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ABSTRACT   

In this work, we investigate the cohesive properties of a stochastic hybrid dynamic multi-cultural network 

under random environmental perturbations.  By considering a multi-agent dynamic network, we model a 

social structure and find conditions under which cohesion and coexistence is maintained using Lyapunov’s 

Second Method and the comparison method.  In this paper, we present a prototype illustration that 

exhibits the significance of the framework and approach.  Moreover, the explicit sufficient conditions in 

terms of system parameters are given to exhibit when the network is cohesive both locally and globally.  

The sufficient conditions are algebraically simple, easy to verify, and robust.  Further, we decompose the 

cultural state domain into invariant sets and consider the behavior of members within each set. We also 

analyze the degree of conservativeness of the estimates using Euler-Maruyama type numerical 

approximation schemes based on the given illustration. 

Keywords: Multi-agent Network; Cohesiveness; Lyapunov Second Method; Invariant Sets. 

1 Introduction  

The aim of this work is to explore and extend the cohesive properties of a dynamic network of multi-

agents/members with a desired minimum safe distance between the members of the network [1-3] under 

the influence of both continuous and discrete-time stochastic perturbations.  Dynamic network models 

play an important role in a variety of modeling applications.  For example, economics, finance, 

engineering, management sciences, and biological networks have considered such large-scale dynamic 

models to investigate connectivity, stability, dynamic reliability, and convergence [4-7].   

One of the concepts studied using a dynamic social network is that of consensus [8-11].  In such models, 

the conditions under which a group collectively comes to an agreement on an issue under consideration 

are studied.  Another question of interest for such a network is when the group may divide into subgroups 

with an agreement reached within the subgroup but never reaching a consensus at an overall group level.  

Most of the work done in these areas look to develop consensus seeking algorithms and consider long 

term stability of the network in consideration [12-15].   

The concepts of cohesion, coordination, and cooperation within a group are often multi-faceted, dynamic 

and complex, but are important concepts when trying to better understand how nations or communities 

function [16].  We seek to better understand the group dynamics of such a society in order to create 

policies and practices that encourage a sense of community among individuals from a variety of cultural 

backgrounds.   
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In fact, we systematically initiated the study of this issue [2, 3] to better understand the social dynamics 

of a group seeking to find such a balance under the influence of both continuous and discrete-time 

deterministic and stochastic perturbations.  In doing so, we are interested in better understanding the 

cohesive properties of a multi-cultural social network.  In this work, we further extend the developed 

results in the framework of hybrid stochastic dynamic model for which we explore the features of the 

network.  By considering a hybrid dynamic [17], we are able to consider the impact that events both from 

external and internal stochastic fluctuations coupled with an intervention process on the network have 

on the cultural dynamics.  The presented work is used to exhibit the quantitative and qualitative 

properties of the network.  Further, the techniques used are computationally attractive and algebraically 

simple relating with the underlying network parameters.  This feature plays an important role for planning 

and decision processes. 

In Section 2, we present a general problem under consideration and the underlining assumptions.  We 

then present an illustration of such a network in Section 3 to exhibit the role and scope of the underlying 

complexity with the simplicity without loss of generality.   Using an appropriate energy function and the 

comparison method, upper and lower estimates on cultural states are established in Section 4.  In Section 

5, the long-term behavior of the solutions to the comparison equations are examined and we explore the 

study of the cultural state invariant sets in the context of the illustration presented in Section 3.  In Section 

6, we use numerical simulations to model the network and to better understand to what extent the 

analytically developed estimates in Section 5 are feasible.  Overall, the presented results are conservative 

but are reliable and robust. 

2 Problem Formulation 

The network consists of m agents whose position at time t is represented by 

, with .  In our model, this vector does not represent a 

geographical location but rather a cultural position of the ith member.  That is to say, the vector xi is a 

numerical representation of the ith member's beliefs or background on certain cultural or ethnic practices 

relevant to the network under study.  Further, we assume that  is a normalized Wiener 

process such that  and for and are independent.  We then consider a system of Itô-

Doob type stochastic system of differential equations that describes the cultural state dynamic process: 

   (1) 

for  and , where  are continuous time dynamic states;

;  and  are drift and diffusion rate coefficient functions, respectively; and

, where 	I  in (1) stands for a discrete time intervention dynamic process.  We will also 

make the following assumptions:   
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o  is an n-dimensional initial cultural state random vector defined on the complete 

probability space  and  at the kth intervention time; 

o  and  are mutually independent for each for ,  and 

; 

o For ,  is a m-dimensional normalized Wiener process 

of independent increments for ; 

o are -measurable for all  and  is independent of , where  

represents an increasing family of the smallest sub-  algebra of , i.e. if ;  

o  is  measurable; 

o  is a sequence of intervention time, and  as ;  

o  and  are defined on:  into  and continuous on 

 for each ;  

o  and  satisfy for each  and for each    

   (2) 

as ; 

o  is a Borel measurable discrete time intervention function. 

 

It is assumed that the initial value problem (1) for the system of stochastic differential equations has a 

solution process. 

We wish to investigate the stochastic cohesive property of such a network.  Further, we will explore the 

behavior of a member of the network based on the cultural state distance between a network member 

cultural state and the cultural state center of the network. 

Below, we state a few definitions with regard the quantitative and qualitative behavior of the cultural 

network. 

Definition 1:  Let r1 and r2 be non-negative random functions for ,  such that 

. We say that a stochastic multicultural dynamic network is: 
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for all ; 

ii. locally cohesive in probability, if for all , , and any   

   (4) 

for all ; 

iii. locally cohesive in pth mean, if for all  and   

   (5) 

for all  

If (i.), (ii.), or (iii.) exist for all , we say the network is globally cohesive with probability 1, in 

probability or in pth mean respectively. 

Definition 2:  We say that a stochastic multicultural dynamic network 

i. locally reaches a consensus with probability 1, if there exists  such that  for all 
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We note that the relative cultural state affinity in the a.s. sense exists as  is Borel measurable. 

3 Prototype Dynamic Model 

Let us define a prototype multicultural network dynamic model under the stochastic environmental 

perturbations described by the Itô-Doob type stochastic system of differential equations

   (10) 

for ,  and where  and  are positive real numbers, and 

   (11) 
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   (14) 

for , .  Thus  defined in (13) is a stationary center of the multicultural dynamic 

network on each interval .  We define the transformation  and observe that 

.  Then the transformed network dynamic model corresponding to (10) is reduced 

to: 
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repulsive forces over  are described by  and the magnitude of the long range 

deterministic attractive forces are characterized by 

   (16) 

Further,  is the sine-cyclical influence of the ith member's relative distance to the center of the 

network.  The stochastic term represents the environmental influence due to long-range attractive forces.  
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In the following, we present a result that will be used subsequently. 

Lemma 1:  Let 
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=V z

i

k-1 t( )( ) ,  (23) 

where the last equality holds as 
		
z
i

k-1(t) is 
	
F
t
 measurable.  Similarly, we have set 

 
		
m t +Dt( ) = E V

k-1
z
i

k-1 t + Dt( )( )|Fté
ë

ù
û

,  (24) 

for all 		Dt >0  sufficiently small such that 
		
(t + Dt)Î[t

k-1
,t
k
) .  We consider 

 
		

m t +Dt( )-m t( ) = E V
k-1

z
i

k-1 t + Dt( )-Vk-1
z
i

k-1(t)( )( )|Fté
ë

ù
û

= E
¶V

k-1

¶z
z
i

k-1 t( )( )Dzik-1(t)+
1

2
tr

¶2V
k-1

¶z2
Dz

i

k-1(t)( ) Dzik-1(t)( )
Tæ

è
ç

ö

ø
÷ |F

t

é

ë
ê
ê

ù

û
ú
ú

= E dV
k-1

z
i

k-1(t)( )|Fté
ë

ù
û
. (25)  

This together with (19), yields  

 

		

m t +Dt( )-m t( ) = E LV
k-1

z
i

k-1(t)( )Dt |F
t

é
ë

ù
û

= LV
k-1

z
i

k-1(t)( )Dt ,
  (26) 

as 
		
z
i

k-1(t) is 
	
F
t
 measurable.  We note that for small 	Dt , we have 

 
		
dm(t)= LV

k-1
z
i

k-1(t)( )dt .   (27) 

4.1 Upper Estimate of 		
LV

k-1
(z

i

k-1 )
   

We seek constraints on the parameters 
		
a
k-1

,b
k-1

,c
k-1

,q
k-1

and 
		
b
k-1

, 		kÎI(1,¥) for which we have an 

upper estimate on 
		
V
k-1

(z
i

k-1 ) .  To this end, imitating the argument made in [3], an upper estimate of 

		
LV

k-1
 in (21) is 
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LV
k-1

£q
k-1
m z

i
(ak-1

q
k-1

+

4b
k-1

m-1( ) c
k-1

2
exp -

1

2

é

ë
ê

ù

û
ú+bk-1

2 m-1( )ck-1
exp -1éë ùû

4q
k-1
m

- z
i

2

)

£q
k-1
mV

k-1
h
k-1

2 -V
k-1

2( )
£q

k-1
mV

k-1
h
k-1

-V
k-1( ) hk-1

+V
k-1( ) ,   (28) 

 where 
		
h
k-1

 is defined by 

 

		

h
k-1

=
a
k-1

q
k-1

+

4b
k-1

m-1( )
c
k-1

2
exp -

1

2

é

ë
ê

ù

û
ú+ bk-1

2 m-1( )ck-1
exp -1éë ùû

4q
k-1
m

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

1

2

.   (29) 

From the inequality (28) utilizing the comparison method [18] and Lemma 1,  we establish the following 

lemma.  For each interval 
		
[t

k-1
,t
k
) and 		kÎI(1,¥), the presented result establishes not only an upper 

bound but also the locally upper cohesive property almost surely.  Hereafter, all inequalities and equalities 

are assumed to be valid with probability one. 

Lemma 2: 

Let 
		
V
k-1

 be the energy function defined in (18), 
		
kÎI(1,¥),t Î[t

k-1
,t
k
) , and 

		
z
i

k-1  be a solution of the 

initial value problem defined in (15).  Let 
		
r
k-1

(t)  be the maximal solution [18] of a random initial value 

problem 

 
		
du

k-1
= q

k-1
mu

k-1
h
k-1

-u
k-1( ) hk-1

+u
k-1( )é

ë
ù
ûdt , u

k-1
(t

k-1
)=u

k-1
,  (30) 

where 
		
h
k-1

 is defined as in (29).  For each 
		
V
k-1

(z
i

k-1 ) , 		iÎI(1,m) , and 		kÎI(1,¥)  satisfying the 

differential inequality (28) and 
		
V
k-1

(z
i

k-1(t
k-1

))£u
k-1

, it follows that the multicultural dynamic network 

(10) is upper cohesive on 
		
[t

k-1
,t
k
) with probability 1 and  

 
		
V
k-1

(z
i

k-1(t))£ r
k-1

(t ,t
k-1

,u
k-1

),   (31) 

Proof: 

From Lemma 1, (28), and the application of stochastic comparison theorem [18], with probability 1, it 

follows that 
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V
k-1

(z
i

k-1(t))£ r(t ,t
k-1

,u
k-1

),   (32) 

when 
		
V
k-1

(z
i
(t

k-1
))£u

k-1
.  As the solution to (30) has an upper bound, the network is upper cohesive 

almost surely.          

Remark 1:  For each 		kÎI(1,¥), if the solution processes of (15) and (30) have a first moment, then the 

solution process of (15) is locally upper 1st moment cohesive.  Furthermore, under the current inequality, 

it is indeed locally upper cohesive in the sense of probability. 

4.2 Lower Estimate of 
		
LV

k-1
(z

i

k-1 ) 

Next we consider the lower comparison equation.  Using Lyapunov's Second Method and differential 

inequalities, we next seek a function 
		
r
k-1

(t ,t
k-1

,u
k-1

)  such that  

 
		
z
i
(t) ³ r(t ,t

k-1
,r

k-1
), t Î[t

k-1
,t
k
).  (33) 

Again, from Definition 1, relation (33) initiates a notion of a locally lower cohesive cultural dynamic 

network in the almost sure sense. 

 

Using the energy function defined in (18) and relation (21), for 
		
t Î[t

k-1
,t
k
)  it follows that  

 

		

Lv
k-1

³ a
k-1
mV

k-1
-q

k-1
mV

k-1

3 -V
k-1

(m-1)b
k-1

c
k-1

2
exp -

1

2

é

ë
ê

ù

û
ú

-
b
k-1

2 (m-1)c
k-1

exp -1éë ùû
4

V
k-1

= q
k-1
mV

k-1
(ak-1

q
k-1

-

4(m-1)b
k-1

c
k-1

2
exp -

1

2

é

ë
ê

ù

û
ú+bk-1

2 c
k-1

(m-1)exp -1éë ùû

4q
k-1
m

-V
k-1

2 ).

  (34) 

 

Assumption H2:  Assume there exists a positive number 
		
a

k-1
such that  

 

		

a
k-1

£
a
k-1

q
k-1

-

4(m-1)b
k-1

c
k-1

2
exp -

1

2

é

ë
ê

ù

û
ú+ bk-1

2 (m-1)c
k-1

exp -1éë ùû

4q
k-1
m

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

1

2

.   (35) 

From (34), and noticing the fact that assumption H2 implies 
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a
k-1

q
k-1

>

4 m-1( )bk-1

c
k-1

2
exp -

1

2

é

ë
ê

ù

û
ú+ bk-1

2 m-1( )exp -1éë ùû

4q
k-1
m

,  (36) 

it follows that 

 
		
LV

k-1
³q

k-1
mV

k-1
(a

k-1
-V

k-1
)(a

k-1
+V

k-1
).   (37) 

By inequality (37) and the comparison method [18] and Lemma 1, we establish the following lemma.  The 

presented result provides the lower estimate that in turn establishes the locally lower cohesive property 

of (15). 

Lemma 3:  Let 
		
V
k-1

 be the energy function defined in (18), 		kÎI(1,¥) , 
		
t Î[t

k-1
,t
k
) , and 

		
z
i

k-1  be a 

solution of the initial value problem defined in (15).  Let 
		
r
k-1

(t) be the minimal solution [18] of a random 

initial value problem 

 
		
du

k-1
= q

k-1
mu

k-1
a

k-1
-u

k-1( ) ak-1
+u

k-1( )dt , u
k-1

(t
k-1

)=u
k-1

,  (38) 

where 
		
a

k-1
 is as defined in (35).  For each 

		
V
k-1

(z
i

k-1 ) , 		iÎI(1,m) , and 		kÎI(1,¥)  satisfying the 

differential inequality (37) and 
		
V(z

i

k-1(t
k-1

))³u
k-1

, it follows that the multicultural dynamic network 

(10) is lower cohesive on 
		
[t

k-1
,t
k
) with probability 1 and 

 
		
V
k-1

(z
i

k-1(t))³ r
k-1

(t ,t
k-1

,u
k-1

).   (39) 

Proof:  From inequality (37) and Lemma 1 and the imitating the outline of the proof of Lemma 2, it follows 

that  

 
		
V
k-1

(z
i

k-1(t))³ r(t ,t
k-1

,u
k-1

)  (40) 

provided that 
		
V
k-1

(z
i

k-1(t
k-1

))³u
k-1

.  As the minimal solution of (38) is a lower bound, the network is 

lower cohesive almost surely.  Moreover, a remark similar to Remark 1 establishes the locally stochastic 

mean and probability of (15).         

We note that comparison differential equations (30) and (38) each have a unique solution process.  

Therefore the maximal and minimal solutions of (30) and (38) are the unique solutions of the respective 

random initial value problems. 

5 Long-term Behavior of Comparison Differential Equations and Invariant 

Sets 

To appreciate the role and scope of Lemmas 2 and 3, we seek to better understand both the behavior of 

the network on each interval 
		
[t

k-1
,t
k
) and the long-term behavior of the network.  For this purpose, for
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		kÎ(1,¥), we find the closed form solutions of the comparison random initial value problems (30) and 

(38).  Moreover, we analyze the qualitative properties of the solutions to the comparison equations.  Using 

the comparison method [18], we are able to establish, quantitatively, the behavior of the individual 

member cultural dynamic states on the interval 
		
[t

k-1
,t
k
).  Using this, we also establish the overall long-

term behavior of both individual member cultural dynamic states in the network as well as multicultural 

network state as a whole. 

Following the method of finding the closed form solution process of the initial value problem [19], the 

solution of (38) is represented by 

 

		

u
k-1

(t ,t
k-1

,u
k-1

)=
u
k-1
n

u
k-1

2 + n 2 -u
k-1

2( )exp -2n 2q
k-1
m(t -t

k-1
)é

ë
ù
û

.  (41) 

As 
		
z
i

k(t
k
)= (1+d

i

k-1 )z
i

k-1(t
k

- ,t
k-1

,x
i

k-1 ) for 		kÎI(0,¥), we seek to write the initial position 
	
u
k

 in terms 

of 
		
u

0
.   

By squaring both sides and rearranging the terms, we can write the above as 

 

		

u
k-1

2 (t ,t
k-1

,u
k-1

)

n 2 -u
k-1

2 (t ,t
k-1

,u
k-1

)
=
u
k-1

2 exp 2n 2q
k-1
m(t -t

k-1
)é

ë
ù
û

n 2 -u
k-1

2
.  (42) 

We now set  

 

		

y
k-1

(t ,t
k-1

, y
k-1

)=
u
k-1

2 (t ,t
k-1

,u
k-1

)

n 2 -u
k-1

2 (t ,t
k-1

,u
k-1

)
,   (43) 

where 
		
y(t

k-1
)= y

k-1
 on the interval 

		
[t

k-1
,t
k
).  Next, we take the derivative of both sides 

(44)  

		

dy
k-1

=
2u

k-1
(t ,t

k-1
,u

k-1
) n 2 -u

k-1

2 (t ,t
k-1

,u
k-1

)( )+2u
k-1

(t ,t
k-1

,u
k-1

)(u
k-1

2 (t ,t
k-1

,u
k-1

)é
ë

ù
û
du

k-1

n 2 -u
k-1

2 (t ,t
k-1

,u
k-1

)( )
2

=
2n 2u

k-1
(t ,t

k-1
,u

k-1
)du

k-1

n 2 -u
k-1

2 (t ,t
k-1

,u
k-1

)( )

=
2n 2u

k-1
(t ,t

k-1
,u

k-1
) q

k-1
mu

k-1
(t ,t

k-1
,u

k-1
)(n 2 -u

k-1

2 (t ,t
k-1

,u
k-1

))( )dt
n 2 -u

k-1

2 (t ,t
k-1

,u
k-1

)( )
2

=2n 2q
k-1
m

u
k-1

2 (t ,t
k-1

,u
k-1

)

n 2 -u
k-1

2 (t ,t
k-1

,u
k-1

)

æ

è
ç

ö

ø
÷ dt

= 2n2q
k-1
m( ) yk-1

dt .  

 

Therefore, on the interval 
		
[t

k-1
,t
k
), the solution of Error! Reference source not found. is 
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y
k-1

(t ,t
k-1

, y
k-1

)= y
k-1

exp 2n 2mq
k-1

(t -t
k-1

)é
ë

ù
û , y

0
(t

0
)= y

0
.   (44) 

Let 
		
Dt

k
= t

k
-t

k-1
. When 		k =1, the solution of (44) on 

		
[t

0
,t

1
) is 

 

		

y
0
(t ,t

0
,u

0
) = y

0
exp 2n2mq

0
(t -t

0
)é

ë
ù
û

y
0
(t

1

- ,t
0
,u

0
) = y

0
exp 2n2mq

0
Dt

1
é
ë

ù
û

y
1
(t

1
) = 1+d

i

0 y
0

exp 2n 2mq
0
Dt

1
é
ë

ù
û.

  (45) 

We assume that for 		k -1ÎI(1,¥) , the solution of (44) on 
		
[t

k-1
,t
k
) is 

 

		

y
k-1

(t ,t
k-1

, y
k-1

) = 1+d
i

j-1 y
0
exp 2n 2m q

j-1
j=1

k-1

å Dt
j-1
+(t -t

k-1
)

æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
új=1

k-1

Õ

y
k-1

(t
k

- ,t
k-1

,u
k-1

) = 1+d
i

j-1 y
0
exp 2n 2m q

j-1
j=1

k-1

å Dt
j

é

ë
ê

ù

û
ú

j=1

k-1

Õ

y
k
(t

k
) = 1+d

i

k-1 y
k-1

(t
k

- ,t
k-1

,u
k-1

)

= 1+d
i

j-1 y
0
exp 2n 2m q

j-1
j=1

k

å Dt
j

é

ë
ê

ù

û
ú

j=1

k

Õ .

  (46) 

Then for 		kÎI(1,m), the solution of (44) on 
		
[t

k
,t
k-1

) is  

 

		

y
k
(t ,t

k
, y

k
) = y

k
exp 2n 2mq

k
(t -t

k
)é

ë
ù
û

= 1+d
i

j-1 y
0

exp 2n 2m q
j-1

j=1

k

å Dt
j
+(t -t

k
)

æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
új=1

k

Õ ,
  (47) 

and 

 

		

y
k
(t

k+1

- ,t
k
, y

k
)= 1+d

i

j-1 y
0
exp 2n 2m q

j-1
j=1

k+1

å Dt
j

é

ë
ê

ù

û
ú

j=1

k

Õ ,   (48) 

so 

 

		

y
k+1

(t
k+1

) = 1+d
i

k+1 y
k
(t

k+1

- ,t
k

, y
k
)

= 1+d
i

j-1 y
0

exp 2n 2m q
j-1

j=1

k+1

å Dt
j

é

ë
ê

ù

û
ú

j=1

k+1

Õ .
  (49) 

Therefore, using mathematical induction, it follows that for any 		kÎI(1,¥),  
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y
k-1

(t ,t
k-1

, y
k-1

) = 1+d
i

j-1 y
0

exp 2n 2m q
j-1

j=1

k-1

å Dt
j-1
+(t -t

k-1
)

æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
új=1

k-1

Õ

y
k
(t

k
) = 1+d

i

j-1 y
0

exp 2n 2m q
j-1

j=1

k

å Dt
j

é

ë
ê

ù

û
ú

j=1

k

Õ .

  (50) 

From the definition of 
	
y
k

 and (50), for 		kÎI(1,¥) and 
		
t Î[t

k-1
,t
k
)  

 

		

u
k-1

2 (t ,t
k-1

,u
k-1

) =
n 2 y

k-1
(t ,t

k-1
, y

k-1
)

1+ y
k-1

(t ,t
k-1

, y
k-1

)

=

n 2 1+d
i

j-1 u
0

2

j=1

k-1

Õ

1+d
i

j-1 u
0

2 + n 2 -u
0

2( )exp -2n 2m q
j-1

j=1

k-1

å Dt
j
+(t -t

k-1
)

æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
új=1

k-1

Õ

=
n 2u

0

2

u
0

2 +(n 2 -u
0

2 )exp -2n 2m q
j-1

j=1

k-1

å Dt
j
+(t -t

k-1
)

æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
ú

1+d
i

j-1
-1

j=1

k-1

Õ

  (51) 

and 

 

		

u(t ,t
k
,u

k
)=

nu
0

u
0

2 + n 2 -u
0

2( )exp -2n 2m q
j-1

j=1

k

å Dt
j-1
+(t -t

k
)

æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
ú

1+d
i

j-1
-1

j=1

k-1

Õ
æ

è
ç

ö

ø
÷

1

2

.   (52) 

Further, for 		kÎ(1,¥),  

 

		

u(t
k
)=

u
0
n

u
0

2 +(n 2 -u
0

2)exp -2n 2m q
j-1

j=1

k+1

å dt
j-1

é

ë
ê

ù

û
ú 1+d

i

j-1
-1

j=1

k

Õ
æ

è
ç

ö

ø
÷

1

2

.   (53) 

By (53), taking the limit as 	k®¥ , it follows that the initial positions 
		
u
k-1

 will converge and 

 
		
lim
k®¥

u
k-1

=n .  (54) 

Further, by (52) 

 
		
lim
k®¥

u(t ,t
k-1

,u
k-1

)=n .   (55) 

Therefore, taking the limit of the upper comparison solution 
		
r(t ,t

0
,u

0
) at 	t®¥ , the long term behavior 

of is such that  
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lim
t®¥

r(t ,t
0
,u

0
)=h ,   (56) 

where 

		
h = limsup

k®¥

h
k-1

, 

if it exists and  

 

		

h
k-1

=
a
k-1

q
k-1

+

4b
k-1

m-1( ) 1

2
exp -

1

2

é

ë
ê

ù

û
ú+bk-1

2 m-1( )ck-1
exp -1éë ùû

4q
k-1
m

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

1

2

.   (57) 

Thus, if the limit superior h exists, the solution process of (15) is globally upper cohesive in the a.s. sense 

on 	[0,¥). 

 

Similarly, the limit of the solution of the lower comparison equation (38) as 	t®¥  is 

 
		
lim
t®¥

r(t ,t
0
,u

0
)=a ,  (58) 

where 

 
		
a = liminf

k®¥
a

k-1
  (59) 

and 

 

		

a
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³
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-

4(m-1)b
k-1
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exp -
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2 (m-1)c
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exp -1éë ùû

4q
k-1
m

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

1

2

.   (60) 

Moreover, the solution process of (15) is globally lower cohesive a.s. on 
		
[t

0
,¥). 

Using the long term behavior of the comparison equations in conjunction with Lemmas 2 and 3, we 

establish the following theorem. 

Theorem:  Let the hypotheses of Lemmas 2 and 3 be satisfied. Then the network is locally cohesive in the 

almost surely on 
		
[t

k-1
,t
k
) for 		kÎI(1,¥) .  If additionally h  exists and is finite, then the network is 

globally cohesive in the almost surely on 
		
[t

0
,¥).  

Proof:  From Lemmas 2 and 3, 
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r
k-1

(t ,t
k-1

,r
k-1

)£V
k-1

(z
i

k-1(t))£ r
k-1

(t ,t
k-1

,r
k-1

)  (61) 

with probability 1.  Moreover, as the solution to the upper comparison equation is bounded above by 

		
h
k-1

and the solution to the lower comparison equation is bounded below by 
		
a

k-1
, the network is 

cohesive almost surely.  Suppose that h  exist and is finite.  Then, we have  

 
		
r(t ,t

0
,u

0
)£V(z

i
(t ,t

0
,z

i

0 ))£ r(t ,t
0
,u

0
)  (62) 

for 
		
t ³ t

0
.  As the solutions r  and 	r  are bounded, the network is globally cohesive with probability 1. 

   

5.1 Invariant Sets 

In the case of the hybrid stochastic dynamical network, we can first consider the behavior of the solution 

process on the interval 
		
[t

k-1
,t
k
). For 		kÎI(1,¥), let us denote 

 

		

r
2
=

a
k-1

q
k-1

-

4(m-1)b
k-1

c
k-1

2
exp -

1

2

é

ë
ê

ù

û
ú+ bk-1

2 (m-1)c
k-1

exp -1éë ùû

4q
k-1
m

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

1

2

  (63) 

and 

 

		

r
1
=

a
k-1

q
k-1

+

4b
k-1
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.   (64) 

Further, let us define the following sets: 

 

		

A
k-1

= B 0,r
2( )

B
k-1

= Bc 0,r
2( )ÇB 0,r

1( )
C
k-1

= Bc 0,r
1( )

ì

í

ï
ï

î

ï
ï

  (65) 

From the analysis developed in that section, we establish the following theorem for the solution on the 

interval 
		
[t

k-1
,t
k
). 

Theorem:  Let the hypotheses of Lemmas 2 and 3 be satisfied. Then almost surely, 

i. the set 
		
A
k-1

ÈB
k-1

 is conditionally invariant relative to 
		
A
k-1

; 

ii. the set 
		
B
k-1

 is self-invariant; 
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iii. the set 
		
B
k-1

ÈC
k-1

 is conditionally invariant relative to 
		
C
k-1

. 

Proof:  Following the proof outlined in [3], the result follows directly.   

By considering the limit as 	k®¥ , we also establish the following result for the long-range invariant sets 

of (15).   

For 		kÎ(1,¥)  

 
		
lim
k®¥

u(t
k-1

)= lim
k®¥

u(t ,t
k-1

,u
k-1

)  (66) 

for both the upper and lower comparison equations, then as 	k®¥   

 
		
a £ 	 z

i

k-1(t
k-1

) £h   (67) 

and  

 
		
a £ 	 z

i

k-1(t ,t
k-1

,z
i

k-1 ) £h   (68) 

for sufficiently large 		kÎ(1,¥).  Thus, (15) exhibits long-range self-invariance for every member of the 

network. 

In Section 6, we use numerical simulations to better understand the estimates and network behavior on 

the intervals 
		
[t

k-1
,t
k
) for a finite number 	k .   

6 Numerical Simulations 

In this section, we consider numerical simulations for the multicultural dynamic network governed by the 

stochastic differential equation (15).  We use a Euler-Maruyama [20-22] type numerical approximation 

scheme.  We consider a network of six members, using the same initial position and varying the 

parameters 
		
a
k-1

,b
k-1

,  and
		
b
k-1

, 		kÎI(1,¥) .  Further, we consider the case such that 
		
x
ij

k-1(t )  for 

		i , jÎI(1,6) is a one-dimensional Brownian motion process with mean of zero and variance of 1 over the 

interval 	[0,1].   

Often in a cultural network, events such as natural disasters, sudden political or economic changes, etc., 

can cause rippling effects in the cultural network.  These changes can be characterized by the parametric 

changes in the stochastic differential equation (15).  Therefore, we choose to simulate such a situation in 

the models in this section.  Here, we choose 5 arbitrary times 
	
t
k

 on the interval 	(0,1) for which the 

model experiences an intervention on the dynamic.  Further, for each 
	
t
k

, 		kÎI(1,5) , we set

		
x
i

k(t
k
)= (1+d

i

k )x
i

k(t - ), where 
	
d
i

k  is a constant for fixed 	i  and 		kÎI(1,5), and consider the various 

scenarios based on changing the parameters 
		
a
k

,b
k

 and
	
b
k

. 
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In order to consider the effects of changing the parametric quantity 
		
a
k-1

, we consider various models for 

which 
		
b
k-1

=2,b
k-1

=1,c
k-1

=2 , and 
		
q
k-1

=1/7  are held constant for 		kÎI(1,5)  and
		
a
k
= a

k-1
+1 , 

		
a

0
=2.  The plot of the position 

		
z
i
(t) for 		t Î[0,1] is given in Figure 1. 

In order to consider the effects of changing the parametric quantity 
		
b
k-1

, we consider the model for which

		
a
k-1

=2,b
k-1

=2,c
k-1

=2 , and 
		
q
k-1

=1/7  are held constant for 		kÎI(1,5)  and
		
b
k
= b

k-1
+1 , 

		
b

0
=1 . 

Figure 2 exhibits the simulated positions of the members 
	
z
i
. 

In order to consider the effects of changing the parametric quantity 
		
b
k-1

, we consider the model for 

which 
		
a
k-1

=2,b
k-1

=1,c
k-1

=2 , and 
		
q
k-1

=1/7  are held constant for 		kÎI(1,5)  and
		
b
k
= b

k-1
+1 , 

	
b

0
=2.  In Figure 3, we plot the positions of the members for 		t Î[0,1]. 

 

Figure 1: Euler-Maruyama approximation of the differential equation with six members and parameter 
ak=ak-1+1. 

 

Figure 2: Euler-Maruyama approximation of the differential equation with six members and parameter 
bk=bk-1+1 
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In order to consider the effects of a change in the parametric quantity 
		
a
k-1

 and 
		
b
k-1

, we consider the 

model for which 
		
b
k
=1,c

k-1
=2, and 

		
q
k-1

=1/7  are held constant for 		kÎI(1,5) and
		
a
k
= a

k-1
+1, and 

		
b
k
= b

k-1
+1, 

	
b

0
=2.  The plot of the member’s positions of the simulated network is given in Figure 4. 

 

Figure 3: Euler-Maruyama approximation of the differential equation with six members and parameter 
βk=βk-1+1. 

 

Figure 4: Euler-Maruyama approximation of the differential equation with six members and parameters 
ak=ak-1+1, bk=bk-1+1, and βk=βk-1+1. 

7 Conclusion 

Maintaining diversity while simultaneously fostering a sense of community membership, individual 

cultural identity, and cohesion is currently a goal among communities worldwide.  It is important for 

members in a society to both feel as a part of the community in which they live and interact as well as feel 

free to embrace a strong sense of self and individuality.  We seek to better understand the factors that 

play a role in obtaining such a balance by considering the impact of the repulsive and attractive forces 

influencing the multicultural network as in the previous work [2, 3].  Attractive influences can be thought 

of as attributes that bring people to active membership within the group.  Social acceptance, gaining social 

status, economic opportunity, career growth, common purpose and membership, personal development, 
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and a sense of mutual respect, trust and understanding are examples of attractive influences within a 

social cultural network.  Repelling forces are attributes that create some desire for individuals to leave or 

be less involved in the group or to preserve some personal identity from one other with their individual 

magnitude of inner repulsive force.  A desire to retain a sense of individuality, economic or emotional 

cost, interpersonal conflict within the group, or disagreement with parts of the overall philosophies of the 

group are forces that may be considered as repulsive forces.  The goal of the presented multicultural 

dynamic network is model the balance sought by members of the network in achieving these types of 

objectives.  By doing so, we can consider the impact that policies and environmental factors may have on 

such a network. 

By considering a hybrid dynamic model, we are able to better understand the impacts of outside 

influences that occur within community members and the cultural impacts such events have on the 

modeled cultural network.  We have considered change based on the parameters that allow the perturbed 

multicultural dynamic network to remain cohesive while retaining a cultural state that is distinctive from 

the cultural state center of the network.  We established qualitative and quantitative conditions that are 

computationally attractive and verifiable. We also conducted simulations of the multicultural network 

that exhibit the influence of the random perturbations and intervention processes as well as demonstrate 

the long-term behavior of the multicultural network.  The presented results provide a tool for planning, 

performance, and implementations of policies and procedures within a social network. 

We are interested in further exploring similar multicultural networks in the context of better 

understanding the relative cultural affinity 
	
x
ij

 between members within the network and not just the 

cultural affinity between the cultural state of a member relative to the center of the network.  The goal is 

to better understand the environmental factors that help foster a sense of individuality and diversity 

between all members within the network while maintaining a cohesive structure. 
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