
 

DOI: 10.14738/tnc.62.4500 
Publication Date: 1st May 2018 
URL: http://dx.doi.org/10.14738/tnc.62.4500 

 

 

VOLUME 6,  NO. 2 
ISSN: 2054 -7420 
 

SOCIETY FOR SCIENCE AND EDUCATION 
UNITED KINGDOM 

TR A N S A C TI O N S  ON 
NE T WO R KS  A N D  CO M M U N I C A TI O NS 
 

TNC 
A Simple Greedy Algorithm for Energy-Efficient Communication 

in Small Multi-Interface Wireless Networks   

1,2Christos Kaklamanis, 1Stavros Maras, 1,2Evi Papaioannou 

1University of Patras, Patras, Greece; 

2CTI “Diophantus”, Patras, Greece; 
kakl@ceid.upatras.gr; maras@ceid.upatras.gr; papaioan@ceid.upatras.gr 

ABSTRACT   

Wireless networks have become extremely popular recently due to the wide range of applications they 
support and also because sophisticated and affordable wireless devices like smartphones, tablets, etc 
have actually become part of our everyday life. Wireless devices have heterogeneous characteristics, like 
computational power, energy-consumption levels, supported communication protocols. Modern wireless 
devices are usually equipped with multiple radio interfaces like, WiFi, GPRS, Bluetooth, and can switch 
between different communication networks for meeting connectivity requirements and, thus improving 
quality of service and data collection perspectives. Establishing a connection between any two such 
devices requires that they are close and share at least one common available interface. If communication 
is established between two wireless devices, then the involved communication cost reflects the energy 
these devices consume and equals the cost for activating a particular common interface. In this setting, 
the objective is to suggest a cost-efficient interface activation plan which can guarantee low-cost 
communication for any two such wireless devices. 

We model this practical problem as an instance of the Spanning Tree problem in an appropriately defined 
multigraph corresponding to the actual multi-interface wireless network. When connectivity is feasible, 
we propose and experimentally evaluate a simple greedy algorithm indicating which interfaces must be 
activated so that cost-efficient connectivity is established between any two wireless devices in the 
network.  

Keywords: Small multi-interface wireless networks; Energy-efficient communication; Connectivity; Greedy 
algorithm. 

1 Introduction  
Wireless networks have become extremely popular during the recent years mainly due to the wide range 
of applications they support and also due to the fact that sophisticated and affordable wireless devices 
like smartphones, tablets, etc have actually become part of our everyday life. Wireless networks can be 
stand-alone network components (like for example a wireless network for a class or lab) or parts of larger 
networks and the Internet. Wireless devices have heterogeneous characteristics: they have different 
computational power, their energy-consumption levels vary, they support different communication 
protocols. Modern wireless devices are usually equipped with multiple radio interfaces like, for example, 
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WiFi, GPRS, Bluetooth. Therefore, they can switch between different communication networks for 
meeting connectivity requirements and improving quality of service. However, determining which 
interface must be activated on a wireless device depends on technical specifications of the device, 
communication requirements, connectivity constraints, necessary energy consumption. Even in the case 
that all other factors are neutral, energy consumption plays a crucial role for the selection of the interface 
to be activated, since, as long as a device runs out of battery, it can no longer be part of a wireless network. 
Besides benefits related to network infrastructure also data collection perspectives can be efficiently 
supported via the use of appropriate interfeces in multi-interface wireless networks.  

We study a communication problem arising in wireless networks supporting multiple interfaces. These 
networks are composed of nodes which are wireless devices supporting some wireless interfaces. 
Communication between two such nodes requires the existence of at least one common interface and 
spatial proximity so that this specific shared interface can support their communication. If these 
conditions hold, then communication can be established. The involved cost essentially reflects the energy 
consumed and equals the cost of activating a particular interface which both nodes share. The objective 
is to activate interfaces at network nodes so that some connectivity property is maintained and the total 
activation cost is minimized. Various communication problems arise in multi-interface wireless networks 
based on the required connectivity property. We consider the problem termed as ConMI in [1] or 
Connectivity in [9]. In particular, we require that communication is established among all network nodes. 
The energy consumed by each device for the activation of a specific interface may vary substantially. 
Therefore, two cases are distinguished according to the interface activation costs: the more general one 
is when the activation cost for some interface is not the same at all network nodes; this is the 
heterogeneous case. In the homogeneous [1] or uniform cost [9] case, the cost of activating a particular 
interface is the same at all network nodes. Another important variant to some of the problems faced in 
multi-interface wireless networks concerns the total number of available interfaces supported in the 
overall network. The corresponding problems are in bounded or unbounded form depending on whether 
the total number of available interfaces is provided as a fixed constant or part of the input, respectively 
[9]. The unbounded version of such problems can be particularly useful for analytical results while the 
bounded version is more representative of practical cases.   

Previous relevant work 

Recent technological advances and a wide range of supported applications have made multi-interface 
wireless networks a very popular and wide-spread communication infrastructure. The study of 
communication problems arising in multi-interface wireless networks has attracted the interest of the 
research community. The key idea is to exploit the heterogeneity of the interfaces available in modern 
devices for reducing energy consumption and, consequently, extending network lifetime. Several well-
known combinatorial optimization problems are then reconsidered with respect to this new feature. 

Several basic problems studied for “traditional” wired and wireless networks have been reconsidered  in 
this new setting [2], with an emphasis on problems related to network connectivity [3, 5] and routing [4]. 
Requirements for efficiency in energy consumption increase the complexity of these problems and raise 
new challenges. In [6], cost minimization in multi-interface wireless networks  was studied. More 
precisely, given a graph representing desired connections between network nodes, the objective is to 
establish all graph edges by activating interfaces at network nodes of a minimum total cost. Several 
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variations of the problem are considered depending on the topology of the input graph (e.g., complete 
graphs, trees, planar graphs, bounded-degree graphs, general graphs) and on whether the number of 
interfaces is part of the input or a fixed constant. [6] considers both unit-cost interfaces and more general 
homogeneous instances. ConMI has been introduced in [7] which studies homogeneous instances of the 
problem. ConMI is proved to be APX-hard even when the graph modeling the network has a very special 
structure and the number of available interfaces is small (e.g., 2). In [7], a 2-approximation algorithm is 
presented by exploiting the relation of ConMI on homogeneous instances with the minimum spanning 
tree on an appropriately defined edge-weighted graph. Furthermore, [1] suggests an improved (3/2+ε)-
approximation algorithm for ConMI. The algorithm is based on a challenging technique [10] that makes 
use of an "almost" minimum spanning tree in an appropriately defined hypergraph and transforms it to 
an efficient solution for connectivity. Better approximation bounds are obtained for special cases of 
ConMI such as the case of unit-cost interfaces. [9] provides a comprehensive survey on results from the 
recent relevant literature.    

In this work, we focus on the heterogeneous, bounded form of ConMI. We model this practical problem 
as an instance of finding a spanning tree in an appropriately defined multigraph corresponding to the 
actual multi-interface wireless network. When connectivity is feasible, we propose, analyze and 
experimentally evaluate a simple greedy algorithm which indicates which interfaces must be activated so 
that cost-efficient connectivity is established between any two wireless devices in the network. We embed 
this technique into a proof-of-concept application for establishing energy-efficient communication within 
small groups of users (in classrooms, labs, meeting rooms, game rooms, etc) equipped with wireless 
devices (e.g., smartphones or tablets) supporting multiple interfaces. From a practical point of view, 
network infrastructure and data collection perspectives can highly benefit from the efficient management 
of available interfaces in multi-interface wireless networks.  

The rest of the paper is structured as follows. In Section 2, we provide technical details regarding 
definitions and notation. In Section 3, we discuss our greedy approach to the connectivity problem in 
multi-interface wireless networks. We present experimental finding in Section 4 and conclude our report 
in Section 5.  

2 Preliminaries: Definitions and Notation 
In general, a multi-interface wireless network is modelled by a graph G = (V, E), where V represents the 
set of devices composing the network and E is the set of possible connections defined according to the 
distance between devices and the available interfaces that they share. Each v∈V is associated with a set 
of available interfaces W(v). The set of all the possible available interfaces in the network is then 
determined by ∪v∈vW(v); we denote by k the cardinality of this set.  

We say that a connection is established when the endpoint of the corresponding edge share at least one 
active interface. So, in our model, an edge es= (u,v)s exists for every interface s both u and v share, yielding 
a multigraph G which is assumed to be undirected and connected. If an interface s is activated at some 
node u, then u consumes some energy cu(s) for keeping s active and obtains a maximum communication 
bandwidth bu(s) with all its neighbors that share interface s. Furthermore, each possible edge (u,v)s has a 
cost equal to cu(s)+cv(s).  

For globally characterizing the interfaces each device supports, we use an interface assignment function 
W which covers graph G = (V, E), i.e., for each (u,v)∈E it holds W(u) ∩ W(v) ≠ ∅. Our objective is to activate 
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interfaces at the nodes of V so that the resulting graph G’ is a spanning tree for G, i.e. G’ is connected, 
acyclic and spans all nodes of V. In the case when the resulting spanning tree G’ has a minimum total edge-
weight, we have a Minimum Spanning Tree (MST) for G.  

Two classical deterministic greedy algorithms for constructing Minimum Spanning Trees are due to 
Kruskal [8] and Prim [11]. Both algorithms proceed by successively adding edges of smallest weight from 
those edges with a specified property that have not already been used. The main difference is the criterion 
used to select the next edge or edges to be added in each step. They are particularly simple and in fact 
solve the same problem by applying the greedy approach in two different ways and both always yield an 
optimal solution. 

Kruskal's algorithm starts with an edge in the graph with minimum weight and builds the spanning tree 
by successively adding edges one by one into a growing spanning tree. It processes the edges in order of 
their weight values, from smallest to largest, including into the growing MST each edge which does not 
form a cycle with edges previously added. It stops after |V|-1 edges have been added. Kruskal's algorithm 
computes the MST of any connected edge-weighted graph with E edges and V vertices in time 
proportional to |E|log|E| (in the worst case) since sorting is the most time consuming operation. 

Prim's algorithm constructs a minimum spanning tree incrementally, in a step-by-step fashion via a 
sequence of expanding subtrees. The initial subtree of the sequence consists of a single vertex selected 
arbitrarily from the set V of the vertices of the given graph. In each successive step, the algorithm expands 
the current tree greedily by simply adding to it the nearest vertex not in the tree. The distance of such a 
vertex is determined by the weight of the edge connecting it to the tree. In the case of at least two 
candidate nearest vertices, ties can be broken arbitrarily. The algorithm terminates when all vertices of 
the graph have been included in the spanning tree. Since the algorithm expands a tree by exactly one 
vertex during each step, the total number of required steps is n-1, where n is the number of vertices of V. 
The tree generated by the algorithm is obtained as the set of edges used for the tree expansions. 

More precisely, the algorithm maintains two disjoint sets of vertices: one containing vertices that are in 
the growing spanning tree and another containing vertices not in the growing spanning tree. Then, it 
selects the lowest-cost vertex which is connected to the growing spanning tree but is not in the growing 
spanning tree and inserts it into the growing spanning tree. In order to avoid the creation of cycles, the 
algorithm marks the vertices which have been already selected and considers only those vertices that are 
not marked. Since each vertex is considered only once, the time complexity of the Prim's algorithm is 
O((|V|+|E|)log|V|).  

3 Algorithm GMU: A Simple Greedy Heuristic for Connectivity 

3.1 Description and analysis  
GMU is a deterministic, greedy algorithm for connectivity in multi-interface wireless networks. It receives 
as input a graph G = (V,E) corresponding to a wireless network whose nodes support multiple interfaces. 
For each vertex v∈V (representing a network node), information regarding supported interfaces and 
corresponding activation cost is provided. Each edge es∈E connects pairs (u,v) of distinct vertices of V 
sharing interface s and has an associated weight equal to the sum of the activation cost of interface s at 
nodes u and v. Multiple edges are allowed between pairs of nodes sharing multiple (i.e., more than one) 
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interfaces. If W(u) ∩ W(v) ≠ ∅ for all (u,v) ∈ E, the algorithm returns a spanning tree T = (VT, ET)  for G, 
that is VT=VG, ET ⊆ EG.  

More precisely, our algorithm works as follows. For a given input graph G = (V, E), the algorithm first 
checks whether there exists (u,v) ∈ E for which the condition W(u) ∩ W(v) ≠ ∅ is false. If so, the algorithm 
terminates and fails to compute a spanning tree for G. If W(u) ∩ W(v) ≠ ∅ is true for all (u,v) ∈ E, a vertex 
set VT is created and an arbitrary vertex v ∈ VG is added to it. Furthermore, a list L of edges is created 
where all edges (u,v) ∈ E with u ∈ VT and v ∈ V\VT are added. In this way, the formation of cycles in VT is 
avoided. L is sorted in ascending order in terms of edge-weights. Then, the main loop of the algorithm is 
repeated until VT=VG. At each round, the first element of L (i.e., the edge of L of minimum weight) is added 
to T and L is updated so as to only include edges whose one endpoint belongs to VT and the other is strictly 
in V\VT. Eventually, the algorithm terminates and returns a spanning tree T for G. 

Below, the pseudocode for our greedy approach is presented.  

Algorithm GMU 

  Input: connected multigraph G = (VG, EG)  

  Output: spanning tree T = (VT, ET), VT=VG, ET ⊆ EG 

  1. if there exists (u,v)∈E for which W(u) ∩ W(v) = ∅ then FAIL & TERMINATE; otherwise 

   2. VT := a vertex of VG chosen uniformly at random 

   3. L := all edges (u,v) ∈ EG such that u ∈ VT and v ∈ V\VT  

   4. While VT ≠ VG  

    5. T := T ∪ min[L] 

    6. Update L (add/remove elements, sort)  

   7. RETURN spanning tree T & TERMINATE 

 

Lemma 1 (Correctness) 

Algorithm GMU produces a spanning tree T for G=(V,E) when W(u) ∩ W(v) ≠ ∅, ∀ u,v ∈ V.  

Proof 

If there exists (u,v) ∈ E for which W(u) ∩ W(v) = ∅, the algorithm terminates and fails to compute a 
spanning tree T for G (Step 1). Otherwise, a vertex v ∈VG is chosen uniformly at random and added to VT 
(Step 2). A list L is created containing all edges (u,v) ∈ EG such that u ∈ VT and v ∈ V\VT (Step 3). If |VG|=1, 
a (minimum) spanning tree T is returned with |VT|=|VG|=1 and the algorithm terminates (Step 7). 
Otherwise, the while loop is executed (Step 4). 

In order to show that the returned graph is indeed a tree, we have to show that the resulted graph is 
connected and acyclic. Consider an instance after a while loop is executed and let {v1, v2, …, vn} ∈ VT, n < 
|VG| and {vn+1, …, v|VG|}∈ VG\VT. Assume that e=(vi, vj) is an edge currently considered for addition to T. 
This implies that one of the endpoints of e, say vi, must be in VT. Then, for a cycle to be created, vj must be 
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a vertex already visited, i.e., a vertex also in VT. This is a contradiction since every edge e=(vi, vj) considered 
for addition to T must have vi∈ VT and vj ∈ V\VT (or vice-versa). Furthermore, T will eventually contain all 
nodes of G, since T is gradually augmented until VT=VG. This completes the proof of Lemma 1.  

Lemma 2 (Time complexity) 

Algorithm GMU requires O(|V3|) steps.   

Proof 

Assuming that the number of available interfaces is O(|V|), Step 1 requires O(|V3|) steps, since O(|V2|) 
pairs have to be checked. Furthermore, O(|V|) repetitions of the while loop (Step 4) are required. Adding 
an edge to the list L (Step 5) requires O(|V|2) steps. Updating L requires O(|V||E|) steps and sorting L 
requires O(|V||E|log|E|) steps (Step 6). This gives an overall time complexity of O(|V|3). 

Lemma 3 (Activation cost) 

Algorithm GMU yields a total activation cost of O(V).   

Proof 

The spanning tree computed by algorithm GMU for an input graph G=(V,E) representing a wireless network 
whose nodes support multiple interfaces has |V-1| edges. Assuming that c is the maximum activation cost 
taken over all available interfaces yields a maximum total cost of O(V). 

3.2 Implementation 
Software and hardware 

For our experimental study, we used Python 3. We preferred Python to other popular programming 
languages, like C++ or Java, because it is friendly to use and easy to learn; yet, it is a powerful programming 
language which allows simple and flexible representations of networks as well as clear and concise 
expressions of network algorithms. Python can be used on many operating systems, providing a standard 
library and plenty of community-contributed modules. Python is developed under an open source license, 
making it freely usable and distributable [13]. Python 3, in particular, offers new important programming 
features and facilities as well as improved memory management.  

Furthermore, we used NetworkX for our implementation. NetworkX is a Python package for the creation, 
manipulation, and study of the structure, dynamics, and functions of complex networks. NetworkX 
provides improved features regarding numerical linear algebra and drawing and can facilitate tasks 
including loading and storing networks in various data formats, generation of random and classic 
networks, analysis of network structure, building network models, drawing networks, and so on. 
NetworkX is freely usable and distributable under the terms of the 3-clause BSD License [12]. 

We implemented and executed our experiments on a mac OSX machine with an Intel Core i7 2,2 GHz 
processor and 16 GB 1333 MHz DDR3 RAM. 

Input 

The input multigraph corresponding to a wireless network supporting multiple interfaces can be provided 
to our code either manually or automatically.  
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Providing the input manually requires the use of NetworkΧ packages together with a basic program in 
Python. First, network nodes are defined. For each node a unique id and the interfaces it supports together 
with their activation cost must be given. Then, connections between nodes are defined in terms of graph 
edges. Multiple edges are allowed between each pair of network nodes; each edge corresponds to an 
interface shared by the nodes of the pair. For each edge, its endpoints and its weight must be given. The 
weight of an edge (u,v) corresponding to a shared interface s equals the sum of the activation cost of 
interface s at nodes u and v. Figure 1 shows an input instance provided manually.  

G.add_node(1, Interface1 = "yes", Interface2 = "no", ActCost1 = 10) 
G.add_node(2, Interface1 = "yes", Interface2 = "yes", ActCost1 = 5, ActCost2 = 6) 
G.add_node(3, Interface1 = "yes", Interface2 = "yes", ActCost1 = 22, ActCost2 = 20) 
G.add_node(4, Interface1 = "yes", Interface2 = "yes", ActCost1 = 19, ActCost2 = 10) 
G.add_node(5, Interface1 = "yes", Interface2 = "no", ActCost1 = 13) 
G.add_node(6, Interface1 = "yes", Interface2 = "yes", ActCost1 = 12, ActCost2 = 10) 
G.add_edge(1,2,key=1,weight=15) 
G.add_edge(1,3,key=1,weight=32) 
G.add_edge(1,4,key=1,weight=29) 
G.add_edge(1,5,key=1,weight=23) 
G.add_edge(1,6,key=1,weight=22) 
G.add_edge(2,3,key=1,weight=27) 
G.add_edge(2,3,key=2,weight=26) 
G.add_edge(2,4,key=1,weight=24) 
G.add_edge(2,4,key=2,weight=16) 
G.add_edge(2,5,key=1,weight=18) 
G.add_edge(2,6,key=1,weight=17) 
G.add_edge(2,6,key=2,weight=16) 
G.add_edge(3,4,key=1,weight=41) 
G.add_edge(3,4,key=2,weight=30) 
G.add_edge(3,5,key=1,weight=35) 
G.add_edge(3,6,key=1,weight=34) 
G.add_edge(4,5,key=1,weight=32) 
G.add_edge(4,6,key=2,weight=20) 
G.add_edge(5,6,key=1,weight=25) 
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Figure 1: Manual generation of an input instance. 

Providing the input automatically requires the execution of the “graph generator” function depicted in 
Figure 2.  

# Graph generator function 
#  
# create the Vertices 
# 
for n in range(numOfVertices): 
 n_corr = n+1 
 G.add_node(n_corr) 
 # randomly decide if Interface1 and Interface2 exists. If exists, add also an activation cost 
 if random.randint(0,30)>0: 
  G.node[n_corr]['Interface1'] = 'yes' 
  G.node[n_corr]['ActCost1'] = random.randint(10,100) 
 else: 
  G.node[n_corr]['Interface1'] = 'no' 
 if random.randint(0,30)>0: 
  G.node[n_corr]['Interface2'] = 'yes' 
  G.node[n_corr]['ActCost2'] = random.randint(10,100) 
 else: 
  G.node[n_corr]['Interface2'] = 'no' 
for inj in G.nodes(data=True): 
 if (inj[1]['Interface1'] == 'no') & (inj[1]['Interface2'] == 'no'): 
  print('Not every pair of nodes have at least one common interface. Algorithm CANNOT execute') 
  sys.exit()  
#  
# create the Edges 
#  
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# add edges with Interface 1 in common 
for ne in range(numOfEdges): 
 n1 = random.randint(1,numOfVertices) 
 n2 = random.randint(1,numOfVertices) 
 # make sure the 2 randomly selected vertices are not the same 
 if n1 == n2: 
  n2 =+ 1 
 if (G.node[n1]['Interface1'] == 'yes') & (G.node[n2]['Interface1'] == 'yes'): 
  edgeWeight = G.node[n1]['ActCost1'] + G.node[n2]['ActCost1'] 
  G.add_edge(n1,n2,key=1,weight=edgeWeight) 
# add edges with Interface 2 in common 
for ne in range(numOfEdges): 
 n1 = random.randint(1,numOfVertices) 
 n2 = random.randint(1,numOfVertices) 
 # make sure the 2 randomly selected vertices are not the same 
 if n1 == n2: 
  n2 =+ 1 
 if (G.node[n1]['Interface2'] == 'yes') & (G.node[n2]['Interface2'] == 'yes'): 
  edgeWeight = G.node[n1]['ActCost2'] + G.node[n2]['ActCost2'] 
  G.add_edge(n1,n2,key=2,weight=edgeWeight) 
# print nodes and edges of graph 
for g in G.nodes(data=True): 
 print(g) 
for i in G.edges(data=True, keys=True): 
 print(i) 
start=time.time() # start the timing of the algorithm 
# check if every pair of nodes, connected with an edge, have at least one common interface 
for itedge in G.edges(data=True): 
 if not ((G.node[itedge[0]]['Interface1'] == 'yes') & (G.node[itedge[0]]['Interface1'] == 'yes')) \ 
 | ((G.node[itedge[0]]['Interface2'] == 'yes') & (G.node[itedge[0]]['Interface2'] == 'yes')): 
  print('Not every pair of nodes have at least one common interface. Algorithm CANNOT execute') 
  sys.exit() 

Figure 2: “graph generator” function. 

Our “graph generator” works as follows. Initially, the total number of graph vertices is randomly chosen 
via the use of function “random”. Then, the input multigraph is generated by 4 consecutive “for” loops. 
The first “for” loop generates the vertices of the graph (attributing to each of them an id, supported 
interfaces and interface activation costs). The second “for” loop verifies that there exists at least one 
shared interface between each pair of vertices; if this is not the case, the “graph generator” terminates 
and restarts. The last two “for” loops are then used to generate the edges of the multigraph. The total 
number of edges is generated via the use of function “random”. Endpoints are also randomly assigned to 
edges. Then, a verification process checks for edges having both endpoints assigned the same vertex. If no 
such edge exists, edge endpoints are checked for shared interfaces and the final input graph is produced.  

Main part of the code 

The core component of our code is presented in Figure 3, implements algorithm GMU and works as follows. 
Initially, an arbitrary graph vertex is selected, assigned to variable ranV and printed on the screen. Then, 
a list L is created containing already explored vertices; ranV is inserted to L. Furthermore, a second list, 
namely sortEdges, is created containing edges to be considered for addition to the generated spanning 
tree; these are edges whose one endpoint is a vertex already explored (and, therefore, included in list L) 
and their other endpoint is a vertex not yet explored. The list sortEdges is sorted in ascending order of 
weight of included edges. The required spanning tree is then built through a main “while” loop. In 
particular, elements of the list sortEdges are printed on the screen, the edge emin of the minimum weight 
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is assigned to variable ST (which corresponds to the spanning tree under generation) and the just explored 
endpoint of emin is also added to L. Then, the list sortEdges is updated.  

#  
# st on conMI 
#  
# randomly select a vertex 
ranV = random.randint(1,G.number_of_nodes()) 
print('Begin algorithm with randomly selected vertex:', ranV) 
# create list of visited nodes and append the randomly selected vertex  
l = [] 
l.append(ranV) 
# find edge with minimum weight 
sortEdges = sorted(G.edges([ranV],data='weight',keys=True),key=itemgetter(3)) 
while list(G.nodes()) != sorted(l): 
 # print avalailable edges, select and prin the one with minimum weight 
 print('edges to choose from:' ,sortEdges) 
 print('edge in process',sortEdges[0]) 
 # add the selected edge to the spanning tree and its node to the list of already visited nodes 
 ST.add_edge(sortEdges[0][0],sortEdges[0][1],weight=sortEdges[0][3],activatedInterface=sortEdges[0][2]) 
 print('Node to enter list:',sortEdges[0][1]) 
 l.append(sortEdges[0][1]) 
 # add the extra edges, based on the updated visited nodes' list 
 sortEdges = sorted(G.edges([*l],data='weight',keys=True),key=itemgetter(3)) 
 # remove edges that both of vertices already exist on spanning tree 
 for it in sortEdges:  
  if not((it[0] in l) & (it[1] in l)): 
   filtSortEdges.append(it) 
 sortEdges = filtSortEdges 
 filtSortEdges = [] 
 l = list(set(l)) 
 print('visited nodes so far', l) 
 print('------------------------------\n') 
end = time.time() # finish the timing of the algorithm 
# print the spanning tree 
print('\nSpanning tree:') 
for a,b,c in ST.edges(data=True): 
 print('Edge',a,b,'has',c) 
print("\nTIME:",end-start) 
# initializing already activated attribute for SΤ nodes 
for n in ST.nodes(): 
 ST.node[n]['alrAct1'] = 0 
 ST.node[n]['alrAct2'] = 0 
# spanning tree cost 
sp = 0 
for ed in ST.edges(data=True): 
 if (ed[2]['activatedInterface'] == 1) : 
  if (ST.node[ed[0]]['alrAct1']!=1) & (ST.node[ed[1]]['alrAct1']!=1) : 
   sp += ed[2]['weight'] 
   ST.node[ed[0]]['alrAct1']=1 
   ST.node[ed[1]]['alrAct1']=1 
  elif (ST.node[ed[0]]['alrAct1']!=1): 
   sp += G.node[ed[0]]['ActCost1'] 
   ST.node[ed[0]]['alrAct1']=1 
  elif (ST.node[ed[1]]['alrAct1']!=1): 
   sp += G.node[ed[1]]['ActCost1'] 
   ST.node[ed[1]]['alrAct1']=1 
 else : 
  if (ST.node[ed[0]]['alrAct2']!=1) & (ST.node[ed[1]]['alrAct2']!=1) : 
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   sp += ed[2]['weight'] 
   ST.node[ed[0]]['alrAct2']=1 
   ST.node[ed[1]]['alrAct2']=1 
  elif (ST.node[ed[0]]['alrAct2']!=1): 
   sp += G.node[ed[0]]['ActCost2'] 
   ST.node[ed[0]]['alrAct2']=1 
  elif (ST.node[ed[1]]['alrAct2']!=1): 
   sp += G.node[ed[1]]['ActCost2'] 
   ST.node[ed[1]]['alrAct2']=1 
#  cost for activating all available interfaces 
costAll = 0 
for ed in G.nodes(data='ActCost1'): 
 if (ed[1]): 
  costAll += ed[1] 
for ed in G.nodes(data='ActCost2'): 
 if (ed[1]): 
  costAll += ed[1] 
print('\nSpanning Tree cost',sp,'and Cost for activating all available interfaces',costAll,'\n') 
 

Figure 3: The program implementing GMU. 

Figure 4(b) shows how our code works when executed on the input multigraph of Figure 4(a).  

 

Figure 4(a): input multigraph. 
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Figure 4(b): Generation of a spanning tree for the multigraph of part (a) by GMU. 

Each run is followed by the list of edges of the generated spanning tree, the total time (in seconds) required 
for the spanning tree generation, to total activation cost and the total cost for activating all available 
interfaces at all network nodes.  

4 Experimental results 
For our experimental analysis, a total of 30 automatically generated input instances have been used.  
Assuming the existence of 2 available interfaces, algorithm GMU has been used to compute spanning trees 
for these instances. Below, we first give an example of an automatically generated input instance; then, 
we provide charts for the performance of our approach in terms of activation cost and execution time.   

4.1 An example of an automatically generated input instance 
Below, we provide screen captures of an indicative experiment. A wireless network of 38 nodes is 
automatically generated; there are 2 available interfaces. Figure 5 shows network nodes. Edges are 
depicted in Figure 6.   
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Figure 5: Nodes of an automatically generated input instance with 2 available interfaces 
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Figure 6: Edges of an automatically generated input instance with 2 available interfaces 

Algorithm GMU executed for the input instance presented above computed the spanning tree depicted 
in Figure 7.  

 

Figure 7: The spanning tree computed by algorithm GMU for the input instance of Figure 5. 
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4.2 Activation cost 
Figure 8 shows how the network size affects the performance of our greedy approach in terms of total 
activation cost. Assuming that the input multigraph is connected, we compare the total activation cost 
induced by GMU to the cost of activating all available interfaces at all network nodes and, also, to O(|V|).  

In terms of activation cost, GMU obtains a performance linear in the size of the network; this implies that 
an extremely simple greedy solution can offer a satisfactory performance as long as the network size 
remains limited. Indeed, small-scale wireless networks composed of devices supporting a small number 
of interfaces do appear often in school classes, labs, meeting rooms, medical councils, etc. In such cases, 
a simple greedy approach like GMU, although theoretically deemed to perform much worse than 
significantly more complex approaches from the recent literature, can suggest a useful practical solution.  

 

Figure 8: Activation cost of GMU (white line) vs an upper bound for the ST activation cost (green line) and the 
cost for activating all available interfaces (orange line).  

4.3 Execution time 
Figure 9 shows how the network size affects the performance of our greedy approach in terms of 
execution time. Measurements were taken using the function “time” offered by Python. We measured 
the time interval needed to compute a spanning tree for an input graph G by algorithm GMU. As it can be 
observed, for networks composed of at most 100 nodes, the running time of GMU is less that 1 sec; for 
larger networks of approximately 500 nodes, the running time of GMU remains low (at most 1 min) in 
practice.  

 
Figure 9: Running time of GMU. 
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5 Conclusion 
We addressed the problem of connectivity in small wireless networks composed of devices supporting 
multiple interfaces. From a practical point of view, network infrastructure and data collection perspectives 
can highly benefit from the efficient management of available interfaces in multi-interface wireless 
networks. We modelled this practical problem as an instance of the Spanning Tree problem in an 
appropriately defined multigraph corresponding to the actual multi-interface wireless network. We 
suggested a simple greedy algorithm that indicates which interfaces must be activated so that cost-
efficient connectivity is established between any two wireless devices in the network. Our approach 
shows that simple solutions of theoretically poor performance can still be interesting in practice.  

Our future plans include the implementation of the randomized polynomial-time approximation scheme 
of Prömel and Steger for solving almost exactly the MST problem in hypergraphs [10]; such an 
implementation would be extremely interesting as a stand-alone component but also as a building block 
of the (3/2+ε)-approximation algorithm presented in [1] for connectivity in multi-interface wireless 
networks. 
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