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ABSTRACT   

Wireless communication is sensitive to ambient noise as well as interference due to the use of a shared 
medium. The link quality is significantly affected by the surrounding terrain including buildings, hills, 
foliage, etc. Terrain changes also pose a problem for communication and localization in mobile ad-hoc 
networks and in the deployment of Internet of Things (IoT). Many of these problems can be addressed 
through careful antenna design, but these can be challenging as they require complex hardware and 
software. We propose a new approach called virtual terrain leveling (VTL), which acts as a trade-off 
between the complex antenna design approaches and the simple omni-directional antennas. VTL virtually 
nullifies the effects of the terrain using phased array antennas to compensate for the path losses. Convex 
optimization and the Nelder-Mead simplex method are used to compute the antenna array weights that 
minimize the error between the ideal and achieved beam patterns. Simulations are performed in the 
presence of different terrains and the received power at varying distances from the transmitter is 
analyzed. The results show improved received power up to a specified distance from the transmitter and 
then power decays rapidly with increasing distance, indicating interference reduction. 

Keywords: Terrain nullification, Phased arrays, Convex optimization, Nelder-Mead optimization. 

1 Introduction  
Unlike wired communication, wireless communication is sensitive to ambient noise as well as interference 
due to the use of a shared medium. Wireless spectrum is a scarce resource, which makes it impractical for 
large wireless ad hoc networks to carry out simultaneous transmissions using only frequency division 
techniques. Therefore, the signal transmissions are separated in space, time, and encoding to facilitate 
increased simultaneous transmissions. These interference avoidance techniques usually require a-priori 
planning and centralized control. Increase in the number of nodes exacerbates the interference issue and 
makes the design of centralized control more difficult. 

Signal quality in wireless networks is significantly affected by the surrounding terrain including buildings, 
hills, foliage, etc. Terrain features pose difficult challenges to implementation of mobile ad hoc networks 
(MANETs). The performance of MANETs and how they are influenced by their ability to cope with topology 
changes arising from node mobility under the influence of terrain is analyzed in [1]. They find that the 
probability of two connected nodes remaining connected falls rapidly as the line-of-sight (LOS) probability 
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decreases. Also, most of the routing protocols are designed based on the assumption of omni-directional 
transmissions, which is unlikely to hold for terrain encountered in most practical applications. 

Beamforming antennas can effectively address the interference issue, even without a central control, 
acting as a spatial filter by directing the beam in certain directions. They create radiation patterns by 
adding the signals constructively in desired directions and destructively in others. The antenna beam 
synthesis techniques are marginally addressed for fixed infrastructure networks in previous literature. [2] 
uses a simplified sector model for antenna beams to approximate azimuth beams. [2] [3] use a simplified 
cellular model by neglecting the topography. In [4] a coverage goal is defined, and the amount of power 
radiated outside the cell is compared with the amount of power radiated within the cell. But they use the 
same approximation as in [2], which does not consider the topography. Smart antenna solutions including 
switched beam antennas, adaptive beam arrays, and Multiple-Input Multiple-Output (MIMO) systems [5] 
usually require a separate transceiver behind every antenna element. This is problematic for large 
antenna array systems as they are expensive and also because of the requirement of high speed Analog-
to-Digital / Digital-to-Analog converters to accommodate the necessary bandwidth. Several signal 
processing techniques like randomization and cancellation are used to reduce inter-cell interference. 
These techniques try to average the interference across the system bandwidth and null out certain 
directions. The required processing power and complexity of these advanced techniques limit their use in 
wireless ad hoc networks.  

[6] [7] [8] describe phase-only antenna arrays that achieve optimal beam patterns with maximum average 
network signal-to-noise ratio (SNR). They use a hybrid analog/digital beamformer to steer the antenna 
beams using a single transceiver, power splitter/combiner, and electronically controlled analog phase 
shifters. These solutions are independent of the path loss models, therefore, making it easy to incorporate 
any terrain or traffic information. However, they are computationally complex requiring a centralized 
computer to pre-compute the antenna weights. A second order cone programming and semi-definite 
programming based approach to solve the array synthesis problem in non-uniform array with constraints 
on the magnitude is presented in [9]. They also address the robust array pattern synthesis in the presence 
of gain and phase uncertainties. 

In [10], we presented a preliminary analysis of Virtual Terrain Leveling (VTL) that acts as a trade-off 
between the complex antenna design approaches and the simple omni-directional antennas. VTL uses the 
hybrid analog/digital beam forming technique to limit the radiated power and validates the free space 
assumption by nullifying the effects of terrain up to a specified range from the transmitter. In other words, 
phased array antennas are used that provide gain inversely proportional to the path loss. In this paper, 
we extend our analysis to include active array antennas, and also study different array sizes and 
geometries. The antenna beams are synthesized using two different approaches, i.e., convex optimization 
[11] and the Nelder-Mead simplex method [12]. The idea behind VTL relies on efficiently pre-computing 
the radio propagation maps using a suitable path loss model and using this information to find the antenna 
array weights at the transmitter. Approximation methods such as the ones presented in [13] [14] can be 
used to get a low complexity representation of radio propagation maps for VTL implementation. We show 
that VTL can mitigate issues by providing near omni-directional propagation in the presence of terrain 
with the use of directional antennas and limiting the range of the radiated signal to reduce interference 
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and to increase frequency reuse. With the use of pre-computed radio propagation maps, VTL can avoid 
deafness in MANETs as they will be able to hear their neighboring nodes from all directions. 

This paper is organized as follows: Section 2 explains the VTL methodology and the goals of this research. 
In Section 3, background theory on phased array antennas, the array gain, and the optimization methods 
used to obtain array gain patterns is discussed. The simulations and analysis of results of the proposed 
VTL approach is presented in Section 4. Section 5 provides a summary of this research work and concludes 
the paper. 

2 VTL Methodology 
In many antenna applications, the problem of antenna pattern synthesis is of extreme importance and 
therefore it has been studied for decades. However, most of the existing literature assumes the 
knowledge of the optimal beam pattern and uses some kind of optimization algorithm to solve for system 
parameters. For example, the authors of [15] assume a desired, synthetic complex array amplitude vector, 
comprised of ones and zeros, where 1s correspond to the directions of interest, and compute the 
amplitude weights that minimize the error between the realized beam pattern and the synthetic complex 
array amplitude vector. Similarly, [16] uses genetic algorithm to search for complex roots that provide 
nulls in the desired directions. Particle-swarm optimization is used in [17] to search for the optimal array 
geometry that can realize the main beam with the desired beam width, providing unity gain in the 
directions of interest. Through VTL, we provide an analytical approach for computing the antenna gain 
patterns that minimizes the effects of path loss. The analytical approach eliminates the need for 
speculative beam patterns based on the synthetic complex array amplitude vectors. 

VTL virtually nullifies the effects of terrain at a desired distance from the transmitter by increasing the 
gain in the directions of increased path loss. Typically, the transmitter power is set to provide radio 
coverage up to a certain virtual radius (VR) based on receiver sensitivity. The idea is to reduce the 
transmitter power and use an antenna array with a gain distributed in such a way that it compensates for 
the lower received power. To illustrate the concept, consider a simple wireless network without adaptive 
power control, whose network protocol assumes homogeneous terrain with equal propagation in all 
directions. Unfortunately, real-world terrain causes significant variation in propagation distance 
depending on direction, which impairs network efficiency. In this example, assume the desired “cell 
radius” is 1 km and that transmitter power 𝑃𝑃𝑡𝑡 has been adjusted so that all locations in the cell are within 
range of the base station as shown in the cartoon of Figure. 1 (a).  By satisfying the worst-case direction 
of 200°, we see excessive range of over 2 km in other directions, likely causing interference in adjacent 
cells. VTL uses a passive antenna beam pattern that is inversely related to range, using less gain in some 
directions in order to provide higher gain in others, as shown in Figure. 1 (b). Figure. 1 (c) shows the range 
map after VTL is applied. The reason the corrected range map is not an ideal flat line is because a practical 
antenna array cannot perfectly remove all effects of loss-vs-direction. After VTL is applied, it is clear that 
the resulting system has excess range, and transmitter power can be reduced while maintaining the 
desired 1 km cell radius, as shown in Figure. 1 (d). VTL thus gives better power efficiency, reduced adjacent 
cell interference, and improved frequency reuse. 
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Figure. 1: VTL cartoon showing (a) Range vs. angle, minimum range = 1 km. (b) Antenna gain pattern (not to 
scale). (c) Range with VTL. (d) Range after VTL, reduced transmitter power. 

We make use of the Cost 231 Walfisch-Ikegami model (WIM) [18] [19] to demonstrate the concept of VTL. 
The WIM provides a theoretical model for urban communication systems. In this model, the rows or blocks 
of buildings are viewed as diffracting cylinders. Buildings are treated as absorbing screens, which reduces 
the propagation process to multiple forward diffractions past a series of screens. Diffraction is 
contemplated right from rooftops down to street level, which provides path loss predictions close to 
average measurement path loss. 

For an omnidirectional antenna, if a free line-of-sight (LOS) exists in an urban canyon, the path loss in 
decibels is given by  

𝐿𝐿WIM = 42.6 + 20 log𝑓𝑓 + 26 log𝑅𝑅, 

where the frequency 𝑓𝑓 is given in MHz and 𝑅𝑅 is the range in km. If there is no LOS path between the 
transmitter and receiver, the path loss is defined as 

𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊 = �
𝐿𝐿𝐹𝐹𝐹𝐹 + 𝐿𝐿𝑟𝑟𝑡𝑡𝑟𝑟 + 𝐿𝐿𝑚𝑚𝑟𝑟𝑚𝑚                                               
𝐿𝐿𝐹𝐹𝐹𝐹,                                  𝑖𝑖𝑓𝑓 𝐿𝐿𝑟𝑟𝑡𝑡𝑟𝑟 + 𝐿𝐿𝑚𝑚𝑟𝑟𝑚𝑚 < 0, 

where 𝐿𝐿𝐹𝐹𝐹𝐹 is the free-space path loss. The coupling of the wave propagating along the multi-screen path 
into the receiver located in the street is defined as the rooftop-to-street diffraction and scatter loss, 𝐿𝐿𝑟𝑟𝑡𝑡𝑟𝑟 
given by 

(a) (b) 

(c) (d) 
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𝐿𝐿𝑟𝑟𝑡𝑡𝑟𝑟 = �
−16.9− 10 log𝑤𝑤 + 10 log𝑓𝑓 + 20 log∆ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐿𝐿𝑜𝑜𝑟𝑟𝑟𝑟, 𝑖𝑖𝑓𝑓 ℎ𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟 > ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

0, 𝑖𝑖𝑓𝑓 𝐿𝐿𝑟𝑟𝑡𝑡𝑟𝑟 < 0  

where 𝐿𝐿𝑜𝑜𝑟𝑟𝑟𝑟  is the street orientation loss defined as 

𝐿𝐿𝑜𝑜𝑟𝑟𝑟𝑟 = �
−10 + 0.354ψ             𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤ 𝜓𝜓 < 35

2.5 + 0.075(𝜓𝜓 − 35)         𝑓𝑓𝑓𝑓𝑓𝑓 35 ≤ 𝜓𝜓 < 55
4 − 0.114(𝜓𝜓 − 55)          𝑓𝑓𝑓𝑓𝑓𝑓 55 ≤ 𝜓𝜓 ≤ 90

. 

Here, 𝜓𝜓 is the angle in degrees between the base station and the road. The multiscreen diffraction loss 
𝐿𝐿𝑚𝑚𝑟𝑟𝑚𝑚 is given by 

𝐿𝐿𝑚𝑚𝑟𝑟𝑚𝑚 = 𝐿𝐿𝑏𝑏𝑟𝑟ℎ + 𝑘𝑘𝑎𝑎 + 𝑘𝑘𝑚𝑚 log𝑅𝑅 + 𝑘𝑘𝑟𝑟 log𝑓𝑓 − 9 log𝑏𝑏, 

where 

𝐿𝐿𝑏𝑏𝑟𝑟ℎ = �
−18 log(1 + ∆ℎ𝑏𝑏𝑎𝑎𝑟𝑟𝑟𝑟)      𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑏𝑏𝑎𝑎𝑟𝑟𝑟𝑟 > ℎ𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟

0                      𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑏𝑏𝑎𝑎𝑟𝑟𝑟𝑟 ≤ ℎ𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟
, 

 

𝑘𝑘𝑚𝑚 = �
18                      𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑏𝑏𝑎𝑎𝑟𝑟𝑟𝑟 > ℎ𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟

18 − 15
∆ℎ𝑏𝑏𝑎𝑎𝑟𝑟𝑟𝑟
ℎ𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟

           𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑏𝑏𝑎𝑎𝑟𝑟𝑟𝑟 ≤ ℎ𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟
, 

 

𝑘𝑘𝑎𝑎 = �
54            𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑏𝑏𝑎𝑎𝑟𝑟𝑟𝑟 > ℎ𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟

54 − 0.8∆ℎ𝑏𝑏𝑎𝑎𝑟𝑟𝑟𝑟    𝑓𝑓𝑓𝑓𝑓𝑓 𝑅𝑅 ≥ 0.5 𝑘𝑘𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑏𝑏𝑎𝑎𝑟𝑟𝑟𝑟 ≤ ℎ𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟
54 − 1.6∆ℎ𝑏𝑏𝑎𝑎𝑟𝑟𝑟𝑟𝑅𝑅  𝑓𝑓𝑓𝑓𝑓𝑓 𝑅𝑅 < 0.5 𝑘𝑘𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑏𝑏𝑎𝑎𝑟𝑟𝑟𝑟 ≤ ℎ𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟

, 

and 

𝑘𝑘𝑟𝑟 = −4 + �
0.7 �

𝑓𝑓
925

− 1�     𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑓𝑓𝑏𝑏𝑎𝑎𝑎𝑎 𝑎𝑎𝑓𝑓𝑎𝑎𝑎𝑎𝑠𝑠

1.5 �
𝑓𝑓

925
− 1�        𝑠𝑠𝑓𝑓𝑏𝑏𝑎𝑎𝑎𝑎 𝑎𝑎𝑓𝑓𝑎𝑎𝑎𝑎𝑠𝑠

. 

The predicted power received at a receiver can be computed using the WIM as 

𝑃𝑃𝑟𝑟𝑊𝑊𝑊𝑊𝑊𝑊(𝜃𝜃) =
𝑃𝑃𝑡𝑡𝐺𝐺𝑡𝑡(𝜃𝜃)𝐺𝐺𝑟𝑟(𝜃𝜃)
𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊(𝜃𝜃) , 

where 𝑃𝑃 is the power, 𝐺𝐺(𝜃𝜃) is the antenna gain, 𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊(𝜃𝜃) is the path loss, and the subscripts indicate the 
association of the quantities with either the transmitter or the receiver. This compares with the predicted 
loss in a free-space environment 

𝑃𝑃𝑟𝑟𝐹𝐹𝐹𝐹𝑊𝑊(𝜃𝜃) =
𝑃𝑃𝑡𝑡𝐺𝐺𝑡𝑡(𝜃𝜃)𝐺𝐺𝑟𝑟(𝜃𝜃)

𝐿𝐿𝐹𝐹𝐹𝐹𝑊𝑊
, 

where 𝐿𝐿𝐹𝐹𝐹𝐹𝑊𝑊 = �4𝜋𝜋𝜋𝜋
𝜆𝜆
�
2

. Here, 𝜆𝜆 is the wavelength, and 𝑅𝑅 is the distance from the transmitter in meters. 

Using omni-directional antennas for both the transmitter and receiver, the power received can be written 

as 𝑃𝑃𝑟𝑟𝑊𝑊𝑊𝑊𝑊𝑊(𝜃𝜃) = 𝑃𝑃𝑡𝑡
𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊(𝜃𝜃), and 𝑃𝑃𝑟𝑟𝐹𝐹𝐹𝐹𝑊𝑊 = 𝑃𝑃𝑡𝑡

𝐿𝐿𝐹𝐹𝐹𝐹𝑊𝑊
. 
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VTL tries to find the transmitter antenna gain such that 𝑃𝑃𝑟𝑟𝑊𝑊𝑊𝑊𝑊𝑊(𝜃𝜃) = 𝑃𝑃𝑟𝑟𝐹𝐹𝐹𝐹𝑊𝑊, i.e.,  

𝑃𝑃𝑡𝑡𝐺𝐺𝑡𝑡(𝜃𝜃)
𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊(𝜃𝜃)

=
𝑃𝑃𝑡𝑡
𝐿𝐿𝐹𝐹𝐹𝐹𝑊𝑊

 

or 

 𝐺𝐺𝑡𝑡(𝜃𝜃) =
𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊(𝜃𝜃)
𝐿𝐿𝐹𝐹𝐹𝐹𝑊𝑊

, 
(1) 

where 𝐿𝐿𝐹𝐹𝐹𝐹𝑊𝑊 is the free space path loss. Equation (1) provides an analytical solution for finding the gain 
pattern that compensates for the propagation path losses. The solution works regardless of the path loss 
model used. Also, it is important to notice that the antenna gain obtained using equation (1) is the power 
gain of the antenna. Therefore, the antennas/antenna arrays have to be designed such that they closely 
match this desired power pattern subject to the design constraints like system power, degrees of freedom, 
etc. In case of very high path losses, it is beneficial to include the condition 𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊 =
min (𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊,𝑀𝑀𝑎𝑎𝑀𝑀𝑖𝑖𝑘𝑘𝑠𝑠𝑘𝑘_𝐿𝐿𝑓𝑓𝑠𝑠𝑠𝑠_𝑇𝑇ℎ𝑓𝑓𝑎𝑎𝑠𝑠ℎ𝑓𝑓𝑜𝑜𝑎𝑎) to prevent futile gain in the directions of very high path loss. 

3 Background Theory 

3.1 Antenna Arrays 
Antenna arrays are effective in providing a flexible and efficient way to synthesize antenna gain patterns. 
The power radiated or received by the antenna is enhanced in certain directions and diminished in others 
by addition and cancellation of power. For VTL, a low complexity hybrid analog/digital beamforming 
antenna described in [6] is used. This system uses a single transceiver along with digitally controlled phase 
shifters and step attenuators/amplifiers as shown in Figure. 2. 

 

Figure. 2: Low complexity hybrid analog/digital beamformer. 

In the hybrid system, the complex antenna weights, 𝑤𝑤𝑘𝑘 are applied by a computer to the receiver outputs 
to form the desired antenna beams. For a generic system, the antenna weights 𝑤𝑤𝑘𝑘 = 𝑐𝑐𝑘𝑘𝑎𝑎𝑗𝑗𝜙𝜙𝑘𝑘 , have both 
magnitude and phase. The complexity of the antenna system can be further reduced by eliminating the 
step attenuator/amplifier, which will constrain the weights to be phase-only (𝑤𝑤𝑘𝑘 = 𝑎𝑎𝑗𝑗𝜙𝜙𝑘𝑘). 
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The transmitted signal can be represented as 𝑓𝑓(𝑡𝑡) = 2𝑠𝑠(𝑡𝑡) cos(𝜔𝜔0𝑡𝑡) = 𝑠𝑠(𝑡𝑡)𝑎𝑎𝑗𝑗𝜔𝜔0𝑡𝑡 + 𝑠𝑠(𝑡𝑡)𝑎𝑎−𝑗𝑗𝜔𝜔0𝑡𝑡, where 
𝜔𝜔0 = 2𝜋𝜋𝑓𝑓0 is the angular frequency. The block diagram of the receiver is shown in Figure. 3. 

 

Figure. 3: Block diagram of the receiver. 

The mixer output signal 𝑠𝑠(𝑡𝑡) = 𝑠𝑠(𝑡𝑡)𝑎𝑎−2𝑗𝑗𝜔𝜔0𝑡𝑡 + 𝑠𝑠(𝑡𝑡)𝑎𝑎0, but the high frequency component is removed by 
the low pass filter giving 𝑤𝑤(𝑡𝑡) = 𝑠𝑠(𝑡𝑡). Therefore, we can safely assume the transmitter signal to be 𝑓𝑓(𝑡𝑡) =
𝑠𝑠(𝑡𝑡)𝑎𝑎𝑗𝑗𝜔𝜔0𝑡𝑡 to avoid unnecessary calculations. 

 

Figure. 4: M-element uniform linear array. 

A uniform linear array consisting of 𝑀𝑀 antenna elements is shown in Figure. 4. Consider a single instant of 
time 𝑡𝑡, giving a snapshot of the wavefront for a signal arriving from direction 𝜃𝜃. By looking at Figure. 4, it 
is evident that wave 𝐵𝐵 touches antenna #1 before it touches antenna #0. Let the wavefront at antenna #0 
be 𝑠𝑠0(𝑡𝑡) = 𝑠𝑠(𝑡𝑡)𝑎𝑎𝑗𝑗𝜔𝜔0𝑡𝑡, then the wavefront at antenna #1 is 𝑠𝑠1(𝑡𝑡) = 𝑠𝑠0(𝑡𝑡 + ∆𝑡𝑡). We assume a “low-pass 

narrow-band” signal 𝑠𝑠(𝑡𝑡) with bandwidth << 𝑓𝑓0. Therefore, 𝑠𝑠(𝑡𝑡 + ∆𝑡𝑡) ≈ 𝑠𝑠(𝑡𝑡), where ∆𝑡𝑡 = 𝑚𝑚𝑟𝑟𝑜𝑜𝑟𝑟𝜃𝜃
𝑟𝑟

 and 𝑐𝑐 =

𝜆𝜆𝑓𝑓0 . Therefore ∆𝑡𝑡 = 2𝜋𝜋𝑚𝑚𝑟𝑟𝑜𝑜𝑟𝑟𝜃𝜃
𝜔𝜔0𝜆𝜆

. The signal received at the receiver for antenna 𝑘𝑘  is given as 𝑓𝑓𝑚𝑚 ≃

𝑠𝑠(𝑡𝑡)𝑎𝑎𝑗𝑗𝜔𝜔0(𝑡𝑡+𝑚𝑚∆𝑡𝑡) = 𝑠𝑠(𝑡𝑡)𝑎𝑎𝑗𝑗𝜔𝜔0�𝑡𝑡+
2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

𝜔𝜔0𝜆𝜆
� . For the entire array, the received signal will be 𝒓𝒓(𝑡𝑡) =

𝑠𝑠(𝑡𝑡)𝑎𝑎𝑗𝑗𝜔𝜔0𝑡𝑡�1, 𝑎𝑎𝑗𝑗𝑘𝑘𝑚𝑚𝑟𝑟𝑜𝑜𝑟𝑟𝜃𝜃, 𝑎𝑎𝑗𝑗2𝑘𝑘𝑚𝑚𝑟𝑟𝑜𝑜𝑟𝑟𝜃𝜃, … �
𝑇𝑇

, where 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆

 is the wavenumber.  

The received signal is represented as 𝑓𝑓(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) cos(𝜔𝜔0𝑡𝑡) + 𝑣𝑣(𝑡𝑡), where 𝑠𝑠(𝑡𝑡) is a narrow band message 
signal and 𝑣𝑣(𝑡𝑡) is the white noise. The receiver down-converts the signal resulting in a complex base-band 
signal 𝒚𝒚(𝑡𝑡). For example, the result for a uniform linear array is 

𝒚𝒚(𝑡𝑡) = �
1

𝑎𝑎𝑗𝑗𝑘𝑘𝑚𝑚𝑟𝑟𝑜𝑜𝑟𝑟𝜃𝜃
⋮

𝑎𝑎𝑗𝑗(𝑊𝑊−1)𝑘𝑘𝑚𝑚𝑟𝑟𝑜𝑜𝑟𝑟𝜃𝜃

� 𝑠𝑠(𝑡𝑡) + �
𝑣𝑣0(𝑡𝑡)
⋮

𝑣𝑣𝑊𝑊−1(𝑡𝑡)
� 

 

or 𝒚𝒚(𝑡𝑡) = 𝒉𝒉(𝜃𝜃)𝑠𝑠(𝑡𝑡) + 𝑽𝑽 , where 𝑘𝑘 , 𝑎𝑎 , and 𝜃𝜃  are the wavenumber, antenna element separation, and 
direction of arrival (DOA), respectively, and 𝒉𝒉(𝜃𝜃) is called the steering vector. Note that 𝒉𝒉(𝜃𝜃) must be 

LPF𝑓𝑓(𝑡𝑡) 𝑠𝑠(𝑡𝑡) 𝑤𝑤(𝑡𝑡)

𝑎𝑎𝑀𝑀𝑝𝑝(−𝑠𝑠ω𝑜𝑜𝑡𝑡)



Vinay B. Ramakrishnaiah, Robert F. Kubichek, and Suresh S. Muknahallipatna; Mitigation of Terrain Effects using 
Beamforming Antennas in Ad Hoc Networks, Transactions on Networks and Communications, Volume 6 No. 6, December 
(2018); pp: 15-32 

 

URL:http://dx.doi.org/10.14738/tnc.66.5481  
 22 

 

modified for each specific antenna array geometry to give proper delay characteristics in the direction 𝜃𝜃. 
It is possible to find a filter 𝑲𝑲 that amplifies the signals in certain directions. Therefore, in case of antenna 
arrays the term 𝑲𝑲∗𝒉𝒉(𝜃𝜃) represents the array gain. 

3.2 Power Gain of Antenna Arrays 
Antenna arrays act as directional amplifiers, with a voltage amplification factor of 𝑲𝑲∗𝒉𝒉(𝜃𝜃), also known as 
the Array Factor (AF), which is a function of 𝜃𝜃 (assuming 2D patterns). The coefficients of the filter 𝑲𝑲 are 
the antenna weights 𝒘𝒘 = [𝑤𝑤0,𝑤𝑤𝟏𝟏, … ,𝑤𝑤𝑊𝑊−1]𝑇𝑇, therefore, 𝐴𝐴𝐴𝐴 = 𝒘𝒘𝑇𝑇𝒉𝒉(𝜃𝜃). Most of the literature like [6] 
[11] [15] [20] [21] considers the antenna array gain to be equal to either the array factor or the power 
gain, 𝐺𝐺𝑝𝑝(𝜃𝜃,𝜙𝜙) = |𝐴𝐴𝐴𝐴(𝜃𝜃,𝜙𝜙)|2𝐺𝐺(𝜃𝜃,𝜙𝜙), where 𝐺𝐺(𝜃𝜃,𝜙𝜙) is the power gain of a single element of the array. 
These representations of the antenna gain provide accurate directional characteristics and signal-to-noise 
ratios (SNRs) but fail to preserve the actual power amplification provided by the antenna. The array factor 
provides the complex amplitude gain for an array and does not directly relate to the power gain. The 
solution to this problem is addressed in [22]. They show that the power gain of an antenna array is 

 
𝐺𝐺𝑝𝑝(𝜃𝜃) = 2π

|𝐴𝐴𝐴𝐴(𝜃𝜃)|2

∫ |𝐴𝐴𝐴𝐴(𝜃𝜃)|22𝜋𝜋
0 𝑎𝑎𝜃𝜃

𝑃𝑃𝑟𝑟𝑎𝑎𝑟𝑟𝑡𝑡 . 
      (2) 

where 𝑃𝑃𝑟𝑟𝑎𝑎𝑟𝑟𝑡𝑡 = 1
𝑊𝑊
∑ |𝑤𝑤𝑗𝑗|𝑊𝑊−1
𝑗𝑗=0 , and M is the number of antennas in the array. 

In order to synthesize the antenna array beam pattern, the two parameters that can be modified are the 
antenna weights, 𝒘𝒘  and the steering vector, 𝒉𝒉(𝜃𝜃) . As shown in section 3-A, the steering vector is 
dependent on the antenna array geometry and is fixed for a given antenna array. The flexibility of antenna 
arrays lies within the fact that complex antenna weights can be modified to obtain the desired beam 
pattern. 

There are several ways to find the weight vector, 𝒘𝒘. For example, it is possible to find 𝒘𝒘 that minimizes 
the output noise power while holding unit gain in the signal direction. This is called the “Minimum 
Variance Distortion-less Response” filter. Numerous other beam synthesis techniques like the Schelkunoff 
polynomial method [23], Fourier transform method [24], Woodward-Lawson method [25] [26], etc. have 
been extensively studied over the years. The problem with most of the methods is that there is no 
absolute guarantee the solution is globally optimal unless the problem is convex [27] [28], and they also 
assume the knowledge of the noise covariance matrix, which requires complex and expensive hardware 
for realization. 

In this paper, we use the convex optimization [11] technique for synthesizing beam patterns for design 
problems that are convex. However, the problem of computing phase-only weights is non-convex; 
therefore, the Nelder-Mead simplex search [12] is also used for minimizing the desired fitness function in 
such cases. 

3.3 Convex Optimization 
A set, 𝐶𝐶 is convex [11] if and only if for any two points 𝑀𝑀1,𝑀𝑀2 ∊ 𝐶𝐶 and any 𝜃𝜃 where 0 ≤ 𝜃𝜃 ≤ 1, the point 
𝜃𝜃𝑀𝑀1 + (1 − 𝜃𝜃)𝑀𝑀2 also is an element of 𝐶𝐶. In other words, this means that a set is convex if the direct path 
between any two points in the set is entirely included in the set. For a function 𝑓𝑓, if the line segment 
between (𝑀𝑀,𝑓𝑓(𝑀𝑀)) and (𝑦𝑦,𝑓𝑓(𝑦𝑦)), which is a chord from 𝑀𝑀  to 𝑦𝑦 , lies above the graph of 𝑓𝑓 , then the 
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function is defined to be convex. Mathematically, a function 𝑓𝑓 is convex on a convex domain if for all 
𝑀𝑀,𝑦𝑦 ∊ 𝐝𝐝𝐝𝐝𝐝𝐝 𝑓𝑓, and 𝜃𝜃 with 0 ≤ 𝜃𝜃 ≤ 1, the following inequality holds: 

 𝑓𝑓(𝜃𝜃𝑀𝑀 + (1 − 𝜃𝜃)𝑦𝑦) ≤ 𝜃𝜃𝑓𝑓(𝑀𝑀) + (1 − 𝜃𝜃)𝑓𝑓(𝑦𝑦). (3) 

The convex optimization problem involves minimizing the convex function over its domain, which is a 
convex set. The convex optimization problem is defined using the following notation, which is often 
referred to as disciplined convex programming [29] [30]: 

 𝑘𝑘𝑖𝑖𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖𝑚𝑚𝑎𝑎 𝑓𝑓0(𝑀𝑀) 

                                      𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑎𝑎𝑐𝑐𝑡𝑡 𝑡𝑡𝑓𝑓 𝑓𝑓𝑟𝑟(𝑀𝑀) ≤ 0,      𝑖𝑖 = 1, … ,𝑘𝑘 

                                                         ℎ𝑟𝑟(𝑀𝑀) = 0,      𝑖𝑖 = 1, … , 𝑝𝑝 

(4) 

and the objective is to find the value 𝑀𝑀 that minimizes 𝑓𝑓0(𝑀𝑀) satisfying 𝑓𝑓𝑟𝑟(𝑀𝑀) ≤ 0, 𝑖𝑖 = 1, … ,𝑘𝑘, and ℎ(𝑀𝑀) =
0, 𝑖𝑖 = 1, … ,𝑝𝑝. It is always possible to find the global minima of convex functions as the local minima itself 
is the global minima as per the definition of convex functions. Many optimization problems like least 
squares techniques, linear programming, conic optimization, etc., fall into the category of convex 
optimization, and computing the weights of an antenna array can be treated as a convex problem by 
relaxing the constraints. 

3.4 Nelder-Mead Simplex Method 
While the convex optimization approach of computing the optimal antenna weights finds solutions with 
relaxed constraints, it requires using step attenuators or amplifiers that increases the hardware cost and 
complexity of the antenna system. Therefore, it is sometimes desirable to find antenna weights that are 
phase-only, so that the system could be realized using only the phase shifters. However, constraining the 
weights to have unit magnitude makes the optimization problem to be non-convex as discussed 
previously. Hence, we make use of the Nelder-Mead algorithm to perform an unconstrained search for 
phase-only weights. 

The Nelder-Mead (NM) algorithm [12] is one of the most widely used methods for non-linear 
unconstrained optimization. The Nelder-Mead method attempts to minimize a scalar valued non-linear 
function of 𝑎𝑎 variables using only the function values without any derivative information. This algorithm 
uses a simplex of 𝑎𝑎-dimensional vectors 𝒙𝒙. Let 𝑀𝑀𝑟𝑟, denote the list of points in the current simplex, with 𝑖𝑖 =
1, … ,𝑎𝑎 + 1. Our objective is to minimize the function 𝑓𝑓such that 𝒙𝒙 ∊ ℂ𝒏𝒏 is the domain of 𝑓𝑓, therefore, 𝑀𝑀𝑟𝑟 
is referred to as the best point, and 𝑀𝑀𝑛𝑛+1  as the worst point. Four scalar parameters 
𝑓𝑓𝑎𝑎𝑓𝑓𝑜𝑜𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑓𝑓𝑎𝑎 (𝜌𝜌), 𝑎𝑎𝑀𝑀𝑝𝑝𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖𝑓𝑓𝑎𝑎 (𝜒𝜒), 𝑐𝑐𝑓𝑓𝑎𝑎𝑡𝑡𝑓𝑓𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑓𝑓𝑎𝑎 (𝛾𝛾),  and 𝑠𝑠ℎ𝑓𝑓𝑖𝑖𝑎𝑎𝑘𝑘𝑎𝑎𝑘𝑘𝑎𝑎 (𝜎𝜎)  are specified for Nelder-Mead 
method. 

The following indicates one iteration of the Nelder-Mead algorithm [31]: 

• The 𝑎𝑎 + 1 vertices are ordered such that 𝑓𝑓(𝑀𝑀1) ≤ 𝑓𝑓(𝑀𝑀2) ≤ ⋯ ≤ 𝑓𝑓(𝑀𝑀𝑛𝑛+1). 

• The reflection point, 𝑀𝑀𝑟𝑟 is computed as 𝑀𝑀𝑟𝑟 = �̅�𝑀 + 𝜌𝜌(�̅�𝑀 − 𝑀𝑀𝑛𝑛+1) = (1 − 𝜌𝜌)�̅�𝑀 − 𝜌𝜌𝑀𝑀𝑛𝑛+1, where �̅�𝑀 =
∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑛𝑛
𝑟𝑟=1 . Evaluate 𝑓𝑓𝑟𝑟 = 𝑓𝑓(𝑀𝑀𝑟𝑟). If the value 𝑓𝑓1 ≤ 𝑓𝑓𝑟𝑟 ≤ 𝑓𝑓𝑛𝑛, the reflection point 𝑀𝑀𝑟𝑟 is accepted and the 

iteration terminates. 
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• The expansion point is computed as 𝑀𝑀𝑟𝑟 = �̅�𝑀 + 𝜒𝜒(𝑀𝑀𝑟𝑟 − �̅�𝑀) = �̅�𝑀 + 𝜌𝜌𝜒𝜒(�̅�𝑀 − 𝑀𝑀𝑛𝑛+1) = (1 + 𝜌𝜌𝜒𝜒)�̅�𝑀 −
𝜌𝜌𝜒𝜒𝑀𝑀𝑛𝑛+1, if 𝑓𝑓𝑟𝑟 < 𝑓𝑓1 and the value of the function 𝑓𝑓𝑟𝑟 at 𝑀𝑀𝑟𝑟 is evaluated. The iteration is terminated 
after retaining either 𝑀𝑀𝑟𝑟 (𝑓𝑓𝑟𝑟 < 𝑓𝑓𝑟𝑟) or 𝑀𝑀𝑟𝑟 (𝑓𝑓𝑟𝑟 > 𝑓𝑓𝑟𝑟). 

• Contraction is performed by computing the contracted point 𝑀𝑀𝑟𝑟 = �̅�𝑀 + 𝛾𝛾(𝑀𝑀𝑟𝑟 − �̅�𝑀). A new simplex 
is obtained by using the contracted point, 𝑀𝑀𝑟𝑟, if it is better than the worst point. 

• The function is evaluated by replacing all the points by 𝑣𝑣𝑟𝑟 = 𝑀𝑀1 + 𝜎𝜎(𝑀𝑀𝑟𝑟 − 𝑀𝑀1), 𝑖𝑖 = 2, … ,𝑎𝑎 + 1, 
except for the best point. The new vertices 𝑀𝑀1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛+1  are used for update in the next 
iteration. 

4 Simulation Results and Analysis 
The simulations were performed in Matlab with the following system parameters. The WIM was used to 
compute the path losses with a base station height of 50 m, receiver height of 3 m, and the frequency of 
operation was set to 900 MHz. The building heights and street widths were varied according to the desired 
terrain. Different antenna array geometries were tested, and the antenna weights computed using convex 
optimization and NM simplex method were compared. 

The optimal antenna weights can be found by minimizing the squared error between the gain pattern that 
compensates for the path losses as given by equation (1) and the estimate of the gain obtained using the 
antenna with limited degrees of freedom. The constraint on the weights, 𝒘𝒘 determines the requirement 
of amplifiers or attenuators in the system. For example, if the magnitude of the weights is constrained to 
be less than or equal to 1, then the system could be realized using only phase shifters and attenuators 
without the need for amplifiers. On the other hand, having fixed constraints for magnitudes (phase-only 
weights) makes the optimization problem to be non-convex. The optimization problem for finding the 
optimal antenna weights using convex optimization was set up as follows: 

 𝜉𝜉(𝜃𝜃) = 𝒘𝒘𝑇𝑇𝒉𝒉(𝜃𝜃)−�𝐺𝐺𝑡𝑡(𝜃𝜃) 

𝑘𝑘𝑖𝑖𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖𝑚𝑚𝑎𝑎 ‖𝝃𝝃‖2 

                                      𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑎𝑎𝑐𝑐𝑡𝑡 𝑡𝑡𝑓𝑓 |𝑤𝑤𝑟𝑟| ≤ 1,      𝑖𝑖 = 0, … ,𝑀𝑀 − 1 

(5) 

In our simulations, a 2-norm penalty function is used to penalize the errors. If the function 𝑓𝑓 is a norm 
function and 0 ≤ 𝜃𝜃 ≤ 1 , then from triangle inequality, ‖𝜃𝜃𝑀𝑀 + (1 − 𝜃𝜃)𝑦𝑦‖ ≤ ‖𝜃𝜃𝑀𝑀‖+ ‖(1− 𝜃𝜃)𝑦𝑦‖ =
𝜃𝜃‖𝑀𝑀‖+ (1 − 𝜃𝜃)‖𝑦𝑦‖ is true, where the equality follows from homogeneity of a norm. Therefore, the norm 
function satisfies equation (1) and is convex by definition. Hence, we can solve for the antenna weights 
using standard convex optimization solvers. 

The solutions developed in this paper uses CVX [32] [33], which is a Matlab based modelling system for 
convex optimization. CVX supports disciplined convex programming [29] [30], where the objective 
functions and constraints are identified as convex from the outset of the problem and can be specified as 
standard Matlab expressions. 

To enforce the phase-only constraint, the NM simplex method was used to find the optimal value of the 
weights that minimizes the absolute value of error between the desired gain obtained using equation (1) 
and the achieved gain. The problem was set up as follows – the phase-only weights of the antenna array 
are given by 
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 𝒘𝒘 = 𝑎𝑎𝑗𝑗𝝓𝝓, (6) 

where 𝝓𝝓 = [𝜙𝜙1,𝜙𝜙2, … ] are the individual antenna phases. The estimate of the gain with limited degrees 
of freedom is computed as 𝐺𝐺𝑟𝑟𝑟𝑟𝑡𝑡(𝜃𝜃) = |𝒘𝒘𝑇𝑇𝒉𝒉(𝜃𝜃)|2, and the objective function is defined as  

 
𝜉𝜉 =

1
𝑎𝑎
�|𝐺𝐺𝑡𝑡(𝜃𝜃𝑟𝑟) − 𝐺𝐺𝑟𝑟𝑟𝑟𝑡𝑡(𝜃𝜃𝑟𝑟)|
𝑛𝑛

𝑟𝑟=1

. 
(7) 

The error function 𝑓𝑓 = 𝜉𝜉  is minimized using the NM algorithm to find the optimal value of antenna 
weights. The antenna weights will be constrained to be phase-only due to the way in which the weights 
are defined in equation (6), i.e., setting the magnitude to be unity. The results in this paper are developed 
using Matlab’s implementation of the NM algorithm utilized through the 𝑓𝑓𝑘𝑘𝑖𝑖𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑓𝑓𝑐𝑐ℎ() function. 

Using the suburban terrain setting, a circular antenna array with 36 elements was used and the achieved 
gain pattern was compared with the ideal desired pattern. Figure. 5 shows the ideal and the achieved gain 
patterns using the convex optimization and the NM simplex approach. The ideal gain pattern computed 
using equation (1) is used to compensate for path losses and makes the terrain apparently flat for radio 
communication at the VR. However, the ideal gain requires very high power for realization (Figure. 5: 
1
2𝜋𝜋
⨯(Area under the blue curve in Watts)), and therefore, is not practical. Hence, the achieved gain 

pattern of a passive array can only achieve the desired directivity (shape), but does not meet the power 
amplification level as shown in Figure. 5. The achieved gain pattern shows increased directivity in the 
desired directions while conserving the total power of the system to be equal to the transmitter power 
(passive antenna gain). We can see from Figure. 5 that the convex optimization approach provides a 
smooth pattern compared to the NM approach that tries to enforce the phase-only constraint at the 
optimization stage. 

 

Figure. 5: Ideal and achieved beam patterns. 

The power received using the achieved gain pattern in the suburban setting at a distance of 1 km from 
the transmitter is shown in Figure. 6, and is compared with the received power using an omni-directional 
antenna for transmission. A 10 W transmitter is used, and the WIM to compute the path losses. Figure. 6 
shows that VTL tries to provide a flat response by directing the gain towards increased path losses. Also, 
the power received with the CVX optimized array has a lower but smoother response due to the relaxed 
optimization constraints compared to the NM optimized array that constrains the weights to be phase-
only. The convex optimization approach constrains the weights to be less than or equal to one. In other 
words, the weights are realized using step attenuators in hardware. That is why the power received from 
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the CVX optimized array is lower than the power received from the phase-only NM array, which does not 
use any attenuators. 

 

Figure. 6: Received power at a distance of 1 km from the transmitter. 

As a measure of performance, the percentage of look-angles above the threshold of -95 dBW is plotted 
as a function of distance and is shown in Figure. 7. The threshold of -95 dBW was arbitrarily chosen to 
represent the sensitivity of modern receivers. VTL tries to increase the power received up to the VR from 
the transmitter. In our simulations, the VTL power gain was computed to achieve a uniform response up 
to a distance of 1 km from the transmitter. It can be seen from Figure. 7 that the received power with VTL 
is higher than the received power with omni-directional antennas up to 1.05 km. The power rapidly drops 
with increasing distances, which is a desirable behavior to avoid interference and for better frequency 
reuse in wireless networks. Therefore, with VTL, fixed infrastructures like cell-phone base stations will be 
able to provide increased reception within the cell, at the same time reducing interference to the 
neighboring cells. 

 

Figure. 7: Percentage of look angles above the threshold of -95 dBW for arrays optimized using different 
techniques as the distance from the transmitter varies. 

Further, the variation of the percentage of look-angles as a function of total power was examined and is 
shown in Figure. 8. The performance of the VTL antenna system with weights computed using either the 
CVX or NM approach is evaluated using the power injected into antenna system and the corresponding 
signal power delivered to the receiver. With very low transmitter powers (less than 6 W), the percentage 
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of angles below the threshold with VTL is less than the percentage of angles below the threshold with 
omni-directional transmission. This is because, VTL tries to provide a flat gain pattern rather than 
increasing the coverage of signals above the desired threshold. As the transmitter power increases, the 
response with VTL gets significantly better. We can also see that the relaxed constraint system using 
convex optimization for finding the weights provide slightly better response than the NM optimized arrays 
with fixed constraints. 

 

Figure. 8: Percentage of look-angles above the threshold of -95 dBW for arrays optimized using different 
techniques measured at a distance of 1 km from the transmitter. 

As previously discussed, the antenna gain is dependent upon the antenna weights and the steering vector, 
which in turn depends on the antenna array geometry and the number of antenna elements in the array. 
In order to see the influence of varying the steering vector on VTL performance, the number of antenna 
elements and the array geometry were varied, and the weights were computed using the CVX and NM 
techniques for each case. Different array geometries of linear, square, and circular antenna arrays were 
investigated. Figure. 9 shows the comparison of various antenna array geometries with 36 antennas and 
weights computed using different techniques. The CVX optimized array with the relaxed constraint shows 
more variation with changing geometries compared to the NM optimized array. Also, the arrays 
symmetric with respect to 2D axes like square and circular arrays perform better than linear arrays that 
are symmetric with respect to only one axis and this is clearly reflected in Figure. 9.  

  

(a) (b) 

Figure. 9: Antenna gain patterns for varying array geometries containing 36 elements estimated using (a) 
convex optimization (b) NM simplex method. 

Increasing the number of elements in the array increases the degrees of freedom of an antenna array, 
thereby, providing an estimate that closely matches the ideal antenna gain. With increasing number of 
array elements, the maximum directivity of an array in a particular direction also increases. Figure. 10 
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shows the ideal and the achieved beam patterns of a circular antenna array with varying array elements 
computed using different optimization methods. It is clear from Figure. 10 that increasing the number of 
array elements provides a better estimate of the gain pattern. 

 
 

(a) (b) 
Figure. 10: Antenna gain patterns of a circular array geometry for varying number of array elements 

estimated using (a) convex optimization (b) NM simplex method. 

As an objective measure of performance, and to complement the graphs in Figure. 9 and Figure. 10, Table 
1 and Table 2 show the percentage of look-angles above the threshold of -95 dBW measured at a distance 
of 1 km from the transmitter with power, 𝑃𝑃𝑡𝑡 = 10 𝑊𝑊 for varying antenna array geometries and array 
elements, respectively. 

Table 1.  Percentage of look-angles above -95 dBW with varying antenna array geometry (# of antenna 
elements = 36 

Array Geometry CVX NM 

Linear 46.53 67.36 
Square Grid 74.24 83.05 
Circular 92.99 79.58 

Table 2.  Percentage of look-angles above -95 dBW with varying number of antenna elements. 

Number of Antenna 
Elements CVX NM 

4 56.81 52.53 
16 72.64 62.98 
36 92.99 79.58 

 

VTL does not perform well with rapidly varying terrain. The passive antenna arrays will not be able to 
provide variable gain in different directions with abrupt or large changes in terrain. Using active antenna 
arrays with power amplifiers in the system can improve the response. Figure. 11 shows the comparison 
of the active antenna gain patterns with the ideal and passive gain patterns. The active antenna weight 
computation was set up using convex optimization by having the constraint on the weights to be |𝑤𝑤𝑟𝑟| ≤
𝑘𝑘, where 𝑘𝑘 ≥ 1. The power used by the amplifiers is proportional to |𝑤𝑤𝑟𝑟|2. Simulations were conducted 
for the cases when 𝑘𝑘 = 1, 2, 3 and the results are shown in Figure. 11. It can be seen that with increasing 
power, the computed gain patterns move closer to the ideal gain pattern that makes the terrain 
apparently flat for radio communication. 
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Figure. 11: Antenna gain patterns for increasing amplitude of weights. 

5 Conclusion 
The novel approach of VTL is proposed that uses phased array antennas to virtually nullify the effects of 
terrain. The terrain is approximately flattened for radio communication up to the VR from the transmitter. 
VTL compensates for the communication path losses using antenna array gain. The WIM was used in our 
simulations for computing the path losses. A hybrid low complexity digital/analog beamforming approach 
was used for implementing VTL that reduces the hardware cost and complexity of implementation. Two 
different optimization approaches of using convex optimization and the NM simplex method were 
employed for estimating the desired beam pattern. The convex optimization approach uses a relaxed 
constraint to maintain convexity of the problem, whereas, the NM simplex method performs an 
unconstrained search to find the phase-only weights for the antenna array. The benefits of these two 
methods can be compared based on the trade-off between increased hardware complexity using convex 
optimized results, and lower hardware complexity but heavier computational burden of NM. 

The power gain of the antenna array was used instead of the normalized array factor to compute the 
actual received power at a given distance from the transmitter. The gain plots show that the achieved 
beam patterns try to closely match the ideal beam patterns. The performance of the VTL system was 
analyzed using the total power injected into the system and the corresponding received power. The 
percentage of look-angles above the threshold at the receiver was investigated with and without VTL by 
varying the total power injected into the system and also by increasing the transmitter-receiver 
separation. VTL shows significant improvement in the percentage of look-angles above the threshold up 
to the specified VR from the transmitter, and the percentage drops quickly as distance increases. This 
shows that VTL can potentially mitigate issues like interference in mobile ad hoc networks. 

Simulations were conducted to study the benefits of increasing the number of antennas in the array and 
it was evident from the results that increasing the number of antennas increases the number of degrees 
of freedom, thereby, providing a better estimate of gain patterns. Various antenna array geometries were 
also tested and arrays that are symmetric with respect to the 2D axes provided better response compared 
to linear arrays. One of the limitations of VTL is that it does not perform well in the presence of rapidly 
varying terrain. Active arrays were also tested and were shown to provide better results in high loss 
scenarios. 
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