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ABSTRACT  

Mobile Edge Computing (MEC) is an emerging technology and an essential component of 5G networks to 
bring cloud services closer to users. That means data collection, storage, processing, computing, 
communication, and network control are implemented at network edges. MEC is expected to be able to 
satisfy a variety of delay-sensitive services and applications. On the other hand, the development of 
vehicles to everything (V2X) communication brings many requirements to future networks to guarantee 
full intelligence, automatic, and faster computation, management, and optimization to fulfill network QoS 
(quality of service) and QoE (quality of experience). To deal with those requirements, recently, software-
defined networking (SDN), network functions virtualization (NFV), big data, and machine learning (ML) 
have been proposed as emerging technologies and the necessary tools for MEC and vehicular networks. 
This study aims to integrate those technologies to build a comprehensive architecture and an 
experimental framework for future 5G MEC called Open5GMEC. Moreover, the authors analyzed 
challenges and proposed relevant solutions for future vehicular communications in 5G networks.  Finally, 
based on this framework, we successfully implemented several powerful ML-based applications for V2X 
such as object detection, network slicing, and migration services, which are executed at Broadband Mobile 
Lab (BML), National Chiao Tung University (NCTU). 

Keywords: 5G, Vehicular communication, V2X; Automotive driving, SDN/NFV; Machine Learning; Big Data; 
MEC. 

1 Introduction 
In Mobile Edge Computing (MEC) has recently been proposed as a promising paradigm to overcome the 
requirements of future networks that enabling a wide range of benefits such as high bit rate, high 
availability, low latency (less than 1ms), and high mobility in heterogeneously converged connectivity 
environments by shifting computational efforts from the centralized cloud computing to edge servers. 
The servers are usually deployed and co-hosted at base stations or near mobile users to eliminate and 
reduce a tremendous amount of data routing through the core network. As a result, the core network can 
be simplified, and the end-to-end (E2E) latency is reduced [1][2]. Furthermore, due to the exponential 
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increase of IoT applications and the massive deployment of new vertical business services, MEC is 
expected to be a flexible and efficient framework, in which network service providers can deploy their 
applications quickly and efficiently. With particular reference to vehicular communication networks, it is 
expected to meet various communication requirements of future Intelligent Transportation Systems (ITS) 
such as low latency, location awareness, and real-time response applications (e.g., driving safety 
applications and real-time warning on the road). Moreover, the IEEE vehicular communication standard 
also provided many requirements for vehicular communications like congestion control mechanisms, 
fairness in accessing resources, and the availability of infotainment services  [3]. On the other hand, 
vehicle-to-everything (V2X) is a promising solution to improve road safety, traffic efficiency, and meet 
various QoS requirements in different application scenarios [4]. Therefore, recently, 5G-based V2X has 
been actively conducted by the Third Generation Partnership Project (3GPP) to provide solutions for 
vehicular communications  [5][6]. For example, research [6] explored MEC for 5G-enabled software 
defined vehicular networks where SDN was exploited and combined with MEC to strengthen vehicular 
systems. However, MEC for vehicular communications is still in its early stage with many unresolved 
challenges ranging from reliability, flexibility, scalability architecture to data management and integration, 
even security issues and so on.  

This study, firstly, explores various emerging technologies, such as big data, ML, SDN/NFV, and cloud 
computing, and then integrates them to propose a comprehensive platform called Open5GMEC for 5G 
and vehicular networks. SDN/NFV are considered as the most critical technologies for 5G networks to 
provide the full power of programmability, interoperability, agility, short time to market, and low-cost 
solution by virtualizing network components and creating multiple logical end-to-end networks [7]. 
Moreover, recently, ML and big data have been exploited as the key technologies to empower computing 
components in 5G networks. For example, they make the 5G MEC and SON better integration and more 
intelligent capabilities [8] [9][10]. Therefore, they are considered as promising solutions deciding the 
success of 5G-based vehicular communication in term of network reconstruction, virtual-network 
cooperation, and resource optimization [11]].  

The remainder of the paper is organized as follows: Section II reviews V2X communication and the 
experimental platform based on Big Data, SDN/NFV, and ML; Section III proposes Open5GMEC 
experimental architecture; Section IV introduces and analyzes ML-based applications for V2X 
communication; Section V introduces and applies ML and Open5GMEC for V2X applications; Section VI 
proposes service migration for V2X; finally, Section VII concludes the present study. 

2 Overview of V2X Communication and Experimental Network 

2.1 Overview V2X communication 
V2X is considered as a crucial service of 5G networks to support a variety of ITS applications, each with a 
specific set of requirements about data rates, latency, mobility, ubiquity, and reliability. A vehicular 
communication scenario usually consists of a vast number of smart vehicles and roadside units. Generally, 
an intelligent vehicle integrates many data generators, storage and communication components for real-
time sensing and computing (e.g., cameras, radars, and GPS). Roadside units are commonly deployed 
along the roads to collect and process data sent by smart vehicles. Generally, V2X can be divided into four 
main categories: Vehicle-to-Vehicle (V2V), Vehicle-to-Pedestrian (V2P), Vehicle-to-Infrastructure (V2I), 
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and Vehicle-to-Network (V2N) communications [4] [12]. They include a massive number of connections 
among a large number of sensors to offer a wide variety of versatile IoT services for ITS consumers, ranging 
from accident-free transportation, road safety, parking infrastructure, and greener transport to mobile 
broadband services like video streaming. They also integrate various communication technologies and 
protocols. For example, V2V can directly communicate with one another to exchange their information 
through 5G-based networks or new D2D (device to device) communication interface known as PC5 for 
sharing safety and critical information; V2N can communicate through heterogeneous networks such as 
WSNs, non3GPPRANs, 3GPPRANs; V2I communication allows vehicles to communicate with eNodeBs to 
provide various traffic efficiency and entertainment services. 

2.2 Experimental platform 
In the past few years, big data, ML, SDN/NFV, and cloud have been integrated into the experimental 
network testbed for 4G/LTE and beyond 5G, located at MIRC/BML (Microelectronics and Information 
Research Center/Broadband Mobile Lab) in the campus of National Chiao Tung University to build an open 
architecture 

 

Figure 1. Experimental architecture of 5G network at BML 

for developing future network applications [7][11][13][14][15]. For example, the integrated architecture 
of SDN/NFV, cloud, IoT, and big data in 5G and their roles were introduced in [15]; in studies [8][9][16], 
we explored and implemented many big data and ML algorithms for 5G applications. Most recently, the 
collaboration between NCTU and Open Networking Lab (ON.Lab) has accomplished an SDN-IP global 
peering deployment and established primitive primary CORD (Central Office Re-architected as a 
Datacenter). Besides, we have also focused on developing P4, ONOS, and CORD applications that are 
considered as the essential solutions of SDN/NFV technologies for 5G. 

Fig.1 describes the abstract architecture and physical components of the current developed 5G testbed 
at BML. In general, it involves four main parts, the RANs, Open5GCore, Open5GMEC, and applications. 
The RAN of 5G integrates new technologies such as massive MIMO and optical fiber to support high-speed 
connections for wide-area wireless connectivity to various types access devices, such as 3GPP (e.g., LTE-
E-UTRAN), non-3GPP (e.g., WiMAX), Wireless Sensor Network (WSN). The Open5GCore component was 
described in the study [7]. Its elements such as S-GW, P-GW, home subscriber server (HSS), and mobility 
management entity (MME) are virtualized and run on commodity data center under the control of 
SDN/NFV orchestrations. SDN/NFV orchestrations are also used to manage 5G-based services and 
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applications, such as network management as a service, V2X, IoT applications, etc. These applications are 
considered as virtual entities deployed in Docker containers, and they are created and controlled by 
SDN/NFV applications. The Open5GMEC component will be introduced in the next section. 

3 Open5GMEC Architecture based on SDN/NFV, Big Data, and ML 
Fig.1 and Fig.2 illustrate the Open5GMEC in the network architecture, in which big data, ML, cloud 
computing, and SDN controller applications work on NFV environments, and they are considered as the 
brain of Open5GMEC. As can be seen in Fig.1, Open5GMEC can interact with both the RANs and the SON 
to move the computing functions to the proximity of UEs and eNodeBs. Therefore, it is considered as a 
new intermediate layer responsible for data collection, transformation, filtering, aggregation, and 
processing and then building both online and offline applications for the SON or RAN, even for third-party 
applications and services. Furthermore, the integration of those state-of-the-art technologies exhibits as 
breakthrough approaches and promising solutions that deciding the success of the MEC concept in solving 
new requirements for 5G and V2X networks regarding network coordination, configuration, management, 
and optimization to support various new services. For example, to build a V2X application, the 
Open5GMEC firstly collects necessary data such as real-time GPS to determine the position of the vehicle, 
traffic on the road, and other necessary data from all sources of the network. Next, it extracts and 
preprocesses the collected data for applying to big data and ML models. And then, the  

 
Figure 2. Open5GMEC computing platform for V2X applicationsation  intelligently detect which  

                                               d ones in order to  
Figure 3. Distributed computing platform  

application model is built and sent the result to the SON or RAN. Finally, the network performance is 
analyzed, evaluated. The following subsection introduces several essential characteristics of the 
Open5GMEC platform.  

http://dx.doi.org/10.14738/tnc.65.5410


Transact ions on  Networks and Communications;  Volume 6,  No.  5,  October  2018 
 

Copyr ight © Socie ty  for  Sc ience  and Educat ion,  Uni ted  Kingdom 107 
 

 

Open platform: this is a crucial requirement in deciding the success of Open5GMEC-based ecosystems for 
IoT and V2X communications. As described in Fig.3, the platform is opened for different state-of-the-art 
technologies and software can be easily integrated into it for data processing and ML algorithms. For 
example, Kafka, Flute, and Python are used to collect and transform data from different resources such 
as network KPIs, sensors of smart vehicles; programming platforms such as Matlab, R, Spark, and 
InfoSphere can be used for data analytics, visualization, data mining, and ML algorithms.  

Distributed platform: Open5GMEC is a distributed computing system in which a host works as the master, 
and multiple hosts work as workers or executors as illustrated in Fig.3. Each host (master/slave) is a virtual 
machine working on SDN/NFV environment, and its components are Docker containers running on Linux 
systems and sharing the OS’ kernel; therefore, these containers can be created and started instantly while 
consuming small resources. These software components usually run independently and concurrently on 
multiple virtual or physical machines. As a result, it is easy to deploy and upgrade Open5GMEC 
components. Moreover, in this framework, SDN controller applications are used to manage and control 
connections among virtual hosts through configuring OpenvSwitch.  

Reliability: In the Open5GMEC platform, each component can utilize different methods such as partition, 
replication, and fault tolerance to improve the reliability of the whole system. For example, in a ZooKeeper 
cluster, when the primary master is a failure, the backup master takes over the role of primary master. 
Another example, Kafka stores critical information such as information about topics, consumer offsets, 
and brokers in the Zookeeper, which generally replicates this data across its ensemble. As a result, failure 
of Kafka broker or Zookeeper does not affect their clusters and achieve zero data loss, zero downtime. 
That means failure of a single or a few parts does not affect the system.  

Flexibility: An application can be submitted their jobs to the master or any worker in the system. Once the 
master receives a job, it distributes the workload to its executors, optimizes and controls the number of 
executors based on the job computing load and the available worker resources.  

Security: Security and privacy of the IoT services are critical challenges in the current study. A common 
threat is cyber- attacks, such as distributed denial of service (DDoS), Jamming attacks, privacy leakage, 
and man-in-the-middle. In the case of MEC, the data processing and computing are performed at the edge 
of a network close to the data source and mobile subscribers. Therefore, it bridges the gap between 
remote data centers and IoT devices to enable a wide range of security advantage. For example, ML can 
be utilized to detect abnormal attacks in networks such as learning-based IoT malware detection and 
learning-based authentication. 

4 Applying Machine Learning to Open5GMEC and Potential V2X 
Applications 

Recently, ML and big data have been utilized for empowering the SON of 5G, future MEC, and cloud 
computing to push their performances to the next level of full intelligence and automation [8][9][10][17]. 
The LTE/4G&5G network testbed, located at MIRC/BML has integrated big data and ML as the vital enabler 
to develop 5G applications. Generally, there are four categories of ML algorithms, namely, supervised 
learning, unsupervised learning, reinforcement learning, and deep learning.  
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4.1 ML categories 
Supervised learning, the majority type of practical ML methods used in most current research, is a type of 
learning that requires a supervisor to learn the model parameters. Its models use a labeled dataset, which 
contains both input and output information, called training samples to find the relationship that maps 
from the input attribute space to the labels. As a result, the model gives the expected output for new 
coming input.  

Unsupervised learning, on the other hand, is given an unlabeled input dataset. That means it does not 
have a supervisor. Therefore, it must investigate the similarity and the relationship among the unlabeled 
data samples, and then groups them into different clusters. 

Reinforcement learning is an area of ML, where an agent learns the optimal behaviors in a trial-and-error 
manner by interacting with its environment, senses its current state and the state of the surroundings, 
and chooses an action to achieve a goal. It learns how to map from situations to actions, and therefore, 
the learner must identify which operation obtains the most reward. 

Deep learning is a state-of-the-art and powerful algorithm with the sophistication of self-learning 
capability. It provides a significant improvement in various fields such as object detection, speech 
recognition, computer vision, and vehicle trajectory. In general, it is considered as a more in-depth version 
of neural networks (NN), which consist a series of multiple layers of neurons, the input layer, the hidden 
layers, and the output layer. Deep learning usually breaks down a very complicated problem into several 
simple issues to provide more accurate and faster processing.  

4.2 Potential ML applications and implementation platforms 
Fig.4 summarizes the most popular ML-based applications and the appropriate ML algorithms that can be 
exploited to empower the Open5GMEC with a full capacity of intelligence and automation.  

Prediction and forecasting models are used in dynamic systems to precisely predict and estimate trends 
of events such as mobile traffic, vehicle mobility, vehicle tracking, and then, the system can keep track of 
those event’s behaviors in changing environments. The suitable ML algorithms for these applications are 
Hidden Markov Models (HMMs), Linear/Non-linear Dynamical Systems. 

Clustering is the most popular and powerful application of unsupervised learning to group a set of more 
similar data samples together, such as cluster traffic density, V2V neighbor, and abnormal detections. 
Typical ML algorithms for clustering model are K-means, Mixtures of Gaussians, Automatic relevance 
determination (ARD), etc.  

Classification is the most typical ML models used in vehicular applications, for example, in this study, deep 
learning is used to classify and detect the object on the roads; Random Forest, SVM, NN, etc. are used to 
classify mobile broadband applications at the early state. 

Diagnosis and decision making are used to analyze the current condition of a system or individual element 
in a network or vehicle to take timely controlling actions to ensure these components working at their 
peak performance even under complex situations. Moreover, rapid and relevant controls are essential for 
vehicular systems to develop safety and driver-assistance applications like power control, adjustment car 
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direction, car speed. Applicable ML algorithms for these applications are Bayesian networks (BN), 
Reinforcement learning, logistic regression, decision tree, Gaussian Processes. 

 

Figure 4. ML algorithms and Applications 

Since the majority models of ML application in 5G and IoT are stream mining and distributed computing 
forms, it is necessary to build ML and big data on powerful platforms. Fortunately, emerging platforms 
like InfoSphere and Apache Spark are considered as comprehensive platforms supporting most of the 
popular ML algorithms and tools for big data analytics with various capacities 

4.3 ML-based applications for vehicular communication 
This subsection identifies the possible ML-based V2X applications in 5G networks. Fig.5 summarizes new 
applications and services that enable higher mobility, better coordinated, more enjoyable driving 
experience, more reliable for vehicular communication. For example: 

Traffic prediction aims to accurately predict or forecast the future traffic of a road, road sections, even for 
an area. It has significant roles in improving traffic control, management and other ITS applications, such 
as traffic congestion avoidance, public vehicle deployment, and road hazard warning. Traffic prediction 
model usually uses real-time data collected by various roadway sensors or cameras. The prevalent model 
for traffic prediction is Time Series models, which are based mainly on the historical traces of traffic to 
forecast the future one. The suitable ML algorithms are dynamic models like HMMs, Deep Learning, and 
Gaussian Process (GP) [8][9]. LOBECOM 2011), 2011 IEEE, pp. 1–6, 2011.  

 

Figure 5. ML-Based Applications for V2X Communication 

Vehicle trajectory prediction is crucial for developing advanced driver-assistance systems and 
autonomous vehicles by providing a better understanding of the traffic environment to perform various 
functions such as criticality assessment in advance, collision avoidance, trajectory planning, and vehicle 
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tracking [18]. Moreover, it also plays a vital role in mobile network planning and optimization, such as 
handover policies; therefore, it has recently received extensive research interest from both academia and 
industry. For example, research [19] introduced two approaches for vehicle trajectory prediction, the 
physics-based motion models and maneuver-based methods. These methods observed several running 
parameters of the vehicles, for example, acceleration, velocity, and direction rate to predict driving 
behavior using a dynamic Bayesian network.  The most suitable ML algorithms are dynamic ML algorithms 
like KF, dynamic Bayesian networks, HMM, and deep learning.  

5 V2X communication Application based on ML and open5G MEC 
MEC for vehicular communication applications at BML/NCTU is described in Fig.6. MEC servers were 
deployed in BML of MIRC building, near the eNodeBs to reduce the delay caused by propagation for real-
time applications, like MAR (mobile augmented reality)[14][20]. Smart devices in the vehicle collect and 
send data directly to the MEC servers through the 5G RAN. The MEC servers process and send the result 
to their clients to display [14]. The following section analyzes several V2X applications deployed in our 
platform. 

5.1 Computer vision for V2X Based on Deep Learning 
Vehicular applications based on computer vision techniques such as object identification and 
classification, lane-change detection, object density estimation, and vehicle-trajectory prediction have 
essential roles in developing Intelligent Transportation Systems. These applications enable vehicles to 
understand the road conditions and the vehicle’s precise position; therefore, they can be applied for 
different purposes like obstacle avoidance, situational awareness, driving safety, roads maintenance, etc. 
The traditional ML algorithms for object classification are SVM, dynamic Bayesian networks, and K-
Nearest Neighbor Classifier (KNN). However, recently, they have gradually been replaced by DL models 
(e.g., region-based convolutional neural networks (R-CCNs)) to provide real-time detectors satisfying the 
requirements of autonomous driving and V2X communications [21][22]. For example, research [22] 
proposed a high-accuracy model using DL for counting the objects in the crowded scene like a number of 
the car in traffic jam scenarios; research [21] applied the faster R-CNN for real-time object detection. 
Notably, there are available datasets for current object detection such as  

 

Figure 6.  Open-5G MEC for V2X Application at BML/NCTU 
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Figure 7. Object detection using deep learning at NCTU 

CNN for real-time object detection. Notably, there are available datasets for current object detection such 
as Microsoft COCO datasets [23], which contain large-scale object detection with more than 91 common 
object categories, each category has more than 5,000 labeled instances. Up to the year 2018, the dataset 
has 2,500,000 labeled instances in 330,000 images.  

In the past few years, computer vision has been applied to the 4G/LTE network testbed at NCTU; many 
applications were introduced [14][24][25]. For example, in research [24], we proposed a platform to 
recognize tactic patterns in broadcast basketball videos. This system used Kalman filter to automatically 
detects the court lines, tracks the players and ball, captures and analyzes ball trajectory, calibrates the 
players’ positions to the real-world, etc. In research [25], we developed a preliminary system called 
YogaST, which utilized C++ with OpenNI 1.5.4.0 and OpenCV to assist the Yoga practitioner in self-training. 
It aims at instructing him/her to adjust his/her posture correctly and prevents injury caused by improper 
postures. Notably, research [14] performed MAR for outdoor vehicular navigation applications, such as 
corner detection, after that it also addressed the real-time challenge and estimate the performance of 
4G/LTE and 5G based on outdoor navigation system at BML. This study applies R-CCN, which is one of the 
most popular DL models comprising many pooling and convolutional layers that resembles the human 
visual system, into object detection of autonomous vehicles. Fig.7 shows a result of object detection 
implemented at NCTU campus. As can be seen, it identified precisely cars and pedestrians on the road, 
the confidences of the detected objects were also shown. 

In summary, R-CCN is robust algorithms, enabling computer vision to support many useful applications 
for automotive driving with high accuracies like object recognition, car counting, and vehicle tracking 
under different traffic conditions. 

5.2 Two stages slicing for V2X applications 
This section analyzes and applies network slicing, which can be considered as one of the most significant 
innovations and evolutions in 5G architectures, to support various V2X services by providing flexible 
subscription models and multiple end-to-end virtual networks that share the resources of a network 
operator. Generally, smart devices in a vehicle usually work as multi-slice devices, that means they can 
simultaneously attach to multiple slices for different purposes. For example, a driver could use a self-
driving service controlled by an autonomous driving slice based on V2I and V2V communications. In the 
meanwhile, he/she opens an HD streaming of a  
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Figure 8. Two stages network slicing for V2X 

different purposes. For example, a driver could use a self-driving service controlled by an autonomous 
driving slice based on V2I and V2V communications. In the meanwhile, he/she opens an HD streaming of 
a football game offered by an infotainment slice. The following subsection proposes a comprehensive 
framework called two-stage network slicing for V2X applications as shown in Fig.8. The first stage slices 
the network for different tenants or purposes, the second stage implements network slicing for various 
applications with different QoS requirements.  

5.2.1 The first stage network slicing 

Multi-tenancy is typical characteristics of V2X ecosystems, different tenants representing different 
services so that they should be mapped into different slices, for example, the slice for tele-operated 
driving and the slice for autonomous driving. These slices may be offered and managed by different service 
providers with diverse sets of performances and service requirements. For example, autonomous driving 
slices require latency less than 1ms, data rate 10Mb/s, and reliability nearly 100%, while vehicular internet 
and infotainment slices require latency around 10ms for web browsing, data rate 25Mb/s for UHD video 
streaming, and they do not concern about reliability.  

In this study, we assume that there are 3 slices representing for V2V, V2N, and V2I communications 
working on 5G network infrastructure under the control and management of open5Gcore and 
open5GMEC as described in Fig.8. For example, when a vehicle detects a dangerous obstacle on the road, 
it will send the warning information and the location information towards all the cars around it. Firstly, 
the car can directly send this information to cars very nearby using V2V communication (PC5 interface). 
In the meantime, it passes the information through eNodeB to MEC, and then, the SDN controller in MEC 
platform will flood the information to cars inside its slice. In this case, the slice is defined and managed 
based on the distance between cars and the obstacle. That means when a car moves into the range, it will 
be added to the slice’s list or become a slice’s member until it moves out of the range.  

Experimental implementation  

In this experiment, we assume that there are 16 cars, car1 to car15 belong to 3 slices, each slice contains 
5 cars, and car16 does not belong to any slice.  They are connected together by Open vSwitches controlled 
by the SDN controller. An SDN application was built on the controller to handle the first stage slicing that 
allows only cars in the same slice to communicate with one another. The SDN application has two main 
functions: 
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The primary function is to build the network topology, calculate and install all the shortest paths between 
all pair of sources and destinations in the network. For example, Fig.9 shows several couples of switches 
in the network and the shortest paths between them. Two hosts in the network can communicate through 
a random route in the shortest paths or by applying a load balancing algorithm. 

The second function applies network slicing policies to isolate a slice from others by checking the source 
and destination IP addresses of the communicating packets. If they belong to hosts (cars) of the same slice 
(tenant), 

 

Figure. 9 Example shortest paths of couples of switches 

 

Figure 10. Ping result after applying slicing for V2X 

destination IP addresses of the communicating packets. If they belong to hosts (cars) of the same slice 
(tenant), they are allowed to communicate. Otherwise, the packets are dropped. Fig.10 shows the ping 
result after acting the slicing function. As can be seen, only the cars in the same tenant can communicate 
with others, and since car16 does not belong to any tenant, the communicating packets between it and 
others are dropped. This function works as a firewall to logically isolate network functions and resources 
among slices. 

5.2.2 The second stage network slicing 

The second stage of network slicing is to guarantee QoS, QoE, user experience, and network resource 
efficiency for different V2X services. For example, in the slice of vehicular infotainment services, each 
application requires a QoS guarantee. Generally, a high-definition video streaming requires up to 
gigabytes per second peak data rate, small delay and jitter to provide seamless communication for end 
devices in a vehicle with high mobility, while other data services like web browsing, Gmail, and Google are 
more sensitive to packet loss. Hence, the network operator must provide different policies for them, for 
instance, preserve a relevant bandwidth for each application. To solve this problem, in previous research 
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[17], we proposed and implemented a QoS control model for different mobile broadband applications. 
The model’s process is described in Fig.8 and Fig.11; it involves two steps, namely, the early-state traffic 
flow classification and network QoS control for traffic flow using an SDN application.  

Firstly, we applied several state-of-the-art classification algorithms like Naïve Bayes, Gradient Boosted 
Tree (GBT), Random Forest, SVM, and NN to identify traffic flows at the early stage [17]. Moreover, in this 
study, we applied several methods: cross-validation, parameter optimizations, and prediction fusion that 
combines SVM classifier and Naïve Bayes classifier to improve the performance of classification models. 
The result shows that all models achieved high accuracy to identify traffic flows at the early-state as 
summarized in Table 1.  

Next, the second step utilizes the result of the traffic flow classification to build the SDN application for 
QoS control. Currently, SDN/NFV have been considered as emerging technologies enabling new robust 
methods for QoS control, such as queue management, the utilization of meter tables, ingress policing, etc. 
These approaches are more powerful, flexible, and easier than the traditional technologies like Integrated 
Service (IntServ) and Differentiated Service (DiffServ). The IntServ method is too complicated and not 
scalable, while DiffServ is less complicated but it does not provide strong QoS guarantees. Moreover, 
among the SDN-based approaches, using meter tables and QoS queue is the most popular methods. They 
install flow table entries for each connection to instruct Open vSwitches how to execute the flows 
(packets). For example, in the QoS queue approach, which is an egress packet queuing mechanism in 
Switch ports, each application is assigned a QoS ID in which we can set both min data rate and max data 
rate. Also, we can easily create, modify, delete a queue through the Open vSwitch configuration protocol 
like OF-Config (or ovs-vsctl command). On the other hand, the meter table method allows monitoring the 
ingress rate of flows by meter tables, which are attached directly to flow table entries, to measure and 
control the data rate of packets. Fig.11 illustrates the abstract process of implementing the second stage 
network slicing for uplink directions. In this framework, the classification model is deployed on the 
Open5GMEC close to the eNodeBs to identify and label traffic flows. When the SDN controller receives an 
identified traffic flow, it extracts and stores the necessary information of the connection, such as 
application label or type, source IP address, and destination IP address. After that, it installs flow table 
entries and QoS policies on OpenFlow Switch to guarantees bandwidth for that connection on both uplink 
and downlink directions  

 

Figure 11. The second stage network slicing process 
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Figure 12. QoS control based on application identification 

In our experiment, YouTube was preserved a bandwidth of 3Mbps in the QoS control, and then we used 
a UE to play a video from YouTube. Fig 12 shows the result of the test. It is clear that YouTube traffic flows 
were identified and classified precisely at the early state, and the bandwidth for YouTube at that time was 
2.88Mbps. This bandwidth guarantees for QoS of the video to play smoothly without any dropped frame. 
In summary, SDN/NFV have crucial roles in creating and managing on-demand and wide-range network 
slicing services for V2X and 5G to build multiple logical end-to-end networks.  

6 SDN/NFV Driven Service Migration for V2X 
V2X communication is characterized by highly dynamic network topologies providing services for vehicles 
while they are moving quickly in and out of cells. The critical requirements of V2X services are not only 
about real-time services but also the transparent of connections on the IP layer, and TCP sessions, which 
are unable to be solved by applying fast-handover approaches. Moreover, a real network always 
encounters abnormal problems that may affect network QoS while operating due to equipment, nodes, 
and links failures. It becomes a big challenge for modern V2X communications because their services 
usually require incredibly fault-tolerant systems that can guarantee fast recovery. This section proposes a 
practical solution called service migration based on SDN aspects to deal with those challenges by moving 
a running application from a server to another one without any disruption. The process of service 
migration can be divided into three steps   The first step: once the controller application receives a 
handover request from a service due to the movement of a user or due to a failure at a server called the 
old server, it triggers the service migration process to select an available server called migration server by 
using an optimization algorithm (e.g., based on load balancing).  

Table 1. Accuracy of the early-state traffic classification models (%) 

 

After that, it calculates all the shortest paths between the client and migration servers (this function was 
described in the first-stage slicing section).  

The second step: Delete all routing flows or table entries that relate to the old server and the current 
client in Open vSwitches. So that, when a switch receives a new packet from the user sent to the old 
server, it will ask the controller through Packet-In messages.  
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The third step: Once the SDN controller receives the Packet-In message sending to the old server, it sends 
Packet-Out messages to set rules for redirecting all flows between the client and the old server on both 
directions: Modify the destination IP and MAC of flow packets that are sending from the client to old 
server to the IP and MAC addresses of the migration server; modify the source IP and MAC addresses of 
flow packets that are sending from the migration server to the client to the IP and MAC addresses of the 
old server.  

Experimental implementation: The experimental topology and scenario are illustrated in Fig.13. Worker1 
and worker3 work as operating and available servers, respectively, running the same application. Worker8 
works as a client (or car) served by worker1. In this test, the worker1 was turned down, SDN application 
selected server3 as migration server to provide service for the client. We performed a Ping test and TCP 
test services to evaluate the results. 

 

Figure 13. Experimental scenarios 

Ping test result: Fig.14 shows the result of ping from worker8 to worker1. As can be seen, the client 
smoothly received reply messages with IP of worker1 even though worker1 was out of service. The time 
to receive the first message was 28.6ms much longer than the time of the following messages. It involves 
the time when a switch receives the first message of the connection; it must send packet-in to ask the 
controller, which will check the packet headers and then install the rules in table flow entries to instruct 
the switch how to handle this message and later messages. For more information, Wireshark was used to 
capture Ethernet packets at worker8 and worker3; the results are shown in Fig.15 and Fig.16, respectively. 
It is clear that all the messages sent from worker8 to worker1 were redirected to worker3 as shown in 
Fig.15; all the messages from worker3 to worker8 were modified the source IP address from those of 
worker3 to those of worker1 as shown in Fig.15.  

TCP service test result: Fig.16 describes our experiment, worker1 and worker3 run as TCP servers listening 
at port 4444, worker8 run as a TCP client connecting to port 4444 of server1. The results in Fig.17 shows 
that the TCP service is served by worker3, not worker1 

In summary, the Open5GMEC platform supports transparent migration, which is essential in V2X 
communication to enable more robust applications regarding resource management, service recovery, 
computing scaling, handover for high mobility services 
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Figure 14. Ping test of MEC server migration 

 

Figure 15. Captured packets of the Ping test at worker3 

 

Figure 16. Captured packets of the Ping test at worker8 

 

Figure 17. TCP test result at client and servers 

To evaluate the computing capacity of the platform, we run the classification application (described in the 
first stage slicing section) with a specific configuration. Fig.18 shows the Spark computing cluster, which 
contains four computing workers with 32 cores and 31.3 GB memory.  A stream of 210.000.000 data 
samples was generated with a different data rate as in Fig. 19. After receiving the data, Apache Kafka 
created a topic and then produced the data as the classification testing dataset to Apache Spark. After 
that, the incoming samples were classified by SVM classifier built from Spark MLlib 2.0. Generally, when 
a new input data is received, Spark streaming model continually records, processes, and updates model 
parameters. However, to attain better performance, this study used the mini-batch method in which the 
stream of data is discretized into a sequence mini-batches called sequence of RDD (Resilient Distributed 



Luong-Vy Le, Do Sinh, Bao-Shuh Paul Lin, Li-Ping Tung; Big Data and Machine Learning Driven Open5GMEC for 
Vehicular Communications, Transactions on Networks and Communications, Volume 6 No. 5, October (2018);               
pp: 103-120  

 

URL:http://dx.doi.org/10.14738/tnc.65.5410         
 118 

 

Datasets). The mini-batch length can be defined by either a number of records or time interval. Here, we 
used the time duration of 3 seconds for each mini-batch. Fig. 23 shows the input and the output data rate. 
Fig. 20 shows the time, mini-batch sizes (number of records), scheduling time, processing and the total 
delay of several mini-batches that have the highest input data rate. It is  

 

Figure 18. Spark computing cluster 

 

Figure 19. Input and output timelines 

 

Figure 20. Mini-batches computing timeline 

clear that the computing platform is powerful in providing high computing capacity with a small time for 
scheduling and processing so that all the data samples were classified smoothly with low-total-latency. In 
summary, Open5GMEC is powerful enough to be deployed for the industrial networks 

7 Conclusion 
The proposed Open5GMEC integrating state-of-the-art technologies, such as SDN/NFV, big data, and ML, 
is expected as a comprehensive solution for future 5G MEC and vehicular communications. It supports 
the full power of programmability and virtualization, robust and fast computation, automatic and 
intelligent optimization to make network components more transparent and coordinated. Furthermore, 
based on the platform, this study analyzed and implemented several significant applications for V2X 
communication that their results are pioneers for building more complex applications in V2X and 5G areas. 
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Our future work will focus on applying the framework to develop other MEC and CORD components and 
V2X applications such as SDN-based R-CORD and M-CORD.  
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