.=Le=L:l =l 1,=1, =1y (2)

We choose first case: antenna network is fed by the transmitter unit (S1=0FF, no direct RF feeding). The
upper view of 16-leg cylindrical RF antenna network described in Fig. 2.
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Figure 2. Upper view of 16-leg cylindrical RF antenna.

The lower view of 16-leg cylindrical RF antenna network described in Fig. 3.

Figure 3. Lower view of 16-leg cylindrical RF antenna

2 Cylindrical RF Network Antennas Equivalent Circuit and represent Delay

Differential Equations
Cylindrical RF network antenna system can represent as round strip of capacitors and inductors (Fig. 4a
& 4b). The schematic contains RF feeding signal, S1 switch (S1=ON for direct RF signal feeding, S1=0OFF
for RF signal transmitter feeding). The upper network connecting nodes are A1, A2,...,A16 and the lower
network connecting nodes are B1, B2,..,B16. Antenna copper leg current parasitic delays are

represented by delay units Taui.1...Tauras ( Ty_1y-11 715 ). Rp is the parasitic resistance of RF feeding point

(A1). The upper system spaced capacitors are CAl,...,CA16 and the lower system spaced capacitors are
CB1,...,CB16 [1] [2].
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Figure 4a. 16-leg cylindrical RF antenna strip (feeding side)
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ICA9 _CA9 dt oA T (VA 141) — AI) I 10 15
Figure 4b. 16-leg cylindrical RF antenna strip (ground side)
=C d Vg,) 1 k=1,...,8
logs = (\/Bl Vo) les, =Ce 7(\/827 ga) 1 K=1, 8 leais = Case - (VBl 516)‘ legis = Cans (VBlﬁ 315) 9
lce = Ces* at (Vaz Vea) i Lo = (Vak V) o loge = (Vsm Vio) 5 e =Cy ~a(\/B(M) -Vg)
1=15,...,9
dl dl dl
Va—Ver =L dtLl i Va2 Ve, = Ly - ;2 i Vas—Ves =L T;g 1
10 dl
rrrrr Vae Ve =Ls- d Vae = Lo+ diy i Vao Ve L10 Lw VBQ = L9 : ; VA9 =0 ; A9— ground
dt dt dt
----- Ve —Veie = Lig - dlus 'VAm’VBm:Lm'% ;m=1.,16 ;m=9
I, =loms + 1o + 1y ;ICA1:|CA2+IL2 Hewg = lens + 115 = lenss = lems + s 3 leass = lema + s 3 leas = loas +11us "
"’ICA7:|CAB+ILB ; ICA|:|CA(|+1) L(I+1 =17 , .,|CA10=|CA9+|L10 ) ICAk :ICA(k71)+ILk ) k=l6,...,10
P =lees+ leas 5 Tepe = loas + 12 3 legs = lesa + 11 14 ICB4:Ic53+IL4""'ICB8:ICB7+IL8 , ILg:|CBB+|CBg =
ICBm = ICB(m—l) + ILm im=2,..,8 16 ICB15:|CB1B+IL16 ; ICB14=|C815+|L15 ; ICB13=ICB14+|L14 17
leeie = leps + Niagreo Teo = lepio + 1o 18 lcen = ICB(n+:L) + IL(n+1) ;n=15,...9 19
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Upon mathematic manipulation we get the following expressions:

| | d?l d?l 20 2 2 21
&_&:Ll le L 2LZ ;Cu=Cg=C L1=L2=L;_1 '(I - )—d ILl d IL2
Cu Ca dt dt LC " e’ dt? dt?
ICAZ_ICBZ_Lz.dZILZ_Lg.d2|L3 ‘C..=C..=C 22 LZ_LS_L. 1 (| )_dzILz d2|L3 23
C., GCg dt? dtz M B2 Tl e LC Caz Cer/ dt? dt?
2 2 24 2 2 25
CA7_ICB7_L'dIL7_L8_dIL8 |_7:|_8:|_-i.(|C _C):d|2L7_d_|2L8
------ - 7 2 2 1 A7 B7
CA7 CB7 dt dt LC dt dt
_ Y _ _ |l 26 1 dZI dzl 27
C=Cy=CiLi=L=nmlo=L k=L ety S T
LC "~ ™ ™7 dt? dt’
1 d’l d?I 28 v 1 d?l,, d?l, . 29
E'(Icm - Icm) = dt;n - dtlilo ; Caro =Cgyo=C LC (1 Chis Icm) = dtlils - dtlim 7 Cas =Cais =C
2 30 2 31
1 dsl d? I 1 d?l dl
= (l, -1, y=—2mD = tn 10,15 Cis=Ces=C;V,g=0; —-(lp ~l, )=—t+—L2
LC "o ST d ra e W T T
1 d?l d?l 32 1 d?l d?l 33
CA9 *cag =C ;VA9 =0; E'(lcAg - cag) = dtng dt;m CAla :Cam =C ;VAQ =0; E ( Cas Cm) = dtZLl - dt;m
I, =le, *le, tluile, =lc, *luile, =, +1s | 34 le,, =lc,, tlaile, =lc, +lsile, =l +le | 35
| :I +| | :l +| | :l +| 36 CA11:ICA10+I'—11 ; ICA12 :ICA11+IL12 ; ICA13:ICA12+IL13 37
G Cu LT'Cy G L8 Cy  Cy LI . .
ICA14 = ICA13 + IL14 ! ICAIS = ICA14 + IL15 ! ICAIG = ICA15 + IL]‘G
la=le, tlc s lo=lc, +lc, 5lc, =lc, +10
_ . _ . _ 38 _ . _ _ 39
|CB3 = |CB2 +,s ICB4 = |CBa + |CBs = ICB4 +15; |CBG = |CB5 + |CB7 = |CBG +5; | = |CB7 +,
. . 40 . . 41
=0+l ol =1 +L ol =1+l [ =1+l 0l =1+, 1 :I +1
Gy Cog L0 TGy Gy LILYCoy G LI2 Coo  Caz L1371 Cyz  'Cgyy LU T 'Cyy  Cgs LIS
l. = +1
Cais Ca1s L16
S1is OFF for RF signal transmitter feeding.
8 8 43
I, =0=1. +1. +1,=0 42 :
Re Cus  Ca L1 le, = z wile, =le, +Z|Lk e, =le,, +Z|Lk
k=3 k=4
B 5 8 44 5 45
lCAAZICAa+Z|Lk ;ICA5:ICA3+ZIU< ;ICAa:ICAs+ZILk ICA7 :ICAH+IL8 P Cus CA9+ZILK ? Cuss ICA9+ZI|—k
k=5 k=7 k=10 k=10
14 12 46 11 47
loo=l. +> 1, Lt e = I _ . _
Cus — Cao l;) Lk CA13 Z L cAlZ Cag I;) Lk ICA11 =lc,, + ILk y ICAlo = ICA9 + IL:LO
k=10
| Z | | 125: | 48 49
C c Lk c L9_ Cors Lk
. ey " " (e ICBa Cme Z I'-k 1 1Cy CBl6 Z I'-k
k=4,k=9 k=5,k#9
50 16 16 51
| = Z I Z | ICB7 =IL9_ICB16_ I'-k , ICBs=|L9_IC515_ZI|—k
Cas Cma o Cae Cma Lk K=8,k=9 k=10
k=6,k=9 k=7 k=9
16 52 16 16 53
ICB9 _I(:Ene-l_ZI'-k ! ICBlO _ICBlﬁ-I_zILk Ca11 _ICB1G+ZILK ! ICBlZ - 1 +Z|Lk
k=10 k=11 k=12 k=13
>4 . =1 +l,:1,=1. +I 2>
Cors = Ncass Z L5 e, = ey, Z i Cos  Cog  'L16* TL1— "Cg  "Cas
k=14 k=15

We get the following additional exppressions:
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i, dlu d’l L5 dILZ dIL4 > i - _d2|L5 dzlLs_ _dZILG_dzlLB >
LC (ILz ||_4) dtz d 2[ ] LC (|L6 lLs)_ dtz + dtz 2[dt2 dtg]
-2 d’l, d dI dI S d’, d*l d?l,, d’l 60
r'(lu" )= dt2L9+ dt;13+2'[ dt;m_ d'[;12 R‘(IL”_ us) = dtzu_ dt;13+2.[ dtéu_ dt;16
We add the first and second above equations:
2 d?
_‘{(|L2_|L4)+(IL6_IL8)}: 2L1
- C d‘ (61)
d?l d?l d?l d?l d?l
L9_2_[ L2 L4 L6 _ L8
dt? da>  dt*  dt*  dt’
We add the third and forth above equations:
-2 d?l
R'{(ILlo_IL12)+(IL14_IL16)}: dtZLl
* %k :
- d?l d?l d?| d?| d?l (62
n L9 +2‘[ L10 L2 | L4 L16
dt’ de>  dt*  dt*  dt?
Integrating the last two results - gives the following:
he | Its ([**]-[*]) he foll
-2
E'{Iuo_luﬂ'|L14_||_16+|L2_|L4+ L6_IL8}
:2_[d2|L10 _dzIle +d2|L14 _dzlue +d2|L2 _d2|L4 (63)
2 2 2 2 2 2
dt dt dt dt dt dt
d ILG 2 L8]
dt?
We define new global variables for our Cylindrical RF network antennas system.
Y=l =l s+l — 1+ -1, (64)
X — dluo _dluz +d||_14 _dILlG +d||_z _dIL4
dt dt dt dt dt dt (65)
Sl dig Y odx -
dt dt ' odt "dt LC

Due to RF antenna copper leg parasitic effect, we get copper leg's current and current derivative with

delay t1« and T2« (k is leg number index, k=1,...,16). We consider for simplicity

dILk ® .

T1-1= T12=...= T1-16 ; T2-1= T2-2=...= T2-16. ILk (t) - lLk (t _Tl—k) Lk (t) =

We consider no delay effect on

) ILk(t) - II'_k(t_TZ—k)'
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dlu® Y1) -Y(t-r) ;X ([0~ X(t-,). (66)
dt
T1= T11= T1-2=...= T1-16 ; T2= T2-1= T2-2=...= T2-16.
dy COX 1
o= X-m) s =Y T (67)

To find the Equilibrium points (fixed points) of the Cylindrical RF network antennas system is by

limY(t—7)=Y(®and limX(t-z,)=X@t). YL 0. & _o (68)
t—o0 t—o dt dt
Vi t>r, 3 (t-1)»t; (t-7,)»t t5w» (69)
We get two equations and the only fixed point is

E(O)(Y(o), X(O)) =(0,0). (70)

(0) _ (0 (0) (0) (0) © 4@ 1@ O _
Y =1l e s+ 15 -1+ 1 =0 (71)

) _ 10 _ ', @ 40 1 © 4@ '@ 110 _
XU =1+ -l 15 -1+ 15 =0 (72)

Stability analysis : The standard local stability analysis about any one of the equilibrium points of

Cylindrical RF network antennas system consists in adding to coordinates [Y X] arbitrarily small
increments of exponential form [y x]-@ t , and retaining the first order terms in y, x. The system of two

homogeneous equations leads to a polynomial characteristics equation in the Eigen values A . The
polynomial characteristics equations accept by set the below current and current derivative respect to
time into two Cylindrical RF network antennas system equations. Cylindrical RF network antennas
system fixed values with arbitrarily small increments of exponential form [y x].e*t are: i=0 (first fixed
point), i=1 (second fixed point), i=2 (third fixed point).

A(t-1)

YO =YO+y " X=X +x-g Y (t-1) =Y +y-g (73)
X(t=r)=X"+xg" " iz0,12

We choose the above expressions for our Y(t), X(t) as small displacement [y x] from the system fixed

points at time t=0.
Yt=0)=YP+y;X({t=0)=XD+x (74)
for 1 <0, t>0 the selected fixed point is stable otherwise A >0, t > 0 is Unstable. Our Cylindrical RF

network antennas system tend to the selected fixed point exponentially for 4 <0, t > 0 otherwise go

away from the selected fixed point exponentially. A is the eigenvalue parameter which establish if the
fixed point is stable or unstable, additionally his absolute value (| A |) establish the speed of flow

toward or away from the selected fixed point [1] [2].
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Table-1. Cylindrical RF network antennas system eigenvalues options

A<0 >0

=0 | Y(t=0)=YO+y Y(t=0)= YO+y
X(t=0)= XO+x X(t=0)= XD+x
0 | Y(H)= YO+y-e N | Y(t)= YO+y-eh*t
X(t)= XOx-eMt | X(t)= XDx-elet
tdeo | Y(t>eo) =YD | Y(t->e0, A>0)~ yel*t
X(t>eo)= XD | X(t->oo, A>0)~ xeMt

The speeds of flow toward or away from the selected fixed point for Cylindrical RF network antennas
system currents and currents derivative respect to time are

dy (t) — lim Y (t+At)-Y(t) y Y (u)+y_e/1.(|+m)7[Y 0, Y'em]

dt At—0 At = A!TO At (75)
:||mye [e _1] o1t lim ye []_+ﬂ,At—1]:iyeM
At—0 At At—0 At
OO _ oy X80 -XO) i X ox-g” (X xg] (76)
dt At—0 At At—0 At
At o AAt " R At
_lim x-@" " -1 e ateia lim x-@" - [L+4-At 1]=1_X_e;,¢
At—0 At At—0 At
and the time derivative of the above equations:
dy (t ¢ dX(t A
J: A M;sz.l.em (77)
dt dt
dy(t—rz,) A(t-1y) PR
dt (78)
X (t- (t-r P
dx (t TZ)ZX-Z-e“t Z)ZX'Z'eM'e 2 A
dt
dy
First we take the Cylindrical RF network antennas (Y) differential equation: pr and adding to it

coordinates [Y X] arbitrarily small increments of exponential form [y x]-e“ and retaining the first order

termsiny, x.

A-y-e"‘:X“)wLX-e“ ;X(i:O):O;ﬂizﬁzl>0 (79)
y

dy
Second we take the Cylindrical RF network antennas (X) differential equation: pra X and adding to it

¥R
coordinates [Y X] arbitrarily small increments of exponential form [y X]-e " and retaining the first order

termsiny, x.

2.x-eM =%'[Y(”+y-e’“’] ; Y0 _q A -

Ly, -1, (80)
L-C x

L L

we have saddle fixed point otherwise it is unstable node (both eigenvalues are positive). We define

Y(t—rl):Y“’+y~e“t’f” X(t—Tz):X(i)-I-X-el‘(HZ) then we get two delayed differential equations
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respect to adding to it coordinates [Y X] arbitrarily small increments of exponential form[y x].e”‘. In the

equilibrium points: Y® =0:X© =0
Ayett=XOpx et XO =0 1 y=x-07"
A-x-e"t =%-[Y(°) +y- etV Y0 =0 (81)

-1
AX=—.y.gtn
L-C Y

We get the following set of eigenvalues equations:

~A-y+x-etr=0; ——-y-e"*-1-x=0
L-C (82)

The small increments Jacobian of our Cylindrical RF network antennas.

—ATy
-1 e y 0
_1 —A- . = (83)
—— et -y} X 0
L-C
-2 e
A-Z-1= 1 ; det| A—A-1]=0 (84)
— .en
L-C
D(A,7,,7,) = A? +L-e"“1 et (85)
i) 17 2 L_C

We have three stability analysis cases: 7,=7 ; 7, =0or 7,=7 ; 7, =0 or 7, =7, =7 otherwiser, #7,
We need to get characteristics equations as all above stability analysis cases. We study the occurrence
of any possible stability switching resulting from the increase of value of the time delay 7 for the
general characteristic equation D(A,7)

D(4,7) = pn(z,r)+Qm(/1,r) e (86)
The expression for P,(4:7) is
PA)=2 P01 =P+ P9 4+ Pe)- 1 (87)
+P,()- ,13; ........
The expression for Qm(z,f) is
(88)

Qm(ﬂ.,‘r)=iqk(‘r)~/1k=q0(‘r)+q1(‘r)-ﬂ.+q2(z‘)-lz+ ........
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3 Cylindrical RF Network Antennas System Second Order Characteristic
Equation 7,=7;7,=0& 7,=0; 7, =7

The first case we analyze is when there is delay in Cylindrical RF network antennas leg's current and no
delay in antennas leg's current derivative or opposite [4] [5].

1 1
D(A,7,=0,7,) = +——-e*2 _=2+——_.e*" 89
(47 7,) L.C _— e (89)
D(hz,z, =0)= A2+ gt | =24t gt (90)
T L-C L-C
D(2.7)=P (40)+Q, (1.7)-e™ (01)
The expression for P,(4:7) is
P(L0=2 P02 = Pe) + P 4+ Pe)- 1 (92)
=27 P,(0)=1; P(r)=0; P,(x) =0
The expression for Qm(i’f) is
m K 1
Qm(}blf)=k§,qk(f)'i =qo(7)=ﬁ (93)
Our Cylindrical RF network antennas system second order characteristic equation:
D(A,7) =A% +a(r)-A+b(r)-A-e *" +c() +d(z) - e " (94)
Then a(r) =0 ; b(z)=0; ¢(r)=0; d(r)=ﬁ (95)

reR, and a(r),b(z),c(7r),d(7) : R, >R are differentiable functions of class C'(R,,) such

that c(7)+d(7) = ﬁ #0 forall zeR,, and for any 7,b(7),d(z) are not simultaneously zero.

We have

P(1,7) =P (4,7)=A*+a(r)- A +¢(1) = A° (96)
QA7) =Qu (4 7) =b() - 2 +d (D) == (97)
we assume that P, (4,7) =P,(1)and Q,,(4,7) =Q,,(1) can't have common imaginary roots. That is

for any real numberw;

p,(A=1-0,7)+Q, (1=1-0,7) 20 (98)
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20 (99)
L-C
Flo,) =o' - 1 _ Flon) P(i-o,7) P —|Q(i-o,7) (100)
(L-C)” =(c—w?)?+@® -a°—(a?-b* +d?)
Hence
F(w,7)=0 impIie5604 -—==0 (101)
(L-C)
And its roots are given by
a)f=%~{(b2+2~c—a2)+\/Z}=g (102)
:—{(b2+2 c—a?)- f}_—g (103)
(b +2-c-a?) 4 (- d?) = (104)
L.C?
Therefore the following holds:
2.0t —(0P+2-c—at)=+JA ; 2.0} =+JA (105)
Furthermore PR(i-a),T)ZC(T)—a)Z(T) o’ (1) (106)
Pi-o7)=w(r)-a(r)=0; Qs(i-o,1) = d(T)_iC (107)
Q,(i-w,7)=w(r)-b(r) =0 hence (108)
o)~ P2 QE0D) R 100 Q-0 (109)
|Q(i-,7) |
cos(z) = P.(i-0,7)-Qu(i-0,7)+ PR (i-0,7)-Q,(i- ®,7) (110)
QG- »,7) [
. —(c-0’)-w-b+w-a-d
sinf(7) = =0
(7) D2 -b2+d2 (111)
pa— 2 . 2- .
cos@(r):—(c 0)d+o -a b:a)z-L-C (112)

o’ -b® +d?
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Which jointly with 4* — 1 =0 (113)

(L-cy’

Defines the maps Sn (r)= T—-T, (r);7el,ne No (114)

That are continuous and differentiable in T based on Lema 1.1 (see Appendix A). Hence we use
theorem 1.2 (see Appendix B). This prove the theorem 1.3 (see Appendix C) and theorem 1.4 (see
Appendix D).

Remark: a, b, ¢, d parameters are independent of delay parameter T even we use

a(z),b(z),c(7),d(7) .
4 Cylindrical RF Network Antennas System Second Order Characteristic
Equation 7,7 ;7,=7

The second case we analyze is when there is delay both in Cylindrical RF network antennas leg's current
and current time derivative [4] [5].

1
DA, r,=1,7,=1) =" +——-e "7 .e*" (115)
A =17,=1) LC
D(4,7) = pn(z,r)+Qm(/1,r) e (116)
The expression for P,(4:7) is
P.0= 2P0 A" = P+ P 4+ PO A= A (117)

P =1: P0)=0; P,(r)=0
The expression for

) L g 118
Q)i QD) =20, A"~ ¢ ¢ (118)

2 2

. -4 .
Taylor expansion: € “ =1-4-7+ since we need

n>m [BK] analysis we choose € ~1—A-7 then we get

u 1 1 1 119
Qm(i,f)zéqk(f)'ﬂ :E‘(lfﬂ'f)zﬁfﬁ'l'f ( )
A)= 1. 1 ; =0 (120)
qO(T, )_R , ql(T)——R'T , qZ(T)—
Our Cylindrical RF network antennas system second order characteristic equation:
D(A,7) =A% +a(r)-A+b(r)-A-e*" +c() +d(z) - e ** (121)
Then
a(r)=0: b(r)=—= 7 - ¢(r) =0 d(r) =—— (122)
YL YT T T L
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And in the same manner like our previous case analysis:

_ _ 12
P(4,7)=P (4, 7)=1 (123)

Q(ﬂ,r):Qm(/l,r):——f-/i-r (124)

we assume that P, (4,7) =P, (1) and Q, (4,7) can't have common imaginary roots. That is for any real

number
a ; pn(/izi-a),r)+Qm(ﬂ:i~a),r)¢0 (125)
P 1
—o° —i-w- t+——=#0 (126)
L-C L-C
F(o,7) = P(i-0,7) -|Q(-0,7) [ ; Pi-07) = (127)
P.(i-w,7)=—’ ;P (i-w,7)=0 (128)
Q(ﬂ:i-a),r):—i-a)-ﬁ-r+$ (129)
Qh=i-07) =0 ——7: Qu(h=i-0,7) =—— (130)
T T e R T L
|PGi-0,0) =R’ +PF; ; |Q(-w7)=Qf +QF (131)
|P(-@,7)[=P+PF; =o' (132)
. 72 1
. 2_ 2. (133)
Flo,r)=0" -’ i 2—;2 (134)
(L-C)* (L-C)
Hence
F(w7)=0 implies w“—wz-T—Z—L—o (135)
@r)=Rime (LCY (LOy
Fw=4-a)3—2-a)-1—22=2-a)-[2-a)2—‘[—22] (136)
(L-C) (L-C)
—w*- 27
F = - 137
TS S (137)
P,=0;P, =20;Q,=———
lw ' ' Ro w’Qla) LC (138)

w
=0,;,RP_=0;P, =0; =0; =——
QRw Iz Rt QRT Ql‘r LC
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The expressions for U, V can be derive easily [BK] : X =T

U= (PR ) le _PI 'PRw)_(QR 'Qlw _Q| 'QRw) (139)
V=(FRR-PFFR)-(Q:Q,-Q Q) (140)
V= |_26-oc2 T -Tc2 (1a1)
FT
. =——-
T Fa)
and we get the expression:
-w* 21 —-0-T
o (L-C)? __ (Lcey (142)
2-(0-[2-(02—772] 20— 5
(L-C) (L-C)

Defines the maps Sn(T)ZT—Tn(T) ;7el,n GNO

Defines the maps Sn(T) =T—Tn(2') ;7el,n ENO

That are continuous and differentiable in T based on Lema 1.1 (see Appendix A). Hence we use
theorem 1.2 (see Appendix B). This prove the theorem 1.3 (see Appendix C) and theorem 1.4 (see
Appendix D).

Remark: Taylor approximation for e** =1— 1.7 gives us Good stability analysis approximation only for
restricted delay time interval.

5 Cylindrical RF Network Antennas System Stability Analysis under
Delayed Variables in Time 7,=7,7,=7

Our Cylindrical RF network antennas homogeneous system for y, x leads to a characteristic equation for

the eigenvalue A having the form P(1) +Q(1)-e*7=0 ; second case 7,=7 ; 7, =7

1
DAz, =7, 7,=7)=A"+——-e*".e " (143)
(A=t & =0) =20+
We estimate € " =1—-A-7
DA,z =7, r2=7)=/12+i~(1—/1-r)-e_“
L-C (144)

D47, =7, 7, :r):lz+(—l-i-r+i)-e’“
L-C L-C (145)

We use different parameters terminology from our last characteristics parameters definition:
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k= J:p(r)>a; ()¢ in=2;m=1 (146)

Additionally P (2,7) > P(2) ; Q (4,7) >Q(4)

2 1

then P(1) =Zaj AV and Q(A) :Zci AL (147)
i=0 j=0

P(A)=4%; Q1) =-2- L_lc -r+$ (148)

n,meN,, n>m and a;,C; : R, = R are continuous and differentiable function of 7 such that

a, +C, # 0. In the following ""—"denotes complex and conjugate. P(1),Q(4)

Are analytic functions in A and differentiable in7 .

And the coefficients: {a;(C, L),c;(C,L,7)} € R depend on Cylindrical RF network antennas C, L, 7
values.

1

- . 149
o (149)

8,=0,8=0,8,=1;6="—", =

L-C’

Unless strictly necessary, the designation of the variation arguments (C, L, z) will subsequently be
omitted from P, Q, aj, ¢;. The coefficients aj, ¢j are continuous, and differentiable functions of their
arguments, and direct substitution shows that

a°+C°:L-1C¢O; L.lC;tOVC,L,TERJri.e (150)

A =0 is not a root of characteristic equation. Furthermore P(1), Q(1) are analytic function of A for
which the following requirements of the analysis (see kuang, 1993, section 3.4) can also be verified in
the present case [4] [5].

a) If A=i-w, ®eRthen P(i-w)+Q(i-w) =0, i.e P and Q have no common imaginary roots.

This condition was verified numerically in the entire (C, L, z) domain of interest.

b) |Q(A)/P(A)| is bounded for | 1|, ReA>0. No roots bifurcation fromoo. Indeed, in the

limit

Q) P H—LC_LC (151)

o) F(@)=P(i-0) -Q(i-0)[ (152)

> T 1

(L-C)? (L-C)

F(o,7)=0"-o (153)
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Has at most a finite number of zeros. Indeed, this is a bi-cubic polynomial in @ (second degree in @?).
d) Each positive root @(C, L, z) of F(«)=0 is continuous and differentiable with respect toC, L,z
. This condition can only be assessed numerically.
In addition, since the coefficients in P and Q are real, we have P(—i-®)=P(i-w) ,

Q(~i-w) =Q(i-w) thus A =i-w , @ >0may be on eigenvalue of characteristic equation. The analysis

consists in identifying the roots of characteristic equation situated on the imaginary axis of the complex
A — plane, where by increasing the parameters

C,Land delayr, ReA may, at the crossing ,Change its sign from (-) to (+), i.e. from stable focus
EQ(® X©®)=(0,0) to an unstable one, or vice versa. This feature may be further assessed by

examining the sign of the partial derivatives with respect to C, L and antenna parameters.

OReA

A C) = ( )Z .., L,z =const (154)
A L) = (aRQ/I)i ., » C,7 =const (155)
A7) = (aRe;L),1 ., »C,L,where weR,. (156)

For the first case 7,=7 ; 7, =7 we get the following results

1

P.(i-®)=—" ;P (i-®)=0; Qi a))——C (157)
i) =— 158
Q (i-w) C (158)
72 1
a)A—wZ-W—W:O;;{Z:w“;;(:wZ (159)
2
2 T 1
— . _ -0
1 -x (LCF (LY (160)
zzf—zzil- 2 S/ (161)
2-(L-C)* 2 \(L-C) (L-OC)
r=0'=>0= \/ r +1J r w4t (162)
2.(L-C)? (L-C)* (L-C)
r’ 1

+4.
(L-c)* (Lcy
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2 1
always and additional for weR ; @° =T—2i1. ‘ - +4- 1 > (163)
2:(L-C)" 2 \(L-C) (L-C)

And there are two options: first always exist

2 4
AN ) B SR S (164)
2(L-C) 2 \(L-c)F (LY

2 4
SecondT——l- 4 +4. L <0 (165)
2-(L-C)* 2 \(L-0) (L-C)?
2 4
P T S A (166)
2 L-C 'L-C (L-C)

4 2
(LTC)2 +4> LTC , Not exist and always negative for any Cylindrical RF network antennas overall

parameters values. We choose only the (+) option (first).
Writing P(4) =P, (4)+1-P,(4) and Q(4) =Q,(4)+i-Q, (1) (167)

and inserting A =1-@Into Cylindrical RF network antennas characteristic equation, @ must satisfy
the following:

sina-r - g(a) - 200 (|i£ga()i).; ?lgi-w)-QR(i-w) (168)
Cosw.,zh(w,:_PR(i-w)-QR(i@w()i;P).l(zi-w)-Q. (i-0) (169)

: 2
Where |Q(| 0))| #0in view of requirement (a) above, and (g, h) € R. Furthermore, it follows above

sinw-7 and COS®@- T equations that, by squaring and adding the sides, (¥ Must be a positive root of
F(@)4P(i-0)[ -|Q(-@)['=0- (170)

Note that F(w)is dependent of 7 . Now it is important to notice that if 7 & | (assume that | € R,; is

the set where @(7) is a positive root of F(w)and for 7 ¢ | , w(7)is not define. Then for all T in |
(1) is satisfies that F(w,7) =0

Then there are positive @(7) solutions of F (@, 7) =0, and we analyze stability switches. For any 7 € |
where o(7)is a positive solution of F(w,7) =0, we can define the angle 8(7) €[0,2-7]as the
solution of

Ry(i-®)-Q (i-@)+P(i-0)-Quli-®) (171)
QG-

siné(z) =
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P.(i-)-Qu(i-@)+P(i-»)-Q,(i-w) (172)
QG- w) [

And the relation between the argument &(z) and w(7) -7 for

cosé(r)=—

tel mustbew(r) - 7=60(r)+n-2-7 V neNj. Hence we can define the maps 7, : | — R ,given
O(r)+n-2-x

by 7,(z)= o)

;neNy,rel . Let us introduce the functions | >R ;
S,(r)=7—7,(7), 7€l, neN,

That are continuous and differentiable in7 . In the following, the subscripts A, @, C, L and Cylindrical
RF network antennas parameters (L,C, 7 etc.,) indicate the corresponding partial derivatives. Let us
first concentrate on A(X) , remember in A(L,C,7, etc.,) and o(L,C,7, etc.,), and keeping all

parameters except one (x) and 7 . The derivation closely follows that in reference [BK]. Differentiating

-AT

Cylindrical RF network antennas characteristic equation P(1)+Q(4)-e""=0 with respect to specific

parameter (x), and inverting the derivative, for convenience, one calculates: Remark: X=L,C, 7, etc.,

(2

o (173)
_ =P, (4,x)-Q(4,x)+Q,(4,X)-P(1,X) —7-P(4,X)-Q(4, X)

B P.(4,X)-Q(4,X) —Q, (4,X)- P(4,X)

Where P, :%,..__etc., Substituting A =i-@ , and Bearing i P(—1- @) = P(i- ®),

Q(-- ) =Q(i- ») (174)

Then i-P,(i-@)=P,(i-®) and i-Q,(i-®)=Q, (i-®)and that on the surface|P(i-»)’= Q(i- @) |*,
one obtains

Y

() o (175)

1-P,(-0.0-Pl-0+i-Q,(-0.)-QUL )~ |PE-0.0)f
P.(i-@%)P(-0X)-Q,(i-®%-Q( - X)

=(
Upon separating into real and imaginary parts, with
P=F+I'P ;Q=Q;+1-Q; P, =R, +I-R, (176)

Q(u :QR(u+i'Ql(u ’ Px = PRx+i'Plx; Qx =QRx+i'QIx (177)

2 2 2 o
P = PR + P| . When (x) can be any Cylindrical RF network antennas parameters L, C, And time delay

T etc,. Where for convenience, we have dropped the arguments (i - w, X) , and where
F,=2[(Pe, P+ P, P)—(Qu, Qe + Q- Q)] (178)

F =2:[(F B +PR)—(Qr Qe +QyQ)l (179)
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o, = —FX / Fw. We define U and V:
U=F-R,-P R,)-Q:Q,-Q Q) (180)
V=(F Py—R - F)—(QQu—Q - Qrl) (181)

We choose our specific parameter as time delay x = t.

w . T L2 4 . —(02-2-2' (182)

Ve V=P~

=0 ;F = 5
(L-C)

P.(®,7)=-&" ;P (w,7)=0

0T 1 (183)
Q|(w!f):_ﬁ ;QR(G)’T)ZR
I:)I‘r:O’PR‘rZO7(?Rz':0’cgl‘r:_i :>V¢0 (184)
L-C
2
FFtwr—2.0—F _
ow (L-C)
oF ) (185)
—=2'a)'[2'a)2—r—2];|:(a),f):0
ow (L-C)
And differentiating with respect to 7 and we get
F
Fw-a—w+FT:0;reI:a)T:a—w=——T (186)
or or F,
T
0 .C)? ORe A
. L o=, (187
T [2.0)2_ 2] T
(L-C)
0 =09 _ il (188)
T or [2-0*-(L-C)?*-7%]
, -2:[U+z|Pf1+i-F
1 :R %)
AR S Ve PR
2
—T-[%+a)4]+i~a)-[2~a)2—z-72] (189)
_Re{ L“-C (L-C) 3
—0*T . 1 4
ey et el
sign{x (7)} = sign{("5-),.,,.} (190
T
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ow U -6ﬂ+v
sign{/\‘l(r)}:sign{Fw}-sign{r-a—+ca+|‘?D—T|2} (191)
sign{ ()} = sign{2-o-[2-0" — T}
_oT (192)
signfr [— €Y .0
P S
20"~ "]
T
T (L-C)* @
e [[2.(02_ 2 e
L-C)?
+ 054 ) 1
We define new variables: ¥/, ¥/,,¥/;
2
T
Wl(w,T.L,C)=2'0)'[2'a)2—W] (193)
w-T
L-C)?
v,(w,7,L,C)=1- ( C)TZ ] (194)
2.0 ———
o™= ey
szcz.[ (L-C); ]+L;0C2
[2'(027 2]
w,(@.7,L,C) = (L-C) (195)
w

sign{A ()} = signly;] - signly, + o+ ;]

-1
We check the sign of A (T) according the following rule:

SIONFLT [ signY =22 1 s, 11 | sign[n(r)]

+/- +/- +
+/- /+ -

Table 2. Cylindrical RF network antennas system stability switching criteria.

If sign [A}(t)] > O then the crossing proceeds from (-) to (+) respectively (stable to unstable). If sigh[A™(t)]
< 0 then the crossing proceeds from (+) to (-) respectively (unstable to stable). Anyway the stability
switching can occur only for specific w, T. Since it is a very complex function, we recommend to solve it
numerically rather than analytic. We plot the stability switch diagram based on different delay values of
our Cylindrical RF network antennas system.
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1 T iz

DA, =7,=7)=A"+——-e """ - 41-——-e
(4o =1,=1) TC T C

A2

. - .
Taylor expansion: € "=l-A-r+ since we need

n>m [BK] analysis we choose e ** ~1—1-7 then we get

Our Cylindrical RF network antennas system second order characteristic equation:

D(A,7)=A2+a(r)-A+b(r)-1-e7*
+c(r)+d(r)-e*"

a(r)=0; b(r)=—ﬁ L c(r) =0 ; d(r):i
F(w,7) 9 P(i-o,7)] -|Q(i-o,1) = (c-»’)
+0’-a’ — (o -b* +d?)

7 1

(L-C)* (L-C)?

Flo,7)=0"-o"-

Hence

F(w,7) =0 implies ;¢ _,2. 1 o
(L-C)* (L-C)?

And its roots are given by

2l 2. c-a? PN
ol =2 Ab*+2-c-a )+A} 5 {JZ+(L'C)2
2_}_ 2 a2y :1. - ’

@ =2 {(0*+2-c-a")~A} z{V’Z+(L.C)2}

2
4
A=(b?+2-c—a%)—4-(c?—d?) =
( )—4-( ) (LC)

Therefore the following holds:

2.0 —(b?+2-c—a%)=+JA

—P(i-0,7)-Q,(ir0,7)+P,(ir0,7)- Qi (i- @, 7)

sinfd(r) = 0G0

coso(r) = el Qe(i-0.0)+R (-0.7)-Q (- w.7)

Q- o,7)f
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sina(r):_(C_“’zz)""z‘bJrZ""a‘d :_“’z‘fé'-‘c (208)
o -b*+d (0 -7+
— 2 . 2' . 2' .
COSH(T)z—(C o)-d+o-a-b o -L-C (209)

@b +d? (0% TP +D)

We consider Cylindrical RF antenna which mounted outside a Pyrex glass tube of diameter 32cm and
length 50cm. The RF antenna consists of 16 copper (Cu) legs equally spaced by 6.7cm interconnected
with capacitors of 2.47nF. Copper leg diameter is equal to 1mm and length 30cm=300mm (<Pyrex glass
tube length, 50cm). We consider for Copper (Cu), relative permeability is one. f=10MHz is the typical
testing frequency for cylindrical (birdcage) antenna. L — Inductance (nH), | — length of copper leg (mm), d
— diameter of copper leg, f — testing frequency. [>100-d (300mm>100-1mm), d*f>1mm?2-MHz

(1lmm?2-10MHz>1mm?2MHz). L=365.4nH. L:%-I -[In(%l—l]:365.4nH . For our stability switching

analysis we choose typical Cylindrical RF network antennas parameters values (as calculated):

C =2.47nF ; L =365.4nH ; R, =1000hm then ﬁ:0.00110798-1018. We find those @, 7 values

which fulfill F (@, ) = 0. We ignore negative, complex, and imaginary values of @ for specific7 values.
The below table gives the list. Remark: we know F(w,7)=0 implies it roots @ (7)and finding those
delays values 7 which @ is feasible. There are 7 values, which @, are complex or imaginary numbered,

then unable to analyze stability [6] [7].

6 Cylindrical RF Network Antennas System Stability Analysis under Delayed
Variables in Time7,=7 ; 7, =7, Results

We find those @, 7 values which fulfill F(w,7)=0. We ignore negative, complex, and imaginary
values of @ for specific 7 values. 7 €[0.001..10] and we can be express by 3D functionF(s,7)=0.
2
F(a),r)=co4—a)2~T—Z—;2 (210)
(L-C)* (L-C)
F(w,7) = P(i-o,7) [ -|Q(i-,7) [

2 (211)
=0, +D, -0’ +D, 0" =) D,, -
k=0
2
q)oz_;z;q)zz_r—z;q)‘l:l (212)
(L-C) (L-C)
4
Hence F(@,7)=0 implies ), ®@,, -&™* =0 (213)

k=0
®;~>Phij. Running MATLAB script for T values (7 €[0.001..10] ) gives the following results:

MATLAB script: Tau=0.001;C=2.47*1e-9;L=365.4*1e-9;Phi0=-1/(C*L*C*L); Phi2=-(Tau*Tau)/(C*L*C*L);
Phi4=1;p=[Phi4 0 Phi2 0 PhiO];r=roots(p)
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Table 3a. Cylindrical RF network antennas system Table 3b. Cylindrical RF network antennas system
roots @ (7) roots @ (7)
T 1=0.01sec 1=0.001sec T t=1sec t=0.1sec
w1 1.0e+013 * 1.0e+012 * w1 1.0e+015 * 1.0e+014 *
w2 -1.1080 -1.1080 w2 -1.1080 -1.1080
w3 1.1080 1.1080 w3 1.1080 1.1080
w4 | 0.0000 + 0.0000i -0.0000 + 0.0000i w4 | -0.0000 + 0.0000i 0.0000 + 0.0000i
ws 0.0000 - 0.0000i -0.0000 - 0.0000i ws | -0.0000 - 0.0000i 0.0000 - 0.0000i
Table 3c. Cylindrical RF network antennas system roots Table 3d. Cylindrical RF network antennas system
(1) roots @ (7)
T t=3sec Tt=2sec T t=5sec T=4sec
w1 1.0e+015 * 1.0e+015 * w1 1.0e+015 * 1.0e+015 *
w2 3.3240 -2.2160 w2 -5.5399 4.4319
w3 -3.3240 2.2160 w3 5.5399 -4.4319
w4 0 + 0.0000i -0.0000 + 0.0000i w4 | 0.0000 + 0.0000i 0 + 0.0000i
ws 0 - 0.0000i -0.0000 - 0.0000i ws 0.0000 - 0.0000i 0 - 0.0000i
Table 3e. Cylindrical RF network antennas system Table 3f. Cylindrical RF network antennas system roots
roots @, (7) @ (1)
T t=7sec T=6sec T T=9sec T=8sec
w1 1.0e+015 * 1.0e+015 * w1 1.0e+015 * 1.0e+015 *
w2 -7.7559 6.6479 w2 9.9719 8.8639
w3 7.7559 -6.6479 w3 -9.9719 -8.8639
w4 | 0.0000 + 0.0000i 0 + 0.0000i w4 0 + 0.0000i 0 + 0.0000i
ws 0.0000 - 0.0000i 0 - 0.0000i ws 0 - 0.0000i 0 - 0.0000i

Table 3g. Cylindrical RF network antennas system roots . ()

T t=0sec t=10sec

w1 1.0e+007 * 1.0e+016 *
Wz -3.3286 -1.1080

w3 -0.0000 + 3.3286i 1.1080

wa -0.0000 - 3.3286i -0.0000 + 0.0000i
ws 3.3286 -0.0000 - 0.0000i

We can summery our @ (7) results for @ (z)>0and real number (ignore complex, negative, and
imaginary values). We exclude from our table the high and real @ (r)values (1.0e+007 *, 1.0e+012

* ...,1.0e+016 *) and add results for t=15sec and t=20sec.
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Table 4. Cylindrical RF network antennas system Positive and real roots @ () values and

sin(w-7), cos(w-7) values

T[sec] w sin(w-7) cos(w-7)
_-0’7-L-C _o-LC
(@2 +)) (0?77 4))
0 3.3286 0=0 1#£9.9e-15
0.001..1 1.1080 -1.22e-18... 1.108e-15...
-5.51e-16 4.973e-16
2 2.2160 -9.5e-16 2.1e-16
3 3.3240 -9.9e-16 9.9e-17
4 4.4319 -9.9e-16 5.62e-17
5 5.5399 -9.9e-16 3.6e-17
6 6.6479 -9.99-16 2.5055e-17
7 7.7559 -9.9966e-16 1.8413e-17
8 8.8639 -9.9980e-16 1.4099e-17
9 9.9719 -9.9988e-16 1.1141e-17
10 1.1080 -9.9193e-17 8.9525e-18
15 1.6620 -9.9841e-17 4.0048e-18
20 2.2160 -9.9950e-17 2.2552e-18
0 Vf(OmEQ?):fﬂaul)
sl
sl
A1
E
S o
Al
o
2l

1 L 1
0 2 4 B

n L L
a8 10 12 14
Tau[sec]

Figure5. Cylindrical RF network F(w,t) function for ti1=t2=t

Matlab: plot([0 0.001 0.010.11234567891015 20],[3.3286 1.1080 1.1080 1.1080 1.1080 2.2160
3.3240 4.4319 5.5399 6.6479 7.7559 8.8639 9.9719 1.1080 1.6620 2.2160],'-or'). We plot 3D function
F(w,7)=0.1:0->10; w:0->100. We define additional MATLAB script parameters w—->w, t>t.
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Cylindrical RF Metwork antenna Fiw,Tau) function

F i, Tau)

Tau[0.01 sec] bn wiOmega)

Figure 6. Cylindrical RF network F(w,t) function for ti1=t2=1

Matlab:[w,t]=meshgrid(1:1:100,0:0.01:10);C=2.47*1e-9;L=365.4*1e-9;f=w.*w.*w.*w-
w. AW (1 *%t)/(C*¥L*¥C*L)-1/(C*L*C*L);meshc(f); % o > W, 7 —>t

We get two possible real values for w which fulfil F(w,7) =0

F(w=33286 or ®=11080 ...... or ©=2.2160,7) =0 ; 7 €[0.001..10]Next is to find those w, T values which fulfil

sinf(zr) =...
sin(w-7) = —F-Q, +2P' ‘R And cosd(r) =..
Q]
COS(a)~T):_(PR'QR+2P' Q|) ; |Q|2:Q§+Q|2-
Q|
Sin(a)-r):_a)z.r—;l_'c : COS(a)-T):a)ZZI—LZ'C
(0”77 +1) (0 -7 +1)

(214)

(215)

(216)

3 2
—orLC _go @ L:C _4then sin(w-7)<0 andcos(a)-r)>O;2-7r>a)-r>g-3. We plot the

<
(0”7 +1) (@ -7 +1)

stability switch diagram based on different delay values of our Cylindrical RF network antennas system.

oReA -2-[U+7|P[]+i-F
). —Re{ [_ |PI] it
ot F+i-2:[V+ao|P|]

}

A7) = (

)= (OReAy _24F,-(V+@-P)-F, -(U+z-P)}
e e F2+4-(V +o-P?)?

Sign{/\_l(f)}= sign[y, ]- sign[y, + @+,]. We define the following new functions:
0.=%1:0, =y, +to+y;

sign{A (1)} = sign[g,]-sign[g,]
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g1(Tau,Omega)

g1{Tau,Omega)

10000

1000 5000

6000

500 4000

; 2000
Tau[d.01sec] u Ornegal14100]

Figure 7. Cylindrical RF network gl (T, a)) function for ti=t2=t.

Matlab:[w,t]=meshgrid(1:.01:100,0:0.01:10);C=2.47*1e-9; L=365.4*1e-9;f=2*w.*(2*w.*w-
(t.*t./(C*L*C*L)));meshc(f)
%®—>W, 7>t

g2(Tau,Omega)

42(Tau,Omega)

Tau[D.1z8c] oo Omega0.1]

Figure 8. Cylindrical RF network gz (T, a)) function for Tti=t;=T.

Matlab:[w,t]J=meshgrid(1:.1:10,0:0.1:10);C=2.47*1e-9; L=365.4%1e-9;m=w.*t./(2*w.*w.*(L¥*C*L*C)-t.*1);
f=t.*m+w+(m.*t./(L*C*L*C)+w./(L*C*L*C))./(w.*w.*w.*w);meshc(f) o > W, 7 —> 1

_ OReA
g(Tau) = g,(Tau)-g,(Tau) = A 1(1') =( or )icio (221)
. . . . 0.(7) .
The stability switch occur only on those delay values ( 7 ) which fit the equation: 7 = and 6 (7) is
(7
the solution
3 2
Of sinor)=—2""LC cosory =2 LC (222)
(0”77 +1) (0”77 +1)
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When a):a)+(z-) if only @, is feasible. Additionally When all Cylindrical RF network antennas

parameters are known and the stability switch due to various time delay values T is describe in the
below expression (Appendix E):

sign{A ™ ()} = sign{F,, ((7), 7)}-sign{r - o, ((7))

U (a(2))- @, (o(z)) +V (w(r))} (223)
|P(a(2)) [

+o(r) +

Remark: we know F(w,7)=0 implies it roots C!),(T) and finding those delays values T which @; is

feasible. There are T values which @, is complex or imaginary number, then unable to analyse stability
(4] [5].

7 Discussion
In this paper, we consider Cylindrical RF network antennas system. Due to RF antenna copper leg
parasitic effect we get copper leg's current and current derivative with delay t1-k and t2-k (k is leg
number index, k=1,...,16).. Those delays causes to stability switching for our Cylindrical RF network
antennas. We draw our Cylindrical RF network antennas equivalent circuit and get system differential
equations. Our variables are Y, X which are function of RF antenna copper leg's current and current

derivative. Our system dynamic behavior is dependent on circuit overall parameters and parasitic delay

in time. We keep all circuit parameters fix and change, parasitic delay over various Va|uesre[0.001..10]_

Our analysis results extend that of in the way that it deals with stability switching for different delay
values. This implies that our system behavior of the circuit cannot inspect by short analysis and we must
study the full system. Several very important issues and possibilities were left out of the present paper.
One possibility is the stability switching by circuit parameters. Every circuit's parameter variation can
change our system dynamic and stability behavior. This case can be solved by the same methods
combined with alternative and more technical hypotheses. Moreover, numerical simulations for the
Cylindrical RF network antennas model studied in references suggest that this result can be extended to
enhance models with more general functions. Still another extension of our results would be to treat the
case of delayed Cylindrical RF network antennas leg's higher derivative degree of current. It would be
extremely desirable to confirm these cases by mathematical proofs.

8 Conclusion

Cylindrical RF network antennas system is characterized by parasitic effects which can influence
Cylindrical RF network antennas system stability in time. There are two main Cylindrical RF network
antennas variables which are affected by antenna legs parasitic effects, Y and X functions of antenna
leg's currents and currents derivatives respectively. Each Cylindrical RF network antennas system
variable under parasitic effects is characterized by time delay respectively. The two time delays are not
the same, but can be categorized to some sub cases due to antenna leg parasitic behavior.

The first case we analyze is when there is delay in Cylindrical RF network antennas leg's current and no
delay in antennas leg's current derivative or opposite. The second case we analyze is when there is delay
both in Cylindrical RF network antennas leg's current and current time derivative [4] [5]. For simplicity of
our analysis we consider in the second case all delays are the same (there is a difference but it is
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neglected in our analysis). In each case we derive the related characteristic equation. The characteristic
equation is dependent on Cylindrical RF network antennas system overall parameters and parasitic time
delay. Upon mathematics manipulation and [BK] theorems and definitions we derive the expression
which gives us a clear picture on Cylindrical RF network antennas map. The stability map gives all
possible options for stability segments, each segment belongs to different time delay value segment.
Cylindrical RF network antennas system's stability analysis can be influenced either by system overall
parameter values. We left this analysis and do not discuss it in the current article.

Appendix A :Lemma 1.1

Assume that @(7)is a positive and real root of F(w,7) =0

Defined for 7 € | , which is continuous and differentiable. Assume further that if A =i-w, @w € R, then
P.(i-o,7)+Q,(i-w,7) 20, 7 €Rhold true. Then the functions S,(z), n€ N,, are continuous and

differentiable on I.

Appendix B : Theorem 1.2

Assume that @(7)is a positive real root of F(w,7) =0 defined for re |, | = R,,, and at some 7 € |
, S,(7) =

For some N€ Nothen a pair of simple conjugate pure imaginary roots / (r')=i-a(r), A.(r')=-i-0(r") of
D(A,7) =0 exist at 7 =7 which crosses the imaginary axis from left to right if 5(1'*) > 0and cross the

imaginary axis from right to left if 5(7 ) <0 where

d Re/1
5( ) = Slgn{ | :iw(r*)} =
(224)
dS T
sign{F, (o), - sign |y
The theorem becomes
S, = sgn{A"}-sign{ 2| ) (225)
Appendix C : Theorem 1.3
The characteristic equation: 7, =7,7, = 0; n= 0, T,=T
D(A,7) =A% +a(r)-A+b(r)-1-e *" +c() +d(z) - e ** (226)
D(A,7,,7,) =A%+ - L ey b i (227)

C1-R1 Cl-f,

Has a pair of simple and conjugate pure imaginary roots
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A=20(r), O(7 )real at " c1if Sn(T*)=T*—Tn(T*)=0 for some N € No- If 0)(2'*) :a)+(r*), this pair
of simple conjugate pure imaginary roots crosses the imaginary axis from left to right if 5+ (T*) >0and
crosses the imaginary axis from right to left if 5+ (T*) <0 where

d Reﬂ dS (r)

S.(r) =sig{———,_, - }=sigf{—"—=]| .} (228)

=iw, ()

If a)(T )= - (T ), this pair of simple conjugate pure imaginary roots cross the imaginary axis from left

to right if
o (T*) >0and crosses the imaginary axis from right to left

If O (T*) <0 where

dRe/1 3 —sig n{dS ()

8_(z") = signf |-} (229)

| A=iw_ (7))

If @, (T*) = (T*) = CO(T*) then A(T*) =
S (r)=0

}=0, the same is true when

A=iw(")

The following result can be useful in identifying values of T
Where stability switches happened.
Appendix D : Theorem 1.4

Assume that forall 7 € |, @w(z)is defined as a solution of

F(w,7) =0 then 0, (7) = sign{+A"*(z)}-signD, (¢)

D.(r) =&’ [(@®-b*+d*)+a"-(c—@’)+b-d —b-d—a-c] (230)
+o, -0, [r-(0?-b*+d*)-b-d+a-(c—w’)+2-0°-a]

_da@ . _db(®) . _de(r) . dd()

; ; ; (231)
dr dr dr dr
Appendix E: We need to approve the following expression

sign{A ™ (r)} = sign{F, (@(), 7)} - sign{z - @, (7))

ARG QRAC QRN (232)
| P(a(7))|
The basic assumption: A™(7) = (Glg_eﬂ)mw (233)
T

()= (8Re/1); 2R (Vo P)-F U PY) (234)

F?+4-(V+o-P?)?
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SIgF.2 +4-(V +@-P?}> 0 and o, =—%then

[1].

[2].

[3].

(4].

[5].

[6].

[7].

[8].

[9].

1 0 Rez
sigi{A " (7)} = sign{(—— )H‘w} (235)
=sigi{F_-(V +w-P? )—FT-(U +7-P*)}
sign{a(0)} = sign{F,, {(V + - P?) —%.(u +7-P)}} (236)
sign{A " (0)}=sig{F, {(V + @ P+, - (U +7-P>)}} (237)
Sig{A (D)} =sigF, {V + @ U +®- P>+, -z -P}} (238)
sign{x *(0)}= sigP* -F, % 1 o+ o, -1} (239)
sign{A‘1 (r)} = sign{P?}-sign{F,}
240
S|gn{ U +o+o, -7} ;sig{P*}>0 (240)
sign{r (0)} = sig{F. }-signf %Y s w1+ w -7} (241)
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