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ABSTRACT 

Advances in WirelessHART standard in industrial control systems have led to performance evaluation and 

security analysis in both real-world testbeds as well as in controlled lab environments. We have conducted 

months-long experiments with WirelessHART network in a multi-hop setting in our laboratory. Latency, 

stability, and reliability have been used as metrics to measure performance of individual links and the 

overall network for five hops and seven hops. We have deliberately deviated from following the best 

practices in designing the topology to study network performance under strained conditions. In addition 

to using metrics as defined in WirelessHART literature, we have also studied network stability over 

multiple hops with single paths. Our findings show that having at least one low stability link can have an 

impact on multihop stability, while still maintaining a very high overall network reliability of 99.98% or 

higher. Details of the experiment along with results and lessons learned are presented in the paper.  
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1 Introduction  

WirelessHART is a wireless sensor networking standard designed for industrial control systems. The 

protocol is standardized by the HART Communication Foundation [2], and provides an alternative solution 

for Bluetooth and ZigBee, in noisy environments [1, 5]. WirelessHART was designed to create a wireless 

protocol solution for the already existing HART protocol [9], which is the most common protocol for field 

devices. The standard is based on IEEE 802.15.4 [10]. It utilizes a time synchronized, self-organizing, and 

self-healing mesh architecture, forming full mesh network topologies. This kind of networks contains a 

large number of nodes (henceforth referred as motes), which normally uses batteries as a power source 
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and organize themselves into a multi-hop wireless network. The network uses medium access control 

(MAC) technique [2] for successful operation. MAC protocol avoids collisions of data transmitted by 

assigning a time for each mote on the network.  

WirelessHART is a global IEC-approved standard (IEC 62591) [3] that specifies an interoperable self-

organizing mesh technology in which field devices form a wireless network that dynamically mitigate 

obstacles in the process environment. The WirelessHART field networks (WFN) communicate data back 

to host systems securely and reliably, and can be used for both control and monitoring applications. The 

similarities between traditional HART and WirelessHART allow end users to leverage training of existing 

process organizations when adopting WirelessHART. In addition, the reduced installed cost of 

WirelessHART extends the benefits of automation to end user applications that previously were out of 

reach since they could not justify the costs associated with typical wired capital projects. The opportunity 

for long-term benefit makes it compelling for users to expand process manufacturing project planning to 

evaluate the impact of WirelessHART on maintenance, safety, environment, and reliability. Additionally, 

by removing the physical constraints of wiring and power as well as reducing weight and space, wireless 

networks increase flexibility in project execution, providing solutions that can mitigate risk and improve 

project schedules. Its standard is a secure networking technology that operates in the 2.4GHZ ISM radio 

band and utilizes IEE 802.15.4 [4]. WirelessHART protocol communications are precisely scheduled using 

an approach referred to as Time Division Multiple Access (TDMA). This scheduling is performed by the 

network manager, a device that is the central component of the mesh network architecture. Most of the 

research conducted in Wireless HART networks focused on scheduling at the MAC layer, and 

designing frames for communications between motes and between motes and manager. Not much 

research was conducted to study performance of such networks over multiple hops in a real-world 

testbed. In [8] the authors performed a laboratory experiment on a wide scale deployment of wireless 

HART network over a period of 120 hours, and monitored packet loss, latency, and reliability. Their 

deployed network achieved a near 100% reliability, with very low packet loss and latency. However, as 

the experiment was conducted for only 120 hours, it fails to provide a long-term performance evaluation 

of the network as a whole and the stability of links in particular. 

In this paper, we have presented results from a months-long study of wireless HART network deployed in 

our laboratory. The study was mainly focused on measuring performance of links over multiple hops and 

also the network as a whole with a network configuration that deviates significantly from the standard 

industry practices. Detailed experimental setup and results are discussed in the subsequent sections. 

2 Method and Experimental Setup 

The experiment was carried out in two phases. In the first phase, a five-hop topology was deployed in the 

Integrated Science and Engineering Laboratory Facility (ISELF) building on our campus, as shown in Fig 1 

below. Nine motes were used in the experiment, these motes are from Linear Technology [6]. The 

topology was designed and deployed in a way that the farthest mote has a five-hop path to the network 

manager. We emphasize that we have deliberately deviated from following the best topological practices 

followed in industry to study the network performance under strained conditions, and implemented only 

single paths in the configuration. The topology spans across two floors in the ISELF building, with 

approximately 450 square meters per floor. The experiment was conducted for two-and-half months. 

Following five-hop routes were formed: 
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Route 1: network manager -> 57 -> C2 -> 6B -> 05 -> 11 

Route 2: network manager -> FC -> 8D -> BA -> DE -> 11 

 
Figure. 1. Five-hop topology 

In the second phase, a seven-hop topology was set up in the same building, as shown in Fig 2 below. Eight 

motes were used, including a mote designed by the Electrical Engineering students. This mote is a 

SmartMote system which integrates WirelessHART and embedded components to collect measurements 

from atmospheric sensors [7]. The system can join or exit an existing system without additional 

programming device. The SmartMote system also has solar powered batteries and is designed for easy 

configuration by users. It measures luminosity, temperature and humidity. The topology was designed 

and deployed in such a way that the farthest mote has a seven-hop path to the network manager. Once 

again, we deviated from topological best practices on purpose. The experiment was conducted over a 

period of one month. 

 

Figure. 2. Seven-hop topology 

3 Results and Analysis 

In the following sections, results from our five-hop and seven-hop experiments were discussed in details. 
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3.1 Five-hop experiment 

Nine motes and a network manager were used for this experiment. Three parameters, as defined in the 

WirelessHART literature, were used to measure the network performance: latency (in milliseconds), 

stability (in percentage) and reliability (in percentage). In addition, we studied the multihop stability of 

the five-hop path based on individual link stability values. Due to the distance and obstacles among the 

motes and the network manager, latency, stability and reliability varied in each link. Average values were 

recorded for all three measurements throughout the network. Fig 3 shows a screenshot from the 

Application Programming Interface, with all motes being operational, the first device shown is the 

network manager.    

 

Figure. 3. API showing motes’ status 

Latency 

Latency is the average time required for a data packet to travel from the originating mote to the manager. 

Latency also varies in each link across the network, and the value represents average network latency. 

The network manager calculates latency for each packet by subtracting the time when the packet was 

received from the packet timestamp in the network layer header, which indicates when the packet was 

generated or accepted by the mote.   

The formula to calculate latency is: 
 

  ��� = �� − ��             (1) 

 

Where, Lij = latency for link connecting motes i to j 

   Tr = Time packet received 

   Ts = Time packet sent  

���� =
1

�
∗ � ���

�

�
 (2) 

Where, Lavg is the average latency for the whole network 

  Lij is latency of each hops (links) 
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  n is the number of hops (links)  

Figure 4 below shows a screenshot showing latency, number of packets generated, lost, and duplicated. 

 

 
Figure. 4.  Latency values 

Latency increases with distance between motes and the network manager. Latency can be decreased by 

decreasing the number of hops or by decreasing the distance between the network manager and the 

motes. Table 1 below summarizes average latencies observed for each hop for both five-hop paths.   

Table 1: Latency values for paths with varying hops 

Number of Hops Latency (in Seconds) 

1-hop Latency 1.590301282 

2-hop Latency 2.607154461 

3-hop Latency 2.994113637 

4-hop Latency 5.357397018 

5-hop Latency 6.026492308 

 

Stability 

Stability is the average percentage of packets that were acknowledged by the MAC layer recipient. 

Stability is calculated in different places in the network. It is calculated between motes (link to link), 

between mote and network manager, and the average stability for the whole network. The formula to 

calculate stability between motes (link to link) or between a mote and the network manager is: 

 

��� = 100 ∗
�����

����
 

(3) 

Where, Sij is stability between mote i and mote j (link to link) 

  Tspk is Total packets sent 

  Tackp is Total acknowledged packets 

  

Formula to calculate average stability is: 

���� =
1

�
∗ � ���

�

���
 

(4) 

 Where, Savg is average stability for the whole network 

   Sij is stabilities of each hops (link) in the network 

   n is the number of hops (links) 

If a mote sends a packet to another mote, but fails to receive an acknowledgment from the destination, 

the sender mote assumes that the packet is lost. Fig 5 is a screenshot of path stability values. 
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Figure. 5.  Stability values 

The first two rows show the stability between the network manager and two motes that are directly 

connected to the manager which is labeled as 1; the stability values are respectively 73.56% and 50.98%. 

The rest of the lines show stability between motes. Stability varies from link to link, the variation is 

attributed to the locations of the motes and obstacles between them. Looking at the last line in Fig 5 

above, it can be seen that the stability value between motes 13 and 17 is only 38.06%, which is attributed 

to the fact that the two motes are placed in different floors with mote 2 between them. However, motes 

13 and 17 were occasionally able to connect with each other and transfer packets. Looking at the figure 

again, stability values between motes 2 and 13 and between 2 and 17 are 74.57% and 92.4% respectively, 

which shows that stability is inversely proportional to the distance between motes. Tables 2 and 3 below 

summarize stability values for each hop-path for both routes. Table 4 summarizes the average stability 

values for both routes over each-hop path. 

Table 2: Average stability values for route1 
 

 
 
 
 
 
 

Table 3: Average stability values for route 2 
 

Number of Hops  Stability 

1 hop average Stability 78.3% 

2 hops average Stability 71.91% 

3 hops average Stability 67.83% 

4 hops average Stability 75.43% 

5 hops average Stability 76.42% 

 

Table 4: Average stability values combining routes 1 and 2 
 

Number of Hops  Stability 

1 hop average Stability 57.915% 

2 hops average Stability 63.125% 

3 hops average Stability 66.78% 

4 hops average Stability 71.335% 

5 hops average Stability 70.775% 

 

Reliability 

Reliability is the percentage of data packets transmitted by motes that the network manager actually 

received. The manager calculates reliability by dividing the number of packets it received by the sum of 

number of packets received and packets lost. The reported values are network averages. 

Number of Hops Stability 

1 hop  average Stability 37.53% 

2 hops  average  Stability 54.34% 

3 hops  average  Stability 65.73% 

4 hops  average Stability 67.24% 

5 hops  average  Stability 65.13% 
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� = 100 ∗
����

����
 (5) 

Where, R is reliability of the network 

   Tpkg is Total packets generated 

   Upkr is Unique Packets received, offsetting duplicate packets received 

Figure 6 below shows reliability value for one snapshot of time. As can be seen from Fig 6, reliability is 

99.98% which means 99.98% of the packets generated have reached their destination irrespective of 

number of retransmissions. Here, the network manager computes reliability only for its one-hop motes. 

 

 
 

Figure. 6.  Reliability values 

Multihop Stability 

In our experiments we have computed multihop stability based on the probability of link failure, which in 

turn is based on individual link stability, as below: 

 

��� = � ���

�
���

���
�����

���

 (6) 

 

Where, ��� = Multihop stability between motes s and d 

  ���  = Stability value between motes i and j 

We computed multihop stability values at different times of days during the entire period of the 

experiment. Table 5 below shows these values for our five-hop experiment for both routes 1 and 2. 

 

Table 5: Multihop stability for five-hop experiment 
 

Discrete time 
slots 

Multihop Stability – Route 1 (in 
percentage) 

Multihop stability– Route 2 (in 
percentage) 

1 8.2 18.75 

2 8.2 23.81 

3 9.6 33.35 

4 9.6 7.53 

5 10.5 33.58 

 

Following screenshots in Fig 7 were captured in 15 minutes’ interval to evaluate the network performance.  
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Figure. 7. Statistics of Network 

3.2 Seven-hop experiment 

Eight motes and a network manager were used for this experiment. As in the previous five-hop 

experiment, three parameters from the literature were used to measure the network performance: 

latency, stability, and reliability. We also studied the multihop stability of the path based on individual link 

stability values. Topological design was a deviation from industry best practices to study performance 

under strained condition. Due to the distance and obstacles among the motes and the network manager, 

latency, stability and reliability varied in each link. Average values were recorded for all three 

measurements throughout the network.  

Latency 

The average latency calculated by equations (1) and (2) is shown in Table 6. 

 

Table 6: Average latency for each hop path 
 

Number of Hops Latency (in seconds) 

1-hop Latency 0.328520661 

2-hop Latency 0.607275862 

3-hop Latency 1.106642857 

4-hop Latency 1.82275 

5-hop Latency 3.029172414 

6-hop Latency 3.959137931 

7-hop Latency 8.114444444 

 

A hop-by-hop comparison of latency between the five-hop and seven-hop experiments reveal that the 

latency for seven-hop network is less than latency of five-hop network. Since there are more motes in the 

five-hop network, there are more data to be transferred throughout the network, which increase latency.  
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These findings show that communication over more than five-hops in WirelessHART standard is feasible 

and practical depending on the design of the topology. 

Stability 

The same equations (3) and (4) are used to compute stability values. 

A snapshot of stability values for the experiment is shown in Fig 8 below. The first two rows show stability 

of the network manager with mote 2 and 5, which are directly connected to the network manager with 

stability values of 39.01% and 81.56% respectively. Stability for the link between mote 2 and network 

manager is less because of the mote’s location outside the room. Some motes in this network have more 

than two neighbors, but only have good stability with one of them. Because WireleesHART supports graph 

routing, the motes choose the best route for the data to be transferred. 

 

Figure. 8: Stability values 

Table 7 below summarizes average stability values for each hop path.   

Table 7: Average stability for each hop path 
 

Number of Hops Stability 

1 hop average Stability 81.56% 

2 hops average Stability 87.06% 

3 hops average Stability 85.51% 

4 hops average Stability 86.04% 

5 hops average Stability 87.44% 

6 hops average Stability 85.57% 

7 hops average Stability 85.19% 

 

Again, comparing hop-by-hop stability values for both experiments, it was observed that seven-hop 

network has better average stability than its five-hop counterpart, which confirms the previous findings 

about the feasibility and practicality of more than five-hop communications in Wireless HART. 

Reliability: 

Same formula as in equation (5) is used to compute reliability.  

 

 
Figure. 9: Reliability Values 

Reliability for this network is 99.99%. Even though latency has increased for this network compared to the 

five-hop network, it achieved better stability values. It takes longer for the data being transmitted to reach 

its destination but data loss was less.   

Multihop Stability 

We computed multihop stability from individual link stability values at discrete time slots over the entire 

lifespan of the experiment using (6). Table 8 below shows the reliability values. 
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Table 8:  Multihop Stability for seven-hop experiment 

Discrete time slots Multihop Stability 

1 31.94 

2 24.38 

3 13.85 

4 15.24 

5 17.8 

6 17.33 

7 14.7 

8 14.88 

9 22.34 

10 21.85 

11 23.93 

12 23.88 

13 21.8 

14 14.45 

 

4 Conclusion 

We have conducted extensive experiments with multi-hop communications using WirelessHART in 

laboratory settings. Up to eight sensor motes were used for the experiments, which ran for months. 

Topologies were designed to provide five-hop and seven-hop communication paths designed to be run in 

two phases respectively. We have deliberately deviated from following the industry best practices in 

designing the topology to study network performance under strained conditions, which consist of single 

paths between motes. Network performance was measured using latency, stability, and reliability as 

defined in the WirelessHART literature. In addition, we have also studied network stability over multiple 

hops. The seven-hop network proved to have better results in terms of latency and stability, partly 

because of less number of motes used and the topology design. This shows the feasibility and practicality 

of multi-hop communications of Wireless HART beyond five-hop paths, given an efficient topology design.  

We have found the reliability values of the five-hop and seven-hop networks in our chosen network 

configurations are still very close to 100%, 99.98% and 99.99%, respectively. These reliability values are 

based on the formula in the literature as shown in equation (5), which computes reliability without taking 

into account the effect of retransmissions. If packets need to be retransmitted, and eventually all 

retransmitted packets reach the network manager, reliability is computed as 100%. We have also studied 

multihop stability of the five-hop and seven-hop paths based on individual link stability values. As our 

topology design deviated from industry best practices, we have found that having at least one low stability 

link can have an impact on multihop stability, while still maintaining a very high overall network reliability 

of 99.98% or higher. 
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