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ABSTRACT 

 
To determine that two given undirected graphs are isomorphic, we construct for them auxiliary graphs, 

using the breadth-first search. This makes capability to position vertices in each digraph with respect to 

each other. If the given graphs are isomorphic, in each of them we can find such positionally equivalent 

auxiliary digraphs that have the same mutual positioning of vertices. Obviously, if the given graphs are 

isomorphic, then such equivalent digraphs exist. Proceeding from the arrangement of vertices in one of 

the digraphs, we try to determine the corresponding vertices in another digraph. As a result we develop 

the algorithm for constructing a bijective mapping between vertices of the given graphs if they are 

isomorphic. The running time of the algorithm equal to �(��), where n is the number of graph vertices. 

Keywords: graph, isomorphism, bijective mapping, isomorphic graphs, algorithm, graph isomorphism 

problem. 

 

1 Introduction 

Let �� is the set of all n-vertex undirected graphs without loops and multiple edges. 

Let, further, there is a graph � = (��, ��) ∈ ��, where �� = {��, ��, … , ��} is the set of graph vertices 

and �� = {��, ��, … , ��}  is the set of graph edges. Local degree deg (�)  of the vertex � ∈ ��  is the 

number of edges, that is incident to the vertex �. Every graph � ∈ �� can be characterized by the vector 

�� = (deg(���) , deg(���) , … , deg (���) of the local vertex degrees, where deg (��) ≤ deg (��)  if � < �.  

Graphs � = (��, ��), � = (��, ��) ∈ �� are called isomorphic if between their vertices there exists one-

to-one (bijective) mapping �: �� ↔ �� such that if �� = {�, �} ∈ �� then the corresponding edge is �� =

{�(�), �(�)} ∈ ��, and conversely [1, 2]. We say that the mapping � converts the graph � into the graph 

� and conversely. 

The problem of determining the isomorphism of two given undirected graphs is used to solve chemical 

problems, and to optimize programs [3] - [6] and others. Effective (polynomial-time) algorithms for solving 

this problem were found for some narrow classes of graphs [7] - [9]. However for the general case, 

effective methods for determining the isomorphism of graphs are not known [10]. 

The purpose of this article is to propose a polynomial-time algorithm of  searching  isomorphic graphs. 
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2 Basic Definitions 

Let there be a graph � ∈ ��. 

Choose some vertex � ∈ �� . The set of all vertices of the graph � , adjacent to vertex �, we call the 

neighborhood of the 1st level of this vertex. 

Suppose that we have constructed the neighborhood of (� − 1)-th level of the vertex �. Then the set of 

all vertices, adjacent to at least one vertex (� − 1)-th level, we call the neighborhood �-th level 0 ≤ � ≤

� − 1 of the vertex �. Such neighborhood we denote ��
�(�). For convenience, we assume that the vertex 

� forms the neighborhood of the zero level. 

Found neighborhoods allow us to construct for the vertex � of the auxiliary directed graph �⃗(�) in the 

following way. 

Each neighborhood ��
� (�) of the graph �  forms �-th line of the digraph. If the edge of the graph � 

connects the vertex ��  of �� -th level with the vertex ��  of ��  level, and �� < �� , then this edge is 

replaced by the arc (��, ��). If �� = ��, then this edge is replaced by two arcs (��, ��) and (��, ��). We 

say that the constructed digraph is induced by the vertex � of the graph �. 

 

 
Figure. 1.  The graph � and the auxiliary digraph �⃗(��). 

 

Figure  1 shows the graph � and the auxiliary digraph ���⃗ (�1), induced by the vertex �� (Here and below, 

the arcs of the digraph are directed from the top to the bottom, and the horizontal lines represent two 

mutually directed arcs). 

Each vertex of the auxiliary graph will be characterized by two vectors.  

The input characteristic of the vertex � of the digraph ���⃗ (�) is called the vector �(�) = (��, … , ��), where 

the elements ��, … , �� are the line numbers of the digraph, written in order of increase. These numbers 

indicate the lines, from which arcs come into the vertex �. If into the vertex � several arcs come from the 

same line, the line number is recorded in the vector �(�) the corresponding number of times. 

The output characteristic of a vertex � of the digraph ���⃗ (�) is called the vector �(�) = (��, … , ��), where 

the elements �1, … , ��  are the line numbers of the digraph, also written in order of increase. These 

numbers indicate those lines, in which arcs come from vertex �. If from the vertex � several arcs come 
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into vertices of the same line, then the line number are recorded in the vector �(�) the corresponding 

number of times. 

Characteristic of vertex � of the digraph ���⃗ (�) will be called the input and output characteristics of this 

vertex. The characteristics of the two vertices ��, �� are equal if them the input and output characteristics 

are equal, respectively. 

Find the vertex characteristics of the digraph ���⃗ (�1), is shown in Figure  1. The results are presented in  

the Table 1. 

Table 1. The vertex characteristics of the digraph �⃗(��). 

 
 
 

 

Let there are auxiliary directed graphs ���⃗ (�1) and ���⃗ (�2), induced by the vertices ��  and �� , possibly 

belonging to different graphs. The directed graphs ���⃗ (�1) and ���⃗ (�2) are called positionally equivalent if 

the lines of digraphs of the same level contain the same number of vertices having respectively equal 

(input and output) characteristics. 

A vertex � ∈ �� will be called unique if the digraph ���⃗ (�) does not exist another vertex with characteristics 

equal to the characteristics of the vertex �.  

Note that the vertex � ∈ ��, that induces the auxiliary digraph ���⃗ (�), is always unique in this digraph. 

3 The Basics of the Algorithm 
 
Next, we will consider pairs of graphs �, � ∈ ��, having equal number of vertices �, equal number of 

edges � and equal vectors of the local degrees �� = ��. It needs to determine the isomorphism of the 

given graphs and, if they are isomorphic, then find the bijective mapping � between their vertices. 

The idea of finding bijective mapping � between the vertices of the vertex set of graphs �, � ∈ ��  is the 

following. We assume that the graphs � and � are isomorphic. Naturally that the required mapping can 

only be found when graphs �  and � is indeed isomorphic. If in the process of finding the mapping � 

cannot be found, then the given graphs are not isomorphic. 

Theorem 1. Let the graphs � and � are isomorphic. Then there exist at least two vertices � ∈ ��  and � ∈

�� such that induce two auxiliary positionally equivalent digraphs ���⃗ (�) and ���⃗ (�). 

Proof. The construction of the auxiliary directed graphs depends only on the location of graph vertices 

relative to the neighborhood of the induced vertex � or � and does not depend on the vertex names of 

the graphs �  and � . Therefore, because graphs �  and �  are isomorphic and we have the identical 

( ) ;
1

I v    

( ) (1,1,1,1);1O v    

( ) (0,1,1);2I v    

( ) (1,1,2);2O v    

( ) (0,1);3I v    

( ) (1,2,2);3O v    

( ) (1,1,1,2);4I v    

( ) (2);4O v    

( ) (1,1,1,2);5I v    

( ) (2);5O v    

( ) (0,1);6I v    

( ) (1,2,2);6O v    

( ) (0,1,1);7I v    

( ) (1,1,2).7O v   
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procedure of constructing the auxiliary digraphs, we will be found the auxiliary positionally equivalent 

digraphs ���⃗ (�) and ���⃗ (�).∎ 

Theorem 2. If graphs � and � are isomorphic and two auxiliary positionally equivalent digraphs ���⃗ (�) and 

���⃗ (u) are found, then any bijective mapping � , which convert the graph �  into the graph �  (and 

conversely), is determined by pairs of vertices of the digraphs with equal characteristics. 

Proof. The assertion of the Theorem 2 is true as if to assume  contrary, we will get that the mapping � 

converts one vertex to another with different characteristics. This is contrary to the concept of 

isomorphism of graphs.∎ 

Corollary 1. Let the graphs � and � are isomorphic and two auxiliary positionally equivalent digraphs 

���⃗ (�)  and ���⃗ (u) are constructed. Let, further, it was found �  unique vertices in these digraphs, the 

corresponding pairs of which have equal characteristics. Then, the pairs of these vertices belong to the 

mapping �. 

It is easy to understand that the search of vertex pairs that belong to the binary mapping �, the equality 

of the vertex characteristics in the auxiliary digraphs are not sufficient if these vertices have incoming 

and/or outgoing arcs, connecting vertices of the same line of the auxiliary digraph.  

In the isomorphic graphs �  and �, we can find vertices � ∈ ��  and � ∈ ��  such that induce auxiliary 

positionally equivalent digraphs ���⃗ (�) and ���⃗ (u) respectively. In accordance with the Theorem 1, these 

vertices always exist. 

The desired bijective mapping �  can be represented as the perfect matching in the bipartite graph, 

induced by the vertices of the auxiliary positionally equivalent digraphs ���⃗ (�) and ���⃗ (u). This bipartite 

graph we will call the virtual. In this bipartite graph, any vertex � ∈ �� is connected by the virtual edge 

with all vertices of the digraph ���⃗ (u), which have same characteristics as �. It is clear that the bijective 

mapping will correspond to virtual perfect matching in the bipartite graph. Unfortunately, it is not every 

perfect matching corresponds to the bijective mapping �. 

Figure  2 shows the graph � and the auxiliary digraph ���⃗ (��), induced by the vertex ��. 

 

 
Figure. 2. The graph � and the auxiliary digraph ���⃗ (��). 

We  find the vertex characteristics of the auxiliary digraph ���⃗ (��). The results shown in the Table 2. 
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Table 2. The vertex characteristics of the digraph ���⃗ (��). 

( ) ;1I u     

( ) (1,1,1,1);1O u    

( ) (0,1);2I u    

( ) (1,2,2);2O u    

( ) (1,1,1,2);3I u    

( ) (2);3O u    

( ) (0,1,1);4I u    

( ) (1,1,2);4O u    

( ) (0,1,1);5I u    

( ) (1,1,2);5O u    

( ) (1,1,1,2);6I u    

( ) (2);6O u    

( ) (0,1);7I u    

( ) (1,2,2).7O u    

 

 

It is easy to see that the auxiliary digraphs ���⃗ (�1) (see Figure  1) and ���⃗ (��) are positionally equivalent. In 

these digraphs, there are only two unique vertices �� and ��. Other vertices with equal characteristics 

form the virtual bipartite graphs, induced by the following vertex pairs: 

{��, ��}, {��, ��}; {��, ��}, {��, ��} and {��, ��}, {��, ��}. 

Figure  3 shows the virtual bipartite graph for the auxiliary positionally equivalent digraphs ���⃗ (�1) and 

���⃗ (��). 

 

 
Figure. 3. The virtual bipartite graph. 

In this case, we have one unique vertex in each of the digraphs ���⃗ (�1) and ���⃗ (��). Therefore, the pair of 

vertices {��, ��}  belongs to the desired mapping � . Remove these vertices from the corresponding 

graphs. We will get graphs �� and ��. 

 

 
Figure. 4. The graphs �� and ��. 

Figure  4 shows the graphs �� and ��. 

Thus, we again have the problem of finding the bijective mapping �� ⊂ �, which converts the graph �� 

the graph �� and conversely. 
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Figure 5. The digraphs ��⃗ �(�2) and ���⃗ �(��). 

In the graph �� we choose the vertex ��, and construct the corresponding auxiliary digraph (see Figure  

5). We find the vertex characteristics of the digraph �⃗�(��). The result of the calculation is placed in the 

Table 3. 

Table 3. The vertex characteristics of the digraph �⃗�(��). 

 

( ) ;2I v     

( ) (1,1,1);2O v    

( ) (0,1);3I v    

( ) (1,2);3O v    

( ) (0,1);4I v    

( ) (1,2,2);4O v    

( ) (1,1,1,2);5I v    

( ) (2);5O v    

( ) (1,1,2);6I v    

( ) (2);6O v    

( ) (0);7I v    

( ) (2,2).7O v    

 
In the graph of �� we choose the vertex ��, and construct the corresponding auxiliary graph (see Figure  

5). Find the vertex characteristics of the digraph ���⃗ �(��). The result of the calculation is placed in the  

Table 4. 

Table 4. The vertex characteristics of the digraph ���⃗ �(��). 

 

( ) ;4I u     

( ) (1,1,1);4O u    

( ) (0,1);3I u    

( ) (1,2,2);3O u    

( ) (0);5I u    

( ) (2,2);5O u    

( ) (0,1);7I u    

( ) (1,2);7O u    

( ) (1,1,2);2I u    

( ) (2);2O u    

( ) (1,1,1,2);6I u    

( ) (2).6O u    

 

Comparing the vertex characteristics of auxiliary digraphs, we see that the digraphs ���⃗ 1(�2) and ���⃗ 1(�4) is 

the positional equivalent. Moreover, in each of the constructed digraph, each vertex is unique. 

At once, we can construct the mapping ��, choosing vertex pairs of the digraphs ���⃗ 1(�2) and ���⃗ 1(�4)  with 

equal characteristics. Adding to �� of the previously found pair {��, ��}, we get the required mapping  
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� = {{��, ��}, {��, ��}, {��, ��}, {��, ��}, {��, ��}, {��, ��}, {��, ��}}. 

To perform the verification of the obtained result, consider the matching  edges of graphs �  and � 

defined found the bijective mapping. 

 
{��, ��} ↔ {��, ��}          {��, ��} ↔ {��, ��} 
{��, ��} ↔ {��, ��}          {��, ��} ↔ {��, ��} 
{��, ��} ↔ {��, ��}          {��, ��} ↔ {��, ��} 
{��, ��} ↔ {��, ��}          {��, ��} ↔ {��, ��} 
{��, ��} ↔ {��, ��}          {��, ��} ↔ {��, ��} 
{��, ��} ↔ {��, ��}          {��, ��} ↔ {��, ��} 
{��, ��} ↔ {��, ��}          {��, ��} ↔ {��, ��} 

 
All matches are correct. 

4 Vertex Characteristics of the Digraphs 
 
The example above illustrates our approach to solving problem of finding the bijective mapping � 

between the vertices in isomorphic graphs � and �. 

The essence of this approach consists in the following steps. 

 In the graph �, choose the vertex �. 

 Construct the auxiliary digraph �⃗(�). 

 In the graph �, choose the vertex � such that the auxiliary digraph ���⃗ (�), which is positionally 

equivalent to the digraph ���⃗ (�). If such vertex is not found, then terminate computation as graphs 

� and � are not isomorphic. 

 In the positionally equivalent digraphs ���⃗ (�) and ���⃗ (�), find all unique vertices. Form vertex pairs 

(�, �), having equal characteristics, and record them. Delete all unique vertices from the graphs 

� and �. 

 If the graphs are obtained after the removal of unique vertices is not empty, then repeat the 

above procedure again. Otherwise, recorded vertex pairs form the desired bijective mapping �. 

 
The conception of positionally equivalence of auxiliary digraphs requires clarification in the conditions 

when the algorithm in each iteration is dealing with changed set of vertices of the graph. This concept is 

due to the vertex characteristics of the considered digraphs. In the process of work of the search algorithm 

of the bijective mapping, we have to take into account the history of the choice of vertices for mapping � 

in the previous iteration of the algorithm. 

Let us explain the above by the example. 
 
Suppose there are two graphs � and � (see Figure  6), bijective mapping  the vertices of which we want 

to find. 
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Figure. 6. The graphs � and �. 

In the graph �, we choose the vertex �� and construct the corresponding auxiliary graph ���⃗ (�1). On form, 

it coincides with the figure of the graph �. Therefore, we immediately find the vertex characteristics of 

the digraph ���⃗ (�1). 

The results are presented in the Table 5. 
 

Table 5. The vertex characteristics of the digraph �⃗(��) 

( ) ;1I v     

( ) (1,1);1O v    

( ) (0);2I v    

( ) (2,2);2O v    

( ) (0);3I v    

( ) (2,2);3O v    

( ) (1,2);4I v    

( ) (2);4O v    

( ) (1,2);5I v    

( ) (2);5O v    

( ) (1, 2);6I v    

( ) (2);6O v    

( ) (1,2);7I v    

( ) (2).7O v    

 

 
Further, when we construct the auxiliary directed graph for the vertices of the graph $H$, we find the 

digraph ���⃗ (�4), induced by the vertex ��. It is easy to see that it will coincide with the figure of the digraph 

���⃗ 1(�1). Find the vertex characteristics of this digraph. 

The results are presented in the Table 6. 

Table 6. The vertex characteristics of the digraph ���⃗ (��). 

 

( ) (1, 2);1I u   

( ) (2);1O u    

( ) (1,2);2I u    

( ) (2);2O u    

( ) (0);3I u    

( ) (2,2);3O u    

( ) ;4I u     

( ) (1,1);4O u    

( ) (0);5I u    

( ) (2,2);5O u    

( ) (1,2);6I u    

( ) (2);6O u    

( ) (1,2);7I u    

( ) (2).7O u    

 

 

It is easy to see that the auxiliary digraphs ���⃗ (�1) and ���⃗ (�4) positionally equivalent. They have by  

the single unique vertex of �� and ��, respectively. 
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Remove the vertices �� and �� of graphs � and �. We obtain disconnected graphs �� and �� are shown 

in Figure  7. 

 

 
Figure  7. Graphs �� and ��. 

In the graph of ��, we choose the vertex �� and construct the auxiliary digraph ���⃗ 1(�2). His form is the 

same as the first connected component of the graph. We find vertex characteristics of the digraph ���⃗ 1(�2). 

The results are presented in the Table 7. 

Table 7. The vertex characteristics of the digraph �⃗�(��). 
 

( ) ;1I v     

( ) (1,1);1O v    

( ) (0,1);4I v    

( ) (1);4O v    

( ) (0,1);5I v    

( ).5O v   

 

In the graph ��, we choose the vertex $u_1$ and construct the auxiliary digraph ���⃗ �(��). It is easy to see 

that its form will be coincide with the digraph �⃗�(��). We find vertex characteristics of the new digraph. 

The results are presented in the Table 8. 

Table 8. The vertex characteristics of the digraph ���⃗ �(��). 

( ) ;1I u     

( ) (1,1);1O u    

( ) (0,1);2I u    

( ) (1);2O u    

( ) (0,1);3I u    

( ) (1).3O u    

 
The resulting digraphs are positionally equivalent. Here vertices �� and �� are the unique, having equal 

characteristics. However, these pair of vertices (��, ��) will not belong to the bijective mapping � of 

graphs � and �. 

It happened because when considering graphs �� and �� we did not take into account the previous stage 

of calculations, when it was found the couple of unique vertices ��, ��, remote sequently of the graphs � 

and �. 

*** 

Each vertex of the auxiliary graph let's characterise by the old and new input and output characteristics in 

the following way. 

Let in the given graphs �  and � ,  positionally equivalent digraphs �⃗(�)  and ���⃗ (�)  were found. The 

calculated characteristics of the vertices of the digraphs, we fix for graph vertices � and �. Subsequently,  
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after removing the unique vertices of the graphs, the vertex characteristics for new digraphs are finding 

and they join previously found and fixed characteristics. 

For definiteness, we assume that the new vertex characteristics of the digraphs are always located on the 

first ``floor'' of the building from the vectors of input and output characteristics (stack). The previously 

found characteristics moved on one ``floor'' up. 

We assume vertex characteristics of the digraphs equal if their vector characteristics are equal on the 

respective ``floors''. Similarly, two of the digraph call positionally equivalent if the line digraphs of the 

same level contain the same number of vertices having respectively equal to (input and output) 

characteristics. 

We will write characteristics of vertices of the digraphs �⃗�(��) and ���⃗ 1(�1), obtained earlier. 

We have the following characteristics for the digraphs ���⃗ 1(�2) (see Table 9). 

Table 9. The vertex characteristics of the digraphs �⃗�(��). 
 

( ) (0);2I v    

'( ) ;2I v     

( ) (2,2);2O v    

'( ) (1,1);2O v    

( ) (1,2);4I v    

'( ) (0,1);4I v    

( ) (2);4O v    

'( ) (1);4O v    

( ) (1,2);5I v    

'( ) (0,1);5I v    

( ) (1);5O v    

'( ) (1).5O v    

 

For the digraph ���⃗ 1(�1), we have the following characteristics (see Table 10). 

Table 10. The vertex characteristics of the digraph ���⃗ �(��). 
 

( ) (1, 2);1I u    

'( ) ;1I u     

( ) (2);1O u    

'( ) (1,1);1O u    

( ) (1,2);2I u    

'( ) (0,1);2I u    

( ) (2);2O u    

'( ) (1);2O u    

( ) (0);3I u    

'( ) (0,1);3I u    

( ) (2,2);3O u    

'( ) (1).3O u    

 
It is easy to see that the constructed digraphs are not positionally equivalent. 

In the graph of ��, we choose the vertex ��, and construct the auxiliary digraph ���⃗ 1(�3) and find  

the vertex characteristics of the digraph. 

The results are presented in the Table 11. 
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Table 11. The vertex characteristics of the digraph ���⃗ 1(�3). 

( ) (1, 2);1I u    

'( ) (0,1);2I u    

( ) (2);1O u    

'( ) (1);1O u    

( ) (1,2);2I u    

'( ) (0,1);2I u    

( ) (2);2O u    

'( ) (1);2O u    

( ) (0);3I u    

'( ) ;3I u     

( ) (2,2);3O u    

'( ) (1,1).3O u    

 
 

In this case, we see that the digraphs ���⃗ 1(�2) and ���⃗ 1(�3) are positionally equivalent. The  characteristics 

of pairs of vertices (��, ��), (��, ��) and (��, ��) are equal, and the pair of vertices (��, ��) belongs to 

the bijective mapping � between the vertices in the given graph � and �. 

Theorem 3. Time to compare the vertex characteristics of auxiliary digraphs, using the  history of the graph 

changes, is �(��). 

Proof. For comparison of the vertex characteristics of the auxiliary digraphs, consisting of a single ``floor'', 

it required, obviously, �(��) time units. Therefore, for comparison of the vertex characteristics of the 

auxiliary digraphs, using the history of the graph changes, which consists of �(�) ``floors'', it required 

�(��) time.∎ 

5 The Search Algorithm 
 
We describe now the algorithm in more detail. 

The input of the algorithm: graphs = (��, ��), � = (��, ��) ∈ ��,  isomorphism of which it is necessary 

to determine if it exists. We assume that these graphs have the same number of vertices and edges, as 

well as their vectors of local degrees �� and �� are equal. 

The output of the algorithm: the determining the one-to-one correspondence � between the vertex sets 

of �� and ��, if it exists. 

The algorithm for determining the bijective mapping between the vertices in the isomorphic graphs. 
 
Step 1. Put � = �, � = �, � = ∅, � = �, � ≔ 1, � ≔ 1.  
 
Step 2. Choose the vertex �� ∈ �� in the graph �.  
 
Step 3. Construct the auxiliary digraph ��⃗ (��), using the graph �. 
 
Step 4. Find vertex characteristics of the auxiliary digraph ���⃗ (��). 
 
Step 5. Choose the vertex �� ∈ �� in the graph �. 
 
Step 6. Construct the auxiliary digraph �⃗(��), using the graph �. 
 
Step 7. Find vertex characteristics of the auxiliary digraph ��⃗ (��). 
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Step 8. Compare the vertex characteristics of the digraphs ���⃗ (��) and ��⃗ (��) in the neighborhood of the 

vertices �� and �� of the same level. 

Step 9. If the digraphs ���⃗ (��) and ��⃗ (��) are not  positionally equivalent then if � < � then put  � ≔ � + 1 

and go to Step 5 else stop the computations, as the graphs � and � are not isomorphic. 

Step 10. If the digraphs ���⃗ (��)  and ��⃗ (��)  are positionally equivalent then find the vertex sets 

����
, … , ���

�, ����
, … , ���

�, unique in each of the digraphs. 

Step 11. Put � ≔ � ∪ {����
, ���

�, … , ����
, ���

�}, �� ≔ �� ∖ {���
, … , ���

}, �� ≔ �� ∖ {���
, … , ���

}, � ≔ � −

�.  

Step 12. If � ≠ 0, put � ≔ 1, � ≔ 1 and go to Step 2. Otherwise, stop the computations, because the 

bijective mapping between the vertices in isomorphic graphs � and � has constructed, the pairs of the 

respective vertices are stored in the set �. 

Theorem 4. The algorithm for determining the bijective mapping the vertices in isomorphic graphs finds 

the mapping if it exists. 

Proof. By Theorem 2 if graphs $G$ and $H$ are isomorphic then any bijective mapping �, which convert 

the graph � into the graph � (and conversely), is determined by vertex pairs of the auxiliary positionally 

equivalent digraphs ���⃗ (�) and ���⃗ (�), having equal characteristics. If it is found � such vertices, then they 

explicitly define the elements of the bijective mapping �. Note that among the vertices of the auxiliary 

positionally equivalent digraphs at least one vertex is unique in each of the digraphs. These are vertices, 

which induce the digraphs ���⃗ (�) and ���⃗ (�). 

Deletion of the unique vertices from the graphs � and � reduces to obtaining the graphs which are also 

isomorphic. Therefore, the repetition of the above procedure to the obtained graphs will lead to the 

exhaustion of the vertex list of isomorphic graphs � and �.∎ 

Theorem 5. The running time of the algorithm for determining the bijective mapping the vertices in 

isomorphic graphs equal to �(��). 

Proof. We determine the running time of the algorithm when performing steps 5−9. 

Steps 5, 9 require to expend one unit of time for each step. Steps 6−7 require to expend �(��) time units 

each. Step 8 requires to perform �(��) time units. Therefore, �-multiple executing steps  

5−9 require to expend �(��) time units. 

Single execution of Steps 2−12 requires, obviously, �(��) time units and �-multiple execution require 

�(��) time units.∎ 

6 Conclusion 
 
The results, presented in this article, show the fruitfulness of the method of positioning vertices of the 

given graphs. 

One can allocate two features of our method. 
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 Each of the given graphs �, � ∈ �� is represented in the single form − in the form of the auxiliary 

digraph. 

 The vertices of every digraph are positioned relative to each other without become attached to 

the vertex names of graphs. 

It is possible that this approach will be used to solve other problems. 

APPENDIX 1 

We illustrate the proposed algorithm on another example. 

Let two graphs �, � ∈ �� are given, the isomorphism of which we want to determine (see Figure  A1). 

 
Figure  A1. The given graphs � and �. 

 

Choose the vertex �� in the graph � and construct the auxiliary digraph ���⃗ (�1) (see Figure  A2). 

 

 
Figure  A2. The auxiliary digraphs ��⃗ (�1) and ���⃗ (�1). 

 

Find the vertex characteristics of the constructed digraph ���⃗ (�1). The results are located to the  

Table 12. 
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Table 12. The vertex characteristics of digraph �⃗(��). 

( ) ;1I v     

( ) (1,1,1,1);1O v    

( ) (0,1,1);2I v    

( ) (1,1,2);2O v    

( ) (0,1,1);3I v    

( ) (1,1,2);3O v    

( ) (1,1,1,1);4I v    

( ) ;4O v     

( ) (0,1,1);5I v    

( ) (1,1, 2);5O v    

( ) (0,1,1);6I v    

( ) (1,1, 2).6O v    

 

Choose the vertex �� in the graph � and construct the auxiliary digraph ���⃗ (�1) (see Figure  A2). 

Find the vertex characteristics of the newly constructed digraph ���⃗ (�1). The results are located to  

the Table 13. 

Table 13. The vertex characteristics of digraph ���⃗ (�1). 

( ) ;1I u     

( ) (1,1,1,1);1O u    

( ) (0,1,1);2I u    

( ) (1,1,2);2O u    

( ) (0,1,1);3I u    

( ) (1,1,2);3O u    

( ) (0,1,1);4I u    

( ) (1,1,2);4O u    

( ) (1,1,1,1);5I u    

( ) ;5O u     

( ) (0,1,1);6I u    

( ) (1,1, 2).6O u    

 

It is easy to see that the constructed auxiliary digraphs ���⃗ (�1) and ���⃗ (�1) are positionally equivalent. The 

digraph ���⃗ (�1) has two unique vertices �� and ��. They correspond to the unique vertices ��, �� in the 

digraph ���⃗ (�1). Therefore, vertex pairs (��, ��), (��, ��) can be saved in the set �. 

Delete from the graphs � and � the unique vertices. We get graphs �� and �� (see Figure  A3). 

 

 
Figure  A3. Graphs �� and ��. 

Choose the vertex �� in the graph �� and construct the auxiliary digraph �⃗�(��) (see Figure  A4). 

 

 
Figure  A4. The digraphs ��⃗ 1(�2) and ���⃗ �(��). 
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Find the vertex characteristics of the constructed digraph. The results are located to the Table 14. 

Table 14. The vertex characteristics of the digraph �⃗�(��). 
 

( ) (0,1,1);2I v    

'( ) ;2I v    

( ) (1,1,2);2O v    

'( ) (1,1);2O v    

( ) (0,1,1);3I v    

'( ) (0);3I v    

( ) (1,1,2);3O v    

'( ) (2);3O v    

( ) (0,1,1);5I v    

'( ) (1,1);5I v    

( ) (1,1, 2);5O v    

'( ) ;5O v     

( ) (0,1,1);6I v    

'( ) (0);6I v    

( ) (1,1, 2);6O v    

'( ) (2).6O v    

 

Choose the vertex �� in the graph �� and construct the auxiliary digraph ���⃗ �(��) (see Figure  A4). 

The calculated vertex characteristics of the newly constructed digraph are located to the Table 15. 

Table 15. The vertex characteristics of the digraph ���⃗ �(��). 

( ) (0,1,1);2I u    

'( ) ;2I u     

( ) (1,1,2);2O u    

'( ) (1,1);2O u    

( ) (0,1,1);3I u    

'( ) (0);3I u    

( ) (1,1,2);3O u    

'( ) (2);3O u    

( ) (0,1,1);4I u    

'( ) (0);4I u    

( ) (1,1,4 2);O u    

'( ) (2);4O u    

( ) (0,1,1);6I u    

'( ) (1,1);6I u    

( ) (1,1, 2);6O u    

'( ) .6O u     

 

We find that the constructed auxiliary digraphs ���⃗ 1(�2)  and ���⃗ 1(�2)  are positionally equivalent. The 

digraph ���⃗ 1(�2) has two unique vertices �� and ��. They correspond to the unique vertices ��, �� in the 

digraph ���⃗ 1(�2). Therefore, vertex pairs (��, ��), (��, ��) can be saved in the set �. 

Removing the unique vertices of the graphs ��  and �� , we obtain respectively the graphs ��  and �� 

consisting of two isolated vertices each. It is clear that it will be obtained auxiliary positionally equivalent  

digraphs ���⃗ 2(�3) and ���⃗ 2(�3). Inducing vertices form the pair (��, ��) of unique vertices that can be saved 

in the set �. 

We also find that the pair of vertices (��, ��) belongs to the set �. 

Thus, the binary relation between vertices of isomorphic graphs � and � is: 

 
� = {(��, ��), (��, ��), (��, ��), (��, ��), (��, ��), (��, ��)}. 

 
Perform the verification of the result. 
 

{��, ��} ↔ {��, ��};              {��, ��} ↔ {��, ��}; 
{��, ��} ↔ {��, ��};              {��, ��, } ↔ {��, ��}; 
{��, ��} ↔ {��, ��};              {��, ��} ↔ {��, ��}; 
{��, ��} ↔ {��, ��};              {��, ��} ↔ {��, ��}; 
{��, ��} ↔ {��, ��};              {��, ��} ↔ {��, ��}; 
{��, ��} ↔ {��, ��};              {��, ��} ↔ {��, ��}. 
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