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ABSTRACT   

Software-Defined Network (SDN) is expected to have a significant impact on future networking. Although 
exciting progress has been made toward realizing SDN, application of this new networking paradigm in 
the future Internet to support end-to-end QoS provisioning faces some new challenges. The autonomous 
network domains coexisting in the Internet and the diverse user applications deployed upon the Internet 
call for a uniform Service Delivery Platform (SDP) that enables high-level network abstraction and inter-
domain collaboration for end-to-end service provisioning. However, the currently available SDN 
technologies lack effective mechanisms for supporting such a platform. In this paper, we first present an 
SDP framework that applies the Network-as-a-Service (NaaS) principle to provide network abstraction and 
orchestration for end-to-end service provisioning in the SDN-based future Internet. Then we focus our 
study on two enabling technologies for such an SDP to achieve QoS guarantee; namely a network 
abstraction model and an end-to-end resource allocation scheme. Specifically, we propose a general 
model for abstracting the service capabilities offered by network domains and develop a technique for 
determining the required amounts of bandwidth in network domains for end-to-end service delivery with 
QoS guarantee. Both the analytical and numerical results obtained in this paper indicate that the NaaS-
based SDP not only simplifies SDN service and resource management but also enhances bandwidth 
utilization for end-to-end QoS provisioning. 

Keywords: Software-Defined Network (SDN), Service Delivery Platform (SDP), Network-as-a-Service 
(NaaS), QoS Provisioning. 

1 Introduction 
Software-Defined Network (SDN) is emerging network architecture that may have a significant impact on 
the development of future networking technologies. SDN architecture decouples network control and 
data forwarding functions; thus enabling network control to become directly programmable and 
underlying network infrastructure to be abstracted for applications [1]. Key features of SDN include 
separation between control plane and data plane, logically centralized network control, and 
programmability of the control plane. These features combined together gives SDN some great 
advantages in networking, including simplified and enhanced network configuration and operation, 
flexible and efficient network control and management, and improved network performance for meeting 
various application requirements. Therefore, SDN is expected to play a crucial role in the future Internet. 
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SDN architecture and its enabling technologies recently formed an important research area that has 
attracted extensive attention from both academia and industry. Active research topics in this area include 
SDN-enabled switching devices, SDN controllers, network operating systems, various network 
control/management applications, protocols between the data and control planes (southbound 
interface), and Application Programming Interfaces (APIs) for programming the control plane 
(northbound interface). Exciting progress has been made on SDN development and numerous research 
results have been reported in literature [2], [3], [4]. 

Although the SDN architecture has been successfully applied in some networking systems such as 
enterprise networks, data center networks, and inter-data center communications, adoption of this new 
networking paradigm in a large-scale internetworking scenario such as the future Internet faces new 
challenges that must be further investigated. One of the key issues lies in end-to-end service delivery 
across heterogeneous network domains with QoS guarantee for meeting diverse user requirements. In an 
enterprise or data center network, the user applications, network controller, and data forwarding devices 
all belong to the same administration domain; therefore, information of underlying network 
infrastructure can be made available to upper layer applications easily. However, in the Internet end users 
(computing applications) and network service providers often belong to different domains; therefore 
detailed information of network states may not be directly visible to applications. In addition, end-to-end 
communication paths in the Internet often traverse multiple autonomous systems operated by different 
organizations. End-to-end service provisioning in such a heterogeneous networking scenario requires a 
higher-level network abstraction for flexible interaction between users and service providers and loose-
coupling collaboration among the involved autonomous systems. This calls for a service delivery platform 
that supports flexible and effective user-network interaction and inter-domain collaboration. 

However, currently available SDN technologies lack an effective mechanism for building such a service 
delivery platform. Although a variety of SDN controllers have been developed, there is no standard yet 
for achieving interoperability between these controllers. What resulted is that no single vendor could 
deliver a standard-based northbound API for application development, or a standardized interface 
between controllers. In a large-scale inter-domain networking scenario, it is not feasible to require all 
autonomous network domains to adopt the same type of SDN controller. Therefore, lack of 
interoperability between SDN controllers prevents applications from functioning seamlessly across 
different controllers for inter-domain network service provisioning. Recent works on inter-domain 
networking in SDN mainly focused on distributed collaboration between SDN controllers for routing. End-
to-end service delivery across heterogeneous SDN domains has not been sufficiently studied. 

Recently, application of the service-orientation principle in SDN to address the challenging problem of 
end-to-end service delivery started attracting researchers’ attention. The Service-Oriented Architecture 
(SOA) [5] offers an effective mechanism to enable flexible interactions among autonomous systems to 
meet diverse service requirements. SOA has been widely adopted in various areas, including Cloud 
computing and Web services, as the main model for service delivery. Application of the SOA principle in 
networking leads to a Network-as-a-Service (NaaS) paradigm, which enables networking resources and 
functionalities to be utilized by users as services through a standard abstract interface, much like 
computational resources are utilized as services in Cloud computing. NaaS enables abstraction of 
networking systems into network services that can be discovered, selected, and accessed by users; thus 
offering a flexible mechanism for user-network interaction. Network services can also be orchestrated for 
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end-to-end service provisioning. Network abstraction enabled by NaaS also allows flexible collaboration 
among autonomous network domains via loose-coupling service interactions. Therefore, NaaS may 
greatly facilitate end-to-end service delivery in the future Internet. 

The research work reported in this paper tackles the challenging problem of end-to-end service delivery 
in SDN by exploiting the NaaS notion. We first present a framework of a Service Delivery Platform (SDP) 
that applies the NaaS paradigm in SDN to enable high-level network abstraction and inter-domain network 
service orchestration. Then we focus our study on two enabling technologies for the SDP to provide end-
to-end QoS guarantee; namely an abstraction model for network service capabilities and an end-to-end 
resource allocation scheme for performance guarantee. Specifically, we propose a general model for 
abstracting service capabilities of network domains, which is then applied to composite network services 
for modeling capability of end-to-end service delivery. Based on the service capability model for network 
abstraction, we develop a technology that can be employed at the SDP to determine the required amount 
of bandwidth for achieving end-to-end QoS guarantee. Bandwidth utilization of the SDP is then analyzed 
and the obtained results show that such an SDP with a global network view may improve bandwidth 
utilization for end-to-end QoS provisioning. 

SDN brings in potential benefits for enhancing future networking from at least two aspects: i) simplifying 
network control and management and ii) enhancing service provisioning for meeting diverse application 
requirements. Although the first aspect has been explored by many efforts, the second aspect has 
received less attention. The proposed SDP framework and the relevant technologies developed in this 
paper aim to address this issue in order to fully realize the potential of the emerging SDN paradigm in the 
future Internet. 

The rest of the paper is organized as follows. In Section II we discuss challenges to end-to-end service 
delivery in SDN and review related works. A framework of a NaaS-based SDP for end-to-end service 
delivery in SDN is presented in Section III. We propose a high-level abstraction model for network service 
capabilities and apply the model to end-to-end network services in Section IV. Then in Section V we 
develop a technique for determining required bandwidth to achieve end-to-end QoS guarantee and 
analyze bandwidth utilization achieved by the SDP with this technique. Numerical results are provided in 
Section VI. We draw conclusions in Section VII. 

2 End-to-end Service Delivery in SDN – Challenges and Solutions 

2.1 Challenges to End-to-End Service Delivery in SDN 
Recent rapid advancement in SDN research has yielded diverse technologies for realizing this new network 
architecture. Various SDN-enable switches have been developed. Although OpenFlow [6] has been widely 
adopted for controlling switches in the data plane, it is not the only southbound interface for 

SDN. Possible protocols that may potentially play the same role include Forwarding and Control Element 

Separation (ForCES) [7], Path Computation Element Communication Protocol (PCEP) [8], Protocol 
Oblivious Forwarding (POF) [9], and OpFlex [10]. Wide varieties of SDN controllers and network operating 
systems have also been developed. These include both centralized controllers such as NOX [11], Beacon 
[12], and Floodlight [13], and distributed network operating systems such as ONIX [14], ONOS [15], and 
HyperFlow [16]. 
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Diversity in available SDN technologies brings in challenges to end-to-end service provisioning across 
multiple domains in SDN-based future Internet. Autonomous systems in the Internet should have the 
freedom to employ various SDN technologies, including switches, southbound protocols, and network 
controllers, that fit their particular networking needs. On the other hand, the objective of service 
provisioning is to deliver network services across the heterogeneous domains for meeting the diverse 
requirement of end users. Therefore, end-to-end service provisioning in the future Internet requires not 
only effective inter-domain collaboration but also flexible interaction between upper layer user 
applications and the underlying network domains. 

However, the currently available SDN technologies lack sufficient capability of meeting this requirement 
for end-to-end service delivery. Development of network controllers often lacks consideration of 
interoperability with controllers from other vendors. Distributed network controllers mainly focus on 
cooperation among multiple homogeneous controllers in the same domain; thus are insufficient to handle 
heterogeneity of the controllers in multi-domain cases. Moreover, despite rapid development on standard 
southbound interface, currently there is no common standard for the northbound API between SDN 
controllers and network control/management applications. These applications are often developed based 
on the API provided by a particular type of controller; thus are tightly coupled with the controller design. 
Such tight coupling between applications and controllers significantly limits the capability of service 
provisioning over heterogeneous controllers in a multi-domain SDN environment. 

Recently some study on inter-domain issues in SDN has been reported in the literature. SDNi [17] is a 
protocol recently proposed by IETF for coordinating operations and exchanging information between SDN 
controllers in different domains. The implementation of SDNi suggested in [17] is to extend BGP for 
information exchange. However, the hop-by-hop nature of BGP makes routing among domains in a 
decentralized manner without knowledge of end-to-end routes, which may not be able to achieve a global 
optimal path for end-to-end QoS provisioning. Research reported in [18] and [19] employs the SDN 
principle to address the inter-domain routing problem. Both works are based on BGP; thus are limited by 
its decentralized feature to fully realize the SDN benefit of centralized control with a global network view. 
The inter-AS routing proposed in [18] assumes that homogeneous controllers, specifically the NOX-
OpenFlow controller, are used in all domains; thus may not be applicable to large-scale multi-domain 
scenarios. The multi-AS routing control platform proposed in [19] assumes the existence of a mechanism 
to communicate with SDN domain controllers without detailed discussion on the realization of such a 
mechanism. 

In [20] the authors argue that BGP is a poor candidate for inter-domain routing in SDN and propose 
decoupling between routing and policy control to facilitate interoperability among SDN domains. The 
distributed control plan proposed in [21] employs a message-oriented communication bus for information 
exchange among SDN domain controllers. The aforementioned research focuses on controller 
collaboration for inter-domain routing in SDN. End-to-end service provisioning needs more than just 
routing across multiple domains. Flexible interaction between user applications and the SDN controllers 
in different domains of the underlying network infrastructure is another important aspect that so far has 
received little attention. It requires a high-level network abstraction, loose-coupling interaction between 
applications and controllers, and flexible collaboration among heterogeneous controllers. 
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2.2 Network-as-a-Service in SDN – a Promising Solution 
The Service-Oriented Architecture (SOA) [5] offers a promising approach to addressing the challenges for 
end-to-end service provisioning in multi-domain SDN. The SOA can be described as architecture within 
which all functions are defined as independent services with invokable interfaces that can be called in 
defined sequences to form business processes. A service in SOA is a module that is self-contained (i.e., the 
service maintains its own states) and platform-independent (i.e., the interface to the service is 
independent with its implementation platform). Services can be described, published, located, 
orchestrated, and programmed through standard interfaces and messaging protocols. A key feature of 
SOA is “loose-coupling” interaction among heterogeneous systems, which allows entities to collaborate 
with each other while keep themselves independent. This feature makes SOA very effective architecture 
for coordinating heterogeneous systems to provide services that meet various application requirements. 

Application of the service-orientation principle in networking provides a promising approach to 
addressing some challenges in the future Internet. Such a service-oriented networking paradigm is 
referred to as Network-as-a-Service (NaaS), in which networking resources are abstracted and utilized in 
form of SOA-compliant network services. In principle, a network service may represent any type of 
networking component at different levels, including an entire network domain, a single physical or virtual 
network, or an individual network node. Multiple network services can be combined into one composite 
inter-network service through a service orchestration mechanism. 

Recently the NaaS paradigm has started attracting attention from the networking research community 
and interesting progress has been reported in the literature. Costa et al. proposed a NaaS model for data 
center networks in [22] for enabling Cloud tenants to have direct access to network infrastructure for 
improving service performance. Cloud-based network architecture that combines the Cloud service model 
with the network openness enabled by SDN was proposed in [23] in order to offer various network 
protocol services. An SDN control platform called Meridian was presented in [24], which provides a 
service-level network model with connectivity and policy abstractions for Cloud networking. Bueno and 
his colleagues developed a NaaS-based Network Control Layer (NCL) that provides an abstraction layer to 
obtain homogeneous control over heterogeneous network infrastructure [25]. 

The above works made interesting progress of applying NaaS in SDN for network service provisioning; 
however, they mainly focus on single-domain cases or assume homogeneous SDN controllers. The 
framework proposed in [22] assumes that applications can directly acquire detailed knowledge of 
underlying network infrastructure, which is reasonable in a single data center environment but not 
realistic for the large scale Internet with multiple autonomous domains. The prototype given in [23] for 
realizing the proposed network architecture used NOX controller and OpenFlow protocol for controlling 
all switches. Both Meridian platform and NCL were implemented based only on Floodlight controller. 
Cooperation between SDN domains with heterogeneous controllers for end-to-end service delivery is still 
an opening issue that has not been sufficiently addressed yet. 

In order to address this important challenging issue, preliminary study of applying NaaS in SDN to support 
end-to-end QoS provisioning was presented in our previous work [26]. In this paper, we further develop 
the idea of NaaS-SDN integration to propose a framework of a NaaS-based Service Delivery Platform (SDP) 
for a multi-domain SDN environment. This platform provides a high-level abstraction of each SDN domain 
as a network service and enables network service orchestration for end-to-end service delivery. Then we 
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particularly investigate two key technologies for achieving end-to-end QoS guarantee through this SDP – 
an abstract model for network service capabilities and a technique for end-to-end bandwidth allocation. 
Our analysis results also indicate that end-to-end service delivery enabled by the SDP with a global 
network view improves resource utilization for QoS provisioning. 

The research reported in [27] and [28] shares some similar ideas with the work presented in this paper. 
Zhu et al. proposed Software Service Defined Network (SSDN) architecture in [27], which employs SOA-
based Enterprise Service Bus (EBS) to build a network software service layer that allows networking 
resources in multiple domains with different SDN controllers to be federated for end-to-end service 
delivery. However, some key technologies for achieving QoS guarantee with such a service layer, for 
example abstraction of service capabilities and cross-domain resource allocation, were not addressed in 
[27]. The authors of [28] developed a distributed QoS architecture for SDN, which employs a hierarchical 
control plane where a super controller coordinates the local SDN controllers in multiple domains to 
support end-to-end multimedia streaming. However, [28] did not give any specific mechanism for the 
super controller to coordinate heterogeneous SDN controllers in different network domains for service 
delivery. On the other hand, the research of [27], [28] and our work reported in this paper may 
complement each other. The ESB-based mechanism described in [27] may be applied to implement 
communications among the SDP, domain controllers, and end user applications in the framework 
proposed in this paper. Our SDP framework offers an approach to realizing the hierarchical control plane 
presented in [28]. 

3 A NaaS-Based Service Delivery Platform in SDN 
The framework of a NaaS-based Service Delivery Platform (SDP) in a multi-domain SDN environment is 
shown in Figure 1. In this framework, each network domain may have its own choice of SDN technologies, 
including data plane switches, SDN controllers, and the southbound interface. A domain may also 
implement various control programs upon its own SDN controller to perform functions such as QoS 
routing and traffic engineering within the domain scope. Each network domain is abstracted as a network 
service through a NaaS interface, which provides a high-level abstraction of networking capabilities of the 
entire domain, including both forwarding and control functionalities, to the SDP. The NaaS interface also 
allows the SDP to specify its networking requests and policies to each domain. The NaaS-based network 
abstraction makes network infrastructure of each domain transparent to upper layer applications; thus 
enabling SDP to coordinate the resources provided by network domains for delivering network services 
to support diverse user applications. 
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Figure 1. NaaS-based Service Delivery Platform in Software-Defined Network 

The SDP serves as a middleware between upper layer user applications and the underlying network 
infrastructure consisting of heterogeneous domains. Key components of the SDP include a service 
interface and the modules for service management, service discovery, and service orchestration. The SDN 
controller of each network domain is responsible to publish and update an abstract model of the domain 
service capability at the service management module. The service interface allows upper layer user 
applications to specify their requests for end-to-end network services. Upon receiving a service request 
from an end user, the service discovery module searches the service registry maintained by the service 
management module to discover a network service for meeting the request. If no single network service 
provided by any individual domain can meet the requirement, the orchestration module will search for a 
service chain of multiple network services and orchestrate them for end-to-end service delivery. Then the 
service management module will send requests to the SDN controllers of all domains involved in service 
delivery for this user to allocate sufficient bandwidth for meeting user QoS requirement. In addition to 
these key components, the SDP may also perform some global network management functions, for 
example user authentication, service request authorization, end-to-end path computation, and traffic 
engineering. 

The proposed SDP framework combines advantages of NaaS and SDN for improving end-to-end service 
provisioning in the future Internet. The separated data/control planes and logically centralized controlling 
enabled by SDN allows a global control mechanism over heterogeneous network infrastructure. NaaS 
provides a high-level abstraction of autonomous networking systems and enables loose-coupling 
collaboration among them. The proposed NaaS-based SDP offers a uniform platform upon which third 
party service providers can develop and deploy new end-to-end network services to meet various 
application requirements without knowing detailed implementations of underlying network 
infrastructure. Such a service delivery platform enables a new business model in which a service provider 
can lease networking resources from various domains and orchestrate the resources for end-to-end 
network service provisioning. Such a business model is similar to the model for Cloud service provisioning, 
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which allows service providers to lease computing resources from infrastructure providers for offering 
Cloud services to end users. 

The proposed SDP also offers a promising approach toward federated management of networking and 
computing resources (such as CPU capacity and storage space in Clouds) to enable converged network 
and Cloud service provisioning in a Software Defined Environment. In such an environment, both 
networking and computing resources can be abstracted as services by following a uniform SOA-based 
mechanism, and then can be orchestrated to form composite network-Cloud services to end users. The 
NaaS-based 

SDP also supports incremental SDN deployment in the Internet. Network domains implemented with non-
SDN technologies can also be exposed as network services to the SDP, as long as they realize a NaaS 
interface for network abstraction, and then can be involved in end-to-end service delivery with SDN 
domains through service orchestration provided by the SDP. 

Another important advantage of the proposed SDP is to realize the benefit of logically centralized control 
promised by the SDN paradigm in large-scale multi-domain networking environments. Such a centralized 
control with a global network view is particularly important for achieving end-to-end service delivery with 
QoS guarantee in the Internet consisting of various autonomous systems. Due to the heterogeneity of 
network protocols and technologies in these systems, exposure of networking capabilities to a central 
control unit without appropriate abstraction would lead to unmanageable complexity. The high-level 
abstraction enabled by the SDP addresses the diversity challenge; thus making centralized control for end-
to-end QoS provisioning possible. 

The presented framework gives functional architecture for a service delivery platform for inter-domain 
SDN, which may be realized with various implementations. Enabling technologies are required for 
implementing key functions in two categories: i) internal modules of the SDP, mainly including the service 
management, discovery, and orchestration modules; and ii) interfaces for the SDP to interact with user 
applications and network domains, including the service interface and the network abstraction interface. 
Recent research on NaaS has yielded various technologies for network service description, discovery, and 
composition. A summary of these technologies can be found in the survey paper [29]. These technologies 
form the foundation for implementing the key modules in the SDP. Standard interfaces for network and 
service abstractions form the other key aspect for realizing the SDP. From an end user’s perspective, the 
SDP plays the role of a service broker in the SOA architecture; therefore, standard Web Service interfaces 
between service consumers and a service broker can be applied to realize the service interface between 
the SDP and the upper layer user applications. The network abstraction interface between the SDP and 
various network domains is essentially an SDN northbound interface. RESTful Web Service has been widely 
adopted for implementing a northbound interface in SDN. Application Layer Traffic Optimization (ALTO) 
[30] and Interface to Routing System (I2RS) [31], are two RESTful compatible protocols based on which a 
network abstraction interface may be realized. 

A key for the NaaS-based SDP to achieve end-to-end service delivery with QoS guarantee in a multi-
domain SDN environment is to discover, select, and orchestrate the appropriate network services with 
sufficient service capabilities that meet the performance requirements specified by end users. In order to 
achieve this objective, each network domain should provide the SDP with a high-level abstraction of its 
service capability information. In addition, the SDP should be able to determine the minimum service 
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capacity required for achieving end-to-end QoS guarantee. Therefore, an abstract model of network 
service capabilities and a method for determining required service capacity are two key enabling 
technologies for the proposed SDP, which are the focus of study for the rest of this article. 

4 High-Level Abstraction Model for Network Service Capability 
The SDP needs information about service capabilities of network domains in order to achieve end-to-end 
QoS provisioning. On the other hand, NaaS-based network abstraction requires hiding detailed 
information of network infrastructure. To balance the conflicting requirements from these two aspects, 
in this section we propose a high-level abstraction model of network service capabilities, which allows 
SDN domain controllers to provide the SDP with necessary information without exposing details of 
network infrastructure. Such a model should meet the following requirements in order to support end-
to-end QoS provisioning in a large-scale multi-domain SDN environment: i) providing a high-level 
abstraction of topology and states of underlying network infrastructure, ii) presenting information about 
network capabilities required by the SDP for end-to-end QoS provisioning, iii) being agnostic to network 
implementations thus applicable to heterogeneous network domains, and iv) being extendable to model 
capabilities of composite network services for inter-domain service delivery. 

4.1 Abstraction Model for Single Network Service Capability 
We first consider modeling capabilities of single network services that virtualize the networking 
functionalities of individual network domains. In general, the service capability information about an 
individual network domain needed by the SDP for end-to-end QoS provisioning can be described at a high 
level from the following two aspects: virtual connections provided by the network service among the 
border nodes of the domain, and capacity of data transportation on each virtual connection. From a 
service provisioning perspective, topology of a network domain may be abstracted as a full mesh of virtual 
connections between any pair of border nodes of the domain. The SDP just needs to know if a network 
service provides a virtual connection from an ingress node to an egress node, and if so how much data 
transport capacity is available on the virtual connection. The actual path between the nodes is determined 
by the SDN controller in that domain, which has knowledge of the physical topology and network states 
of the entire network domain. 

Therefore, for a network service that virtualizes a domain with n border nodes, a high-level abstraction of 
its service capability can be modeled by a matrix 

𝑪𝑪 = �
𝑐𝑐1,1 𝑐𝑐1,2 ⋯ 𝑐𝑐1,𝑛𝑛

⋮ ⋱ ⋮
𝑐𝑐𝑛𝑛,1 𝑐𝑐𝑛𝑛,2 ⋯ 𝑐𝑐𝑛𝑛,𝑛𝑛

�                                                                      (1) 

and each matrix element ci,j is defined as 

𝑐𝑐𝑖𝑖,𝑗𝑗 = �
𝑃𝑃𝑖𝑖,𝑗𝑗, the network service provides virtual connection from node i to node j

0,  otherwise
 

 

where Pi,j is called the capacity profile for the virtual connection from node i to node j, whose definition 
will be given later in this subsection. Each non-zero element ci,j in the matrix C indicates existence of a 
virtual connection from node i to node j and also describes the transport capacity available on the 
connection. 
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Figure 2. Abstraction of topology connectivity and transport capacity of network services 

As illustrated by the example shown in Figure 2, physical topology of reach network domain is abstracted 
as a full mesh of virtual connections among border nodes of the domain. Service capability information of 
the domain is described by a matrix C presenting a set of virtual connections and the associated capacity 
profiles. Each SDN controller publishes the matrix C of its domain to the SDP service management module 
via the NaaS interface. Such a matrix exposes capability information of a network service to its potential 
users while keeping its implementation transparent to the users. Such a high-level abstraction of network 
domain internal topology and states is necessary for achieving scalability in disseminating, updating, and 
inquiring such information in a large scale inter-domain SDN environment; therefore meeting the 
requirement i) for an abstraction model. 

In order to meet the requirement ii) for providing information needed for QoS provisioning, a profile Pi,j is 
used as the value of each non-zero element ci,j of matrix C. This profile describes the capacity that can be 
guaranteed by the network service for data transportation from node i to node j. Due to the wide variety 
of networking technologies employed in heterogeneous network domains, such a capacity profile must 
be independent to network implementations in order to meet the requirement iii). In addition, the profile 
should also be in a form that can be easily extended to describe the capacity of end-to-end service delivery 
across multiple domains; thus meeting the requirement iv). In order to develop a service capacity profile 
that meets all the above requirements, we employ the service curve concept from network calculus theory 
[32]. The service curve in network calculus is defined as follows. 

Let R(t) and R∗(t) respectively be the accumulated amount of traffic that arrives at and departs from a 
system by time t. Given a non-negative, non-decreasing function, S(·), where S(0) = 0, we say that the 
system guarantees a service curve S(·) for the flow, if for any t ≥ 0 in the busy period of the system, 

 R∗(t) ≥ R(t) ⊗ S(t) (2) 

where ⊗ denotes the convolution operator defined as h(t) ⊗ x(t) = infs:0≤s≤t {h(t − s) + x(s)}. 
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Essentially a service curve of a networking system describes the minimum amount of service capacity 
guaranteed by the system. In our network abstraction model, we employ the service curve guaranteed by 
the network service for the virtual connection from node i to node j as the capacity profile Pi,j. Since a 
service curve is a general function for describing network service capacity, it is independent with network 
implementations thus applicable to model service capabilities of heterogeneous network domains. 

In order to limit the overheads between domain controllers and the SDP for publishing and updating 
matrix C, it is desirable to present a capacity profile with a simple data structure. Toward this end, we 
define a Latency-Rate capacity profile as follows. If a network service guarantees a virtual connection a 
service curve 

 β(r,θ) = max{0,r(t − θ)} (3) 

then we say that the virtual connection has a Latency-Rate (LR) profile, where θ and r are respectively 
called the latency and rate parameters of the profile. A LR profile can serve as the capacity model for 
virtual connections provided by typical network domains. In order to achieve end-to-end QoS guarantee, 
the SDP requires each network domain involved in service delivery to provide a minimum bandwidth. 
Such a minimum bandwidth guarantee is described by the rate parameter r in the LR profile. Data 
transportation in a network domain experiences a fixed delay that is independent with traffic queuing 
behavior, for example signal propagation delay, link transmission delay, switch process delay, etc. The 
latency parameter θ of the LR profile is to characterize this part of fixed delay. 

Please be advised that although the capacity profile is implementation agnostic, the profile for each virtual 
connection provided by a network domain is constructed by the SDN controller in the domain; therefore 
profile parameters are related to the implementation and control/management policies of the domain. 
For example, the physical path for a virtual connection from node i to node j is established by the SDN 
controller following the path computing policy of the domain. Then the available bandwidth on this path 
will be the service rate parameter ri,j in the capacity profile Pi,j. If there exists multiple physical paths from 
i to j and the domain policy allows parallel data delivery; then the controller may aggregate the available 
bandwidth on all the paths to get the service rate parameter ri,j. 

For a typical network domain where transport capacity of the virtual connection from any node i to any 
node j can be modeled by a LR profile β(ri,j,θi,j), the matrix element ci,j can be presented by a simple data 
structure with two parameters [ri,j,θi,j]. The abstraction model provides the key information of service 
capability needed by the SDP for QoS provisioning using a small set of parameters. Therefore, LR capacity 
profile reduces the communication overheads between domain controllers and the SDP for publishing 
and updating service capability information; thus improving system scalability. 

4.2 Abstraction Model for Composite Network Service Capability 
To achieve service delivery across network domains, the SDP orchestrates multiple network services to 
form a composite network service that provides an end-to-end virtual connection. Therefore the SDP also 
requires a model for abstracting end-to-end capabilities of composite network services. The proposed 
capability model for single network services can be extended for supporting network service composition. 
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Figure 3. Capacity profile for a virtual connection provided by a composite network service 

Known from network calculus, the service curve guaranteed by a series of tandem servers can be obtained 
through the convolution of all the service curves guaranteed by individual servers. Since the capacity 
profile of a virtual connection is essentially a service curve of the connection, the capacity profile of an 
end-to-end virtual connection traversing multiple domains can be determined by following the 
convolution theorem in network calculus. Suppose the source node i and the destination node j are in 
different domains, and the orchestration module selects n domains, which are abstracted by network 
services Sk, k = 1,2,··· ,n respectively, to form a composite service for providing a virtual connection from i 
to j, as shown in Figure 3. The connection from i to j consists of n virtual links, each is provided by a single 
network service. Suppose the capacity profile for the virtual link provided by service Sk is Pk, and the 
capability profile for the end-to-end virtual connection is denoted as Pe, then Pe can be determined as 

 Pe = P1 ⊗ P2 ··· ⊗ Pn. (4) 

If each network service Sk guarantees a LR profile β(rk,θk) for its virtual link, then it can be proved by 
following convolution theorem in network calculus that capacity profile for the end-to-end virtual 
connection is 

 Pe = β(re,θe) = β(r1,θ1) ⊗ ··· ,⊗β(rn,θn) (5) 

where re = min{r1,r2,··· ,rn} and θe = θ1+ θ2 + ··· + θn . 

Equation (5) implies that if the service capacity of each link of an end-to-end virtual connection can be 
described by a LR profile, then capacity of the virtual connection provided by a composite network service 
can also be modeled by a LR profile. The latency parameter of the end-to-end LR profile is equal to the 
summation of latency parameters of all links and the end-to-end service rate is limited by the bottleneck 
link with the least service rate value. 

The proposed Matrix C and capacity profile provide a general abstraction model that can be used by SDN 
controllers in all network domains to publish service capability information of their network infrastructure 
at the SDP service management module. Publication and updating of the model could be implemented 
based on some available protocols, for example Application Layer Traffic Optimization (ALTO) [30]. Each 
SDN domain controller can implement an ALTO server that regularly disseminates a network-map and a 
cost-map to the SDP service management module, which can act as an ALTO client. 

Matrix C and the associated capacity profiles can be presented as a network-map together with a cost 
map. The service management module then combines the network-maps and cost-maps of all domains 
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into a global network view that can be used by the service orchestration module for end-to-end service 
provisioning. ALTO supports RESTful Web service interface between servers and clients; thus supporting 
NaaS-based network abstraction interface between the SDP and SDN domain controllers. 

5 Resource Allocation for End-to-end QoS Provisioning in SDN 
End-to-end QoS provisioning in a multi-domain SDN environment requires allocation of sufficient 
networking resources in all the domains that are involved in service delivery for meeting user 
requirements. In the proposed SDP framework each domain is abstracted as a network service through a 
NaaS interface. Therefore, selecting and orchestrating the appropriate network services with sufficient 
data transport capacity for end-to-end service delivery is a key to QoS provisioning. The abstraction model 
developed in last section allows each domain to provide information about its service capability to the 
SDP, which forms the basis for network service selection and orchestration. For supporting QoS for an end 
user, the SDP also needs to determine the amount of service capacity required for meeting user 
performance requirement and assures that such capacity be allocated in each involved network domain. 
On the other hand, the SDP wants to minimize bandwidth consumption for each user in order to improve 
resource utilization in network infrastructure. Therefore, a method for determining the minimum amount 
of service capacity for meeting the end-to-end performance requirement specified by a user is an 
important technology needed by the SDP for QoS provisioning, which will be developed in this section. 

5.1 Service Demand Profile 
End users need to provide SDP with information about their networking demand in order for the SDP to 
select appropriate network services and determine required service capacity for meeting user 
requirements. In order to allow the wide variety of user applications to specify their diverse networking 
demands, we define a general demand profile D{C, Q, L}. In this profile, element C gives the connectivity 
requirement, which can be specified by the addresses of source and destination for data transportation 
required by the application. The element Q in the profile is to specify QoS expectation for the service, 
which comprises a set of performance parameters such as the maximum delay and/or minimum 
throughput for data transportation. Since traffic flows with different load characteristics will require 
different amounts of service capacity for achieving a certain level of performance, we include a load 
descriptor L in the demand profile to characterize the traffic that a user application will load the network 
service. Considering the various user applications with diverse load characteristics, such a load descriptor 
must be general to support different types of traffic flows; while on the other hand be concise enough to 
be processed easily. The arrival curve concept in network calculus is employed here to develop a general 
load descriptor that meets such requirements. 

Let R(t) denote the accumulated amount of traffic arrives from a flow by time t. Given a non-decreasing, 
non-negative function, L(·), the flow is said to have an arrival curve L(·) if 

 R(t) − R(s) ≤ L(t − s) ∀ 0 < s ≤ t. (6) 

The arrival curve gives an upper bound for the amount of traffic that a user application can load a service 
delivery system; therefore is employed here as the load descriptor in a service demand profile. Since such 
a descriptor is defined as a general function of time, it can be used to describe the traffic load generated 
by any user application. 

http://dx.doi.org/10.14738/tnc.62.4373


Transact ions on  Networks and Communications;  Volume 6,  No.  2,  Apr i l  2018 
 

Copyr ight © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 23 
 

 

Currently most QoS-capable networks apply traffic regulation mechanisms at network boundaries to 
shape arrival traffic from end users. The traffic regulators most commonly used in practice are leaky 
buckets. A traffic flow constrained by a leaky bucket has a load profile 

 L(p,ρ,σ) = min{pt,σ + ρt} (7) 

where p, ρ, and σ are called respectively the peak rate, the sustained rate, and the burst size of the flow. 
Flow-based data forwarding in SDN data plane allows per-flow traffic regulation to be implemented easily 
at entry switches. Each user can specify its traffic load using a descriptor with p, ρ, and σ parameters, 
which may be enforced by a leaky bucket shaper at the SDN switch where user traffic enters the network. 
Therefore, it is reasonable to assume the availability of a leaky bucket load descriptor for the traffic flow 
of each user. 

5.2 Minimum Capacity in Network Service for QoS Guarantee 
Upon receiving the demand profile that a user submits with its service request, the SDP needs to 
determine the minimum service capacity required on a virtual connection for meeting the QoS 
expectation, which is the basis for network service selection and orchestration. In this subsection, we 
develop a technique for SDP to determine the minimum service capacity for meeting a given QoS 
requirement. We focus our analysis on the maximum delay and minimum throughput as performance 
parameters since they are required by most user applications with QoS expectation. 

We first consider the case that a user application only requires the minimum throughput Treq as its QoS 
expectation; i.e., Q = {Treq}. Since throughput is the only QoS requirement, the minimum capacity Cmin 

required on a virtual connection for supporting this user just needs to be Treq; that is, Cmin = Treq. The 
capacity profile P of a virtual connection essentially gives a lower bound of the capacity that a network 
service guarantees to the connection. Following network calculus the minimum capacity available on the 
virtual connection can be determined as 

 𝑏𝑏𝑚𝑚𝑖𝑖𝑛𝑛 =  lim
𝑡𝑡→∞

[𝑃𝑃 𝑡𝑡⁄ ] (8) 

Therefore, this virtual connection meets the user’s requirement if bmin ≥ Treq. 

Suppose data transport capacity of a virtual connection can be modeled by a LR profile, i.e., P = β(r,θ), 
then 

  𝑏𝑏𝑚𝑚𝑖𝑖𝑛𝑛 =  lim
𝑡𝑡→∞

[𝑟𝑟(𝑡𝑡 − 𝜃𝜃] 𝑡𝑡⁄ =  𝑟𝑟. (9) 

If the virtual connection traverses n domains, then the end-to-end connection consists of n virtual links 
each modeled by a profile β(ri,θi), i = 1,2,··· ,n. According to (5) and (9), the end-to-end transport capacity 
bmin = re = min{r1,r2,··· ,rn}. Therefore, the virtual connection meets the user’s throughput requirement if 
re ≥ Treq. Since throughput is the only QoS requirement, the minimum capacity Cmin required on a virtual 
connection just needs to be Treq; that is, Cmin = Treq. 

Then we analyze the case that a user application only requires the maximum service delay Dreq as its QoS 
expectation; i.e., Q = {Dreq}. Consider a virtual connection selected for serving a user application, suppose 
the capacity profile of the connection is P and the traffic flow of this user has a load descriptor L, then 
network calculus shows that the maximum service delay guaranteed by the connection to this traffic flow 
is 
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  𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡:𝑡𝑡>0�𝑖𝑖𝑖𝑖𝑖𝑖{𝛿𝛿: 𝛿𝛿 ≥ 0 𝐿𝐿(𝑡𝑡) ≤ 𝑃𝑃(𝑡𝑡 + 𝛿𝛿)}�.  (10) 

In order to determine the minimum service capacity Cmin for meeting the requirement dmax ≤ Dreq, we apply 
the effective bandwidth concept in network calculus here. Considering a traffic flow with a cumulative 
arrival process R(t) constrained by an arrival curve L(t); for a fixed, but arbitrary delay requirement Dreq, 
the effective bandwidth Re(Dreq) of the flow is defined as the minimum service rate required to serve the 
flow with dmax ≤ Dreq. Therefore, the effective bandwidth for the flow can be obtained as 

 𝑅𝑅𝑒𝑒�𝐷𝐷𝑟𝑟𝑒𝑒𝑟𝑟� =  𝑠𝑠𝑠𝑠𝑠𝑠0≤𝑡𝑡0≤𝑡𝑡 �
𝑅𝑅(𝑡𝑡)−𝑅𝑅(𝑡𝑡0)
𝑡𝑡−𝑡𝑡0+𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟

� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠≥0 �
𝐿𝐿(𝑠𝑠)

𝑠𝑠+𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟
� (11) 

If the maximum delay is the only QoS expectation of a user, then the minimum service capacity required 
by the user is the effective bandwidth of its traffic flow; that is, Cmin = Re(Dreq). 

Suppose a traffic flow having a leaky-bucket load descriptor L(p,ρ,σ) is served by a virtual connection with 
a LR capacity profile β = (r,θ), then following (10) and (11) the effective bandwidth for meeting a delay 
requirement Dreq can be determined as   

𝑅𝑅𝑒𝑒�𝐷𝐷𝑟𝑟𝑒𝑒𝑟𝑟� = � 

𝜌𝜌 𝐷𝐷𝑟𝑟𝑒𝑒𝑟𝑟 ≥ 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝑝𝑝𝑝𝑝

��𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟−𝜃𝜃�(𝑝𝑝−𝜌𝜌)+𝑝𝑝�
𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝐷𝐷𝑟𝑟𝑒𝑒𝑟𝑟 ≤ 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖𝑛𝑛𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎 𝐷𝐷𝑟𝑟𝑒𝑒𝑟𝑟 < 𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛

              (12) 

where Dmin = θ and Dmax = θ + σ/ρ. 

Equation (12) shows that if the expected delay upper-bound is greater than a threshold Dmax, then the 
required service capacity is equal to the sustained rate ρ of the arrival traffic. Actually, service capacity on 
a virtual connection should be no less than the sustained rate of a flow in order for the connection to 
guarantee any upper bounded service delay for the flow. On the other hand, no delay expectation that is 
tighter than Dmin can be met by a virtual connection with finite service capacity. This is because the 
underlying network infrastructure always introduces a certain amount of latency for data delivery due to 
its physical properties. For any expected delay upper bound between Dmin and Dmax, the required minimum 
service capacity is a function of traffic parameters (p,ρ,σ), the latency parameter θ, and the delay 
requirement Dreq. 

For an end user that has both minimum throughput Treq and maximum delay Dreq as QoS expectation, the 
minimum service capacity that must be available on a virtual connection for providing QoS guarantee to 
the user will be Cmin = max{Treq, Re(Dreq)}. 

5.3 Network Service Selection and Orchestration for End-to-End QoS Provisioning 
The technique for determining the minimum required service capacity can be employed by the SDP to 
perform network service selection and orchestration for achieving end-to-end QoS guarantee. A general 
procedure of network service selection/orchestration is illustrated in Figure 4. 
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Figure 4. Network service selection and orchestration for end-to-end QoS provisioning 

The SDN controller in each network domain is responsible for publishing the service capability model (the 
matrix C) of its domain at the SDP service management module. (step 1 in Figure 4). When an end user 
requests a network service from the SDP it submits a demand profile D{C, Q, L} through the service 
interface (step 2). The demand profile incudes a connectivity element C specifying the source and 
destination addresses (s,d), the Q element giving QoS requirements Treq and/or Dreq, and a load descriptor 
L for the user’s traffic flow. On receiving the request with the demand profile, the SDP service discovery 
module inquires the service management module for the capability models of all available network 
services. Connectivity and capacity information of single network services is first examined by the service 
discovery module to find a network service that can provide a virtual connection from s to d with sufficient 
capacity Cmin for meeting QoS expectation (step 3). If a network service is found, the service management 
module will inform the SDN controller in the corresponding network domain for establishing a physical 
path and allocating bandwidth in network infrastructure (step 5). If no single network service can meet 
the requirements specified by the demand profile, the service orchestration module will search a chain of 
network services that can provide a virtual connection from s to d across multiple domains (step 4). The 
orchestration module determines the minimum capacity Cmin required on the end-to-end virtual 
connection and only orchestrates network services with sufficient capacity for end-to-end service 
delivery. If such a service chain is found, the service management module will contact the SDN controller 
of each network domain involved in this service chain for establishing the physical path and allocating 
bandwidth in that domain (step 5). 

The proposed SDP plays the role of a service broker for accepting end users’ service requests, selecting 
appropriate network services for meeting users’ requirements, and orchestrating multiple network 
services for inter-domain service delivery. Therefore, the SDP offers a platform that allows third party 
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providers to offer end-to-end network services by utilizing the services provided by infrastructure 
providers (who operate individual network domains). The SDP and domain controllers (representing 
infrastructure providers) establish a certain form of service contracts, which specify the service 
capabilities that the SDP expects from underlying network domains for supporting each virtual connection 
provided by the domains. The minimum service capacity that a domain must provide for a virtual 
connection, which can be determined by the technique developed in last subsection, is an important item 
included in the service contract for achieving QoS guarantee. 

A centralized platform for service provisioning in a large scale networking environment may raise concerns 
about scalability issues. Interactions between the SDP and domain controllers cause overheads and delay 
that may limit scalability of the SDP for service management. NaaS-based network abstraction significantly 
simplifies information exchange between the SDN and domain controllers. The high-level abstraction 
model developed in this paper allows domain controllers to publish their service capability information 
with a relatively simple data structure; thus reducing overheads for network information exposure. 
Network service orchestration performed at the SDP searches available end-to-end paths based on a 
highly aggregated global virtual network topology; therefore does not need information dissemination 
among domain controllers as required by traditional distributed mechanisms for inter-domain routing. In 
order to establish paths for service delivery the SDP just needs to inform each domain controller about 
the required connectivity and capacity information. Such information can be described in a small set of 
parameters (the pair of source-destination border nodes for a virtual link and the minimum available 
bandwidth required on the virtual link); therefore limiting the control overheads between the SDP and 
domain controllers. 

Please be noted that the proposed SDP framework is a logically centralized platform that may be realized 
by various implementations, which may have a distributed physical structure. The scalability issues 
associated with SDP-based service management shares a lot of similarity with the scalability of a 
centralized SDN controller controlling multiple switches in a large-scale network; therefore could be 
addressed by applying similar technical ideas. Although a thorough analysis on scalability of a NaaS-based 
SDP is an interesting and important problem, it is out of the scope of this paper and will be studied in our 
future work. 

5.4 Bandwidth Utilization for End-to-End QoS Provisioning 
The proposed SDP enables logically centralized service and resource management with a global network 
view for end-to-end QoS provisioning in a multi-domain SDN environment. Without such an SDP, the SDN 
controller in each domain provides a central control point but only within the scope of a single domain. 
No controller can obtain a purview of the entire path for service delivery across multiple domains; 
therefore, end-to-end QoS provisioning needs to be offered based on mutual collaboration between 
controllers in neighbor domains. With such a per-domain QoS mechanism, the end-to-end delay 
requirement is partitioned to a set of delay budgets, one for each domain involved in service delivery. 
Each domain has to determine and allocate sufficient amount of bandwidth in its own network 
infrastructure to guarantee its delay budget. With the proposed SDP, an end-to-end virtual path with QoS 
guarantee can be established through network service orchestration based on a global network view. The 
SDP determines the required service capacity on the path by viewing the entire path as if it belongs to one 
end-to-end virtual domain abstracted by a composite network service. The SDN controllers in all the 

http://dx.doi.org/10.14738/tnc.62.4373


Transact ions on  Networks and Communications;  Volume 6,  No.  2,  Apr i l  2018 
 

Copyr ight © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 27 
 

 

domains passed by the virtual path are required to allocate the same amount of effective bandwidth on 
the path, which is determined by the SDP. In this subsection, we study bandwidth utilization of the end-
to-end QoS scheme enabled by the SDP and compare it with that of the per-domain QoS scheme without 
an SDP. 

We consider a service delivery scenario in which a virtual path traverses n domains abstracted respectively 
by network services Si, i = 1,2,··· ,n, as shown in Figure 3. Denotes the virtual link provided by service Si as 
li, and assume that the capacity profile of li is a LR profile Pi = β(ri,θi), then the capacity profile of the end-
to-end virtual path is Pe = β(re,θe), where re = min{r1,··· ,rn} and θe = θ1+ θ2 + ··· + θn. Suppose the load 
descriptor for the traffic flow is L(p,ρ,σ) and the expected end-to-end delay upper bound is De

req, then with 
the end-to-end QoS mechanism enabled by the SDP, the effective bandwidth that must be allocated to 
the virtual path for guaranteeing De

req can be determined by equation (12) as 

 𝑅𝑅𝑒𝑒�𝐷𝐷𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒 � = 𝑝𝑝𝑝𝑝
�𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 −𝜃𝜃�(𝑝𝑝−𝜌𝜌)+𝑝𝑝

 (𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛𝑒𝑒 ≤ 𝐷𝐷𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒 ≤ 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒 ) (13) 

Where De
min = θe and De

max = θe + σ/ρ. This is the amount of bandwidth that the SDP requests each domain 
controller to allocate for the virtual link provided by the domain. 

Now we consider the case in which the per-domain QoS mechanism without a central SDP allocates 
effective bandwidth on a path passing the same set of n domains for meeting the same end-to-end delay 
requirement. Suppose the total delay requirement is partitioned to n delay budget Di

req, i = 1, 2, … n, one 
for each domain, then in the i-th domain the effective bandwidth that must be allocated on its virtual link 
li for meeting its delay budget will be 

 𝑅𝑅𝑖𝑖�𝐷𝐷𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖 � = 𝑝𝑝𝑝𝑝
�𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 −𝜃𝜃�(𝑝𝑝−𝜌𝜌)+𝑝𝑝

 (𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛
𝑖𝑖 ≤ 𝐷𝐷𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖 ≤ 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 ) (14) 

where Di
min = θi and Di

max = θi + σ/ρ. 

Both Re and Ri are the required amounts of bandwidth that need to be allocated in the domain Si for 
meeting the same delay requirement, but the former is obtained by the SDP with a global network view 
while the latter is obtained by the local SDN controller in a single domain. To compare bandwidth 
utilization achieved by these two service management schemes, we defined U as the ratio between these 
two effective bandwidth values; that is, 

 𝑈𝑈 = 𝑅𝑅𝑖𝑖(𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 )
𝑅𝑅𝑟𝑟�𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �

= �𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 −𝜃𝜃𝑟𝑟)�(𝑝𝑝−𝜌𝜌)+𝑝𝑝
�𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 −𝜃𝜃𝑖𝑖�(𝑝𝑝−𝜌𝜌)+𝑝𝑝

. (15) 

An observation we can have from (15) is that U = 1 when p = ρ. This implies that for a constant rate traffic 
flow (p = ρ) the end-to-end allocation scheme enabled by the SDP has the same level of bandwidth 
utilization as per-domain allocation does. This is because the effective bandwidth for a constant rate flow 
just needs to be the peak/sustained rate of the flow, and extra bandwidth allocation does not help 
improving delay performance; that is Re(De

req) = Ri(Di
req) = p = ρ. 

We focus our analysis on the case of variable rate traffic flows; i.e. p > ρ. We define Δde = De
req - ϑe as an 

indicator to reflect how tight the end-to-end delay expectation is compared to the latency parameter of 
the service delivery path, which is the minimum delay that can be achieved on the path. A larger ∆de value 
implies a relatively looser delay expectation. Similarly Δdi = Di

req - ϑi reflects the relative tightness of the 
delay budget for a single network domain Si. Equation (15) shows that if ∆di ≥ ∆de then U ≤ 1; otherwise U 
> 1. This implies that if the delay budget for a single network domain, compared to the latency of the 



Qiang Duan; End-to-End Service Delivery with QoS Guarantee in Software Defined Networks, Transactions on Networks 
and Communications, Volume 6 No. 2, April (2018); pp: 10-35 

 

URL:http://dx.doi.org/10.14738/tnc.62.4373    
 28 

 

virtual link in this domain, is relatively looser than the delay expectation for end-to-end service delivery, 
then the per-domain allocation scheme may actually require less amount of bandwidth than what is 
required by the SDP. However, given an end-to-end delay bound requirement, a loose delay budget for 
one network domain means tighter delay budgets thus more bandwidth consumption in other domains. 
Autonomous domains in the Internet are unlikely to sacrifice their own bandwidth resources for other 
domains’ benefits. 

Therefore we analyze a case that the end-to-end delay requirement is equally partitioned among all 
domains and assume the virtual links in all domains have an identical latency property; that is, Di

req = d 
and θi = θ for i = 1,2,··· ,n. Then De

req = nd and from (5) we have ϑe = nϑ. 

Therefore, 

 𝑅𝑅𝑒𝑒�𝐷𝐷𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒 � = 𝑝𝑝𝑝𝑝
𝑛𝑛(𝑑𝑑−𝜃𝜃)(𝑝𝑝−𝜌𝜌)+𝑝𝑝

 ,   𝑅𝑅𝑖𝑖�𝐷𝐷𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖 � = 𝑝𝑝𝑝𝑝
(𝑑𝑑−𝜃𝜃)(𝑝𝑝−𝜌𝜌)+𝑝𝑝

 . (16) 

Then bandwidth ratio is 

 𝑈𝑈 = 𝑅𝑅𝑖𝑖(𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 )
𝑅𝑅𝑟𝑟�𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �

= 𝑛𝑛(𝑑𝑑−𝜃𝜃))(𝑝𝑝−𝜌𝜌)+𝑝𝑝
(𝑑𝑑−𝜃𝜃)(𝑝𝑝−𝜌𝜌)+𝑝𝑝

= 1 +  (𝑛𝑛−1)(𝑑𝑑−𝜃𝜃)(𝑝𝑝−𝜌𝜌)
(𝑑𝑑−𝜃𝜃)(𝑝𝑝−𝜌𝜌)+𝑝𝑝

. (17) 

Since we are considering variable rate flows (p > ρ) and the delay budget assigned to a network domain 
must be larger than the latency property of its network infrastructure (d > θ), (17) shows that the 
bandwidth ratio U > 1 for end-to-end service delivery across domains (n ≥ 2). 

Equation (12) also gives a special case for loose delay expectation; that is, Re(De
req) = ρ when De

req > De
max 

= ϑe + σ/ρ. Similarly, for per-domain allocation Ri(Di
req) = ρ when Di

req > Di
max = ϑi + σ/ρ. Considering the 

above case in which Di
req  = d = De

req /n and θi = θ for i = 1,2,··· ,n, then 

 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟

𝑛𝑛
=  𝜃𝜃 + 𝑝𝑝

𝑛𝑛𝜌𝜌
 <  𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖 = 𝜃𝜃 + 𝑝𝑝
𝜌𝜌

  (𝑖𝑖 ≥ 2)  (18) 

Inequality (18) implies that for an end-to-end delay expectation that is looser than the maximum 
threshold; i.e., De

req > De
max, the effective bandwidth determined by the SDP will be Re(De

req) = ρ. However, 
when dividing this delay expectation equally to obtain n delay budgets, one for each single domain, the 
obtained Di

req might be tighter than the maximum delay threshold of its domain Di
max; therefore the local 

controller may allocate more bandwidth; i.e. Ri(Di
req) > ρ in each domain. 

The above analysis shows that in order to achieve the same level of delay performance guarantee in the 
considered scenarios, the per-domain QoS mechanism consumes more bandwidth in each individual 
network domain than the effective bandwidth determined by the SDP. This result indicates that the 
proposed SDP may not only simplify service management but also enhance bandwidth utilization for end-
to-end QoS provisioning in a multi-domain SDN environment. 

6 Numerical Results 
Numerical results are given in this section to illustrate application of the developed techniques and 
obtained insights. We considered a networking scenario in which the SDP orchestrates the network 
services of three domains to provide an end-to-end virtual path for QoS provisioning. The path has been 
used to transport data for two applications, whose traffic flows, denoted as f1 and f2 respectively, are 
characterized by the following parameters: peak rate p1 = 60 Mbps, sustained rate ρ1 = 1.5 Mbps, and 
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burst size σ1 = 1.04 Mbits for f1; and peak rate p2 = 15 Mbps, sustained rate ρ2 = 1.5 Mbps, and burst size 
σ2 = 9.54 Mbits for f2. These parameters are derived from traffic analysis reported in [33] and [34]. We 
assume that virtual links provided by all domains for the end-to-end path have a LR capacity profile. 

Bandwidth allocation for achieving end-to-end delay performance guarantee is first analyzed. The 
amounts of effective bandwidth that the SDP must request from each domain to guarantee a set of delay 
requirements are determined and plotted in Figure 5, where effective bandwidth for f1 and f2 are denoted 
as Re

1 and Re
2 respectively. From this figure, we can see that the required amounts of bandwidth for both 

flows increase when the delay requirement value decreases. This means that more service capacity must 
be acquired by the SDP from the underlying network domains in order to provide a tighter end-to-end 
service delay guarantee. 

Comparing the bandwidth curves in Figure 5 shows that R2
e is greater than R1

e for all delay requirements; 
that is, different amounts of bandwidth are required by these two flows for achieving the same delay 
performance on the same virtual path. This means that effective bandwidth is impacted by traffic load 
parameters as well as the delay requirement; thus verifying the necessity of including a load descriptor in 
a service demand profile in order for the SDP to achieve QoS guarantee. From Figure 5 we can also see 
that the R2

e curve drops with increasing delay requirement value faster than the R1
e curve does. This 

implies that for flows with different traffic load parameters, the same extent of improvement in delay 
performance requires different amounts of increment in effective bandwidth. Both the flows examined in 
our experiments have the same sustained rate (ρ1 = ρ2) but flow f2 has greater burst size (σ2 > σ1). Such 
an observation we obtained from Figure 5 indicates that the parameter σ, which gives the maximum 
amount of traffic that an application can load on a virtual path continuously with its peak rate, has a strong 
impact on the required amount of bandwidth for achieving delay guarantee. 

                                      

Figure 5. Effective bandwidth for end-to-end delay guarantee for flows f1 and f2 

One can also notice from Figure 5 that the R1
e curve becomes flat when the required delay bound is greater 

than a threshold (90 ms in this particular example) while the R2
e curve keeps dropping with increasing 

delay bound value. This is because effective bandwidth is equal to the sustained rate of a flow when the 
required delay bound is looser than a threshold, as shown in equation (12) Re(Dreq) = ρ when Dreq ≥ Dmax. 
Also, the Dmax threshold for a flow varies with the load parameters of the flow. In our experiment flow f1 
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reaches such a threshold at around 90 ms where the R1
e curve becomes flat; while f2 does not reaches its 

threshold for all the delay bound values tested in the experiment; therefore the R2
e curve keeps dropping 

with increasing delay requirement. 

In order to evaluate bandwidth utilization achieved by the SDP with a global network view for QoS 
provisioning in a multi-domain SDN environment, we compare the end-to-end bandwidth allocation 
scheme performed by the SDP against the per-domain-based bandwidth allocation scheme discussed in 
Subsection V-D. We assume that the virtual links in the three network domains have identical LR capacity 
profiles and the end-to-end delay requirement is divided equally as the delay budgets for the three 
domains. We analyzed the amounts of effective bandwidth that will be determined by each individual 
SDN controller for meeting the delay budget in its domain. The obtained data for flows f1 and f2 are plotted 
in Figures 6 and 7, in which the per-domain allocation results for f1 and f2 are respectively denoted as R1

d 

and R2
d. 

Figures 6 and 7 show that for a given flow, the amounts of effective bandwidth determined by the SDP 
with an end-to-end allocation scheme and by individual SDN controllers with per-domain allocation are 
both decreasing functions of the required delay bound. That is, more bandwidth is required by both 
schemes to achieve a tighter delay guarantee. Another important observation one can obtain from Figures 
6 and 7 is that for both flows the SDP end-to-end allocation scheme always requires less amount of 
bandwidth than what per-domain allocation does in order to provide the same level of delay performance 
guarantee. The data shown in Figures 6 and 7 verify that the end-to-end bandwidth allocation enabled by 
the SDP with a global network view can achieve higher bandwidth utilization compared to the per-domain 
bandwidth allocation scheme of the conventional inter-domain QoS mechanism. This indicates that the 
SDP may realize the potential advantage of SDN logically centralized control vision to improve resource 
utilization for QoS provisioning in a multi-domain networking environment. 

 

Figure 6. Comparison between effective bandwidth obtained by end-to-end and per-domain allocation 
schemes for flow f1. 
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Figure 7. Comparison between effective bandwidth obtained by end-to-end and per-domain allocation 
schemes for flow f2. 

In order to examine the extent of improvement in bandwidth utilization introduced by the SDP, we also 
analyzed bandwidth ratios for flows f1 and f2, which are defined as U1 = R1

d/R1
e and U2 = R2

d/R2
e 

respectively. The obtained data are plotted in Figure 8. This figure shows that the bandwidth ratios of 
both flows are greater than 1; that is, end-to-end bandwidth allocation enabled by SDP achieves higher 
bandwidth utilization for providing delay performance guarantee. Comparison between the curves of U1 
and U2 in Figure 8 shows that the two flows have different bandwidth ratio values for achieving the same 
delay requirement and U1 > U2 for all the delay bounds tested in our experiments. This implies that load 
parameters of a traffic flow also have an impact on the extent of improvement in bandwidth utilization 
introduced by the SDP to the flow. 

 

Figure 8. Bandwidth ratios for flows f1 and f2 for achieving different delay objectives. 
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We also noticed from Figure 8 that both U1 and U2 increase with the required delay bound in most cases 
except that U1 drops when the delay requirement is greater than 80 ms. This implies that end-to-end 
bandwidth allocation enabled by the SDP typically achieves more improvement in bandwidth utilization 
for looser delay bounds than for tighter delay bounds. The exception happens flow f1 when the delay 
bound is greater than the threshold (80 ms for in this experiment) beyond which end-to-end effective 
bandwidth is equal to the sustained rate of the flow; that is, the Dmax beyond which Re(Dreq) = ρ as shown 
in (12). Since the sustained rate is the minimum effective bandwidth that the SDP must request in each 
domain for achieving any delay bound guarantee, R1

e stops decreasing for any looser delay bound 
requirement (as shown by the R1

e curve in Figure 5); therefore will not further enhance bandwidth 
utilization. We noticed that even in this case U1 is still well above 1; that is, end-to-end allocation saves 
bandwidth than per-domain-based allocation. 

In order to evaluate the influence of the number of passed domains on improvement in bandwidth 
utilization, the bandwidth ratios of the two flows for guaranteeing a delay bound of 60 ms are tested with 
different numbers of domains passed by the end-to-end virtual path. The obtained results are plotted in 
Figure 9. This figure shows that both ratios increase with the number of domains, which implies that the 
more domains the virtual path traverses, the bigger is the difference between the amounts of effective 
bandwidth determined by the SDP and by individual domain controllers. We can also see from this figure 
that flows f1 and f2 have different bandwidth ratio values with the same number of domains, which reflects 
the influence of traffic load parameters on the bandwidth utilization improvement that can be achieved 
by the SDP. Comparing the two ratio curves in this figure shows that their increasing speeds with number 
of domains are quite different and U1 increases much larger than U2. This implies that the number of 
domains involved in service delivery has a stronger impact on bandwidth utilization to flow f1 then to flow 
f2, which again mainly due to the difference in the traffic load profiles of these two flows. 

 

Figure 9. Bandwidth ratios for flows f1 and f2 passing different number of network domains. 
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7 Conclusions 
In this paper, we studied the problem of end-to-end service delivery with QoS guarantee in the SDN-based 
future Internet. The autonomous network domains coexisting in the Internet and the diverse user 
applications deployed upon the Internet calls for a uniform Service Delivery Platform (SDP) that offers a 
high-level network abstraction and enables inter-domain collaboration for end-to-end service 
provisioning. However, the currently available SDN technologies lack effective mechanisms for supporting 
such a platform. In order to address this important and challenging issue, in this paper we first presented 
an SDP framework that employs the Network-as-a-Service (NaaS) principle to provide a high-level network 
abstraction and enables inter-domain collaboration through service orchestration for end-to-end service 
delivery. Then we focused our study on two key technologies, a network abstraction model and an end-
to-end resource allocation scheme, for the SDP to achieve QoS guarantee. We proposed a general abstract 
model for characterizing the service capabilities offered by heterogeneous network domains and apply 
the model for abstracting end-to-end inter-domain network services. Then we developed a technique that 
can be used by the SDP to determine the minimum amount of bandwidth that must be allocated in each 
network domain involved in service delivery for achieving end-to-end QoS guarantee. We also examined 
bandwidth utilization of the SDP-based end-to-end resource allocation and compared it with per-domain 
based resource allocation. Both the analytical and numerical results obtained in this paper indicate that 
an SDP with the proposed network abstraction and resource allocation technologies not only simplifies 
service and resource management in SDN but also enhances bandwidth utilization for end-to-end QoS 
provisioning. Therefore, such an SDP framework offers a promising approach to fully realizing a key benefit 
promised by the SDN paradigm – logically centralized control for service provisioning to support diverse 
user applications – in a large-scale multi-domain networking environment. 
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