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ABSTRACT 

The Electric Power System State Estimation problem involves large sparse matrices. The 
Jacobian matrix is highly sparse in nature and the computational efforts can be enhanced by 
avoiding arithmetic operations resulting in ‘zero’.  The researchers have introduced sparse 
matrix techniques so as to store only non-zero elements of the matrix and thereby reducing the 
huge dynamic memory requirements, which intern reduce the computational time. A few such 
techniques [2],[3], [4] are listed in the reference. The primary focuses of these sparse 
techniques are on the memory/storage space reduction.   

This paper elaborates a different technique to obtain the “effective operation” with the focus 
on the computational time and the storage space reduction. The “effective operation” can be 
achieved without applying conventional compact storage techniques to find the Jacobian 
product. A different style for multiplication of two large sparse Jacobian matrices is adopted to 
obtain this novel approach. As a result, computational time is reduced and also Jacobian array 
size is reduced form two dimensional array to single dimensional array. The solution gives scope 
for distributed/parallel computing without disturbing the network structure [6].   

Key Words: SE - State Estimation, WLS – Weighted Least Square, NR – Newton Rapson, ISE – 
Integrated State estimation,  ‘A’ gain matrix, ,  NA – Node Area- A node along with its connected 
Node is referred as Node Area, H1 to H12 are the sub set of Jacobian metrics ‘J’. 

1 Introduction 
The state of power system is to be known for healthy planning, operation and energy 
management for both online and off-line system. The complex non-linear equations along with 
large sparse matrix involved in the power system makes it complicated and difficult for fast 
computation of state variables.  Many researchers have presented different technique to 
overcome this problem. A few such papers [5], [7] & [8] are given in reference. Interestingly, 
there is a one to one relation between the network incident matrix and the Jacobian matrix for 
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non-zero elements. Using this intelligence it is possible to focus all the computations only for 
non-zero elements and thereby minimize the computational time with minimum dynamic 
storage space. It is essential to modify the NR solution steps to achieve the same.  An insight of 
the procedural steps involved in the existing NR method is given below for better 
understanding of the modification detailed out in the later session.  

1.1 State Estimation:- Newton-Raphson technique 
By applying the tylor series to the nonlinear equations of power system following equations is 
derived [1].  

(JT W J) Δx   =   JT W Δz 
A= (JT WJ)   &  b    =   JT W Δz 
A Δx = b                                                              (1) 
xi– No of state variables :-  =  (2*n-1) 
n – No.of network nodes : - =  1,2,…n. 
m– Total no of measurements  
J – Jacobian matrix, size is : - m*(2n-1)     
W - Diagonal weigh matrix of the order of (m*m)   
A – Gain matrix of the order of (2n-1)*(2n-1) 

[ ] [ ],,......,;,....., 21121 nn
T vvvx −= δδδ ; of the order of x is (2n-1)*1. 

[zmeasured ]T  = [ Pi ,Qi ,pij ,qij, Vi ,δi]; of the order of (m*1); These measurements may include one or all 
quantities. 
Pi ,Qi = Real & Imaginary part of injected power respectively. 
pij ,qij = Real & imaginary part of line follows respectively 
∆z = zmeasured – zcalculated, size is: - m*1; 
b = J0

T W Δz of the order of (2n-1)*1; 

(2)                
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This is a set of linear equations, if higher order terms of the taylor expansion of f(x) were really 
negligible, the solution yield the correct ‘x’.  The state variable vector x is obtained by solving 
the equation A*Δx = b iteratively. The vector x should therefore be changed accordingly after 
every iteration till the convergence is obtained. 

xc+1 = xc + ∆xc ; ‘c’-iteration count.  Elements of Jacobean are derived from injected power, and 
line flow equations. 
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1.2 Conventional Computing Steps 
Step 1: - Read input data  
Step 2: - From system parameters find Ybus 
Step 3: - Initialize [vi]T = 1; and [∂i]T=0; 
Step 4: - Find [z]cal and [∆z]= [z]measured -[z]cal 
Step 5: - Find all rows of [J] and [∆z]  
Step 6: - Find [J]T*[W]*[J] =[A] and [J]T*[W]*[∆z] = [b]  
Step 7: - Find [∆xi] = [A]-1*[b]; 
Step 8: - check for [∆xi] 

 if [∆xi]<<€; 
if No - Update [xi]; [xi]new = [xi]old +[∆xi]old; then repeat from step 4. 
if yes – Stop 

2 Distributed Technique: - New Method 
The dimension/size of the matrices involved in equation (1) depends on the number of network 
nodes. The conventional algorithm can be divided into two parts,  

i. up to the formation of matrix ‘A’ and ‘b’ 
ii. obtaining the solution for [∆xi] = [A]-1*[b] 

It is difficult to allot multiple processors to solve the problem in its present form. A new novel 
distributed computing technique is discussed to address the issue.    

2.1  Matrix Multiplication – Alternate Technique 
Let us consider the conventional way of multiplication of two matrices. 

1,2,.... 11,2,...

[C]*[D] [A];    ( * )
m

ij ik kj
i n kj r

a c d
= =
=

= =∑
   (3)

 

Order of ‘C’ is : – (n*m), Order of ‘D’ is : – (m*r) and Order of ‘A’ is – (n*r) 
From the (3), the resultant matrix can be rearranged as shown below 
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‘D’, for example Am is obtained by multiplying the mth column of ‘C’ and mth row of ‘D’, which 
is as follows 

[ ]
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2.2  Distributed Approach 
From the above relationship, the components of ‘A’ can be computed by considering a Column 
of ‘C’ and corresponding row of ‘D’. By applying the above relationship to [J]T*[W]*[J] =[A] and 
[J]T*[W]*[∆z] = [b], yields, (‘W’ assumed unity diagonal) 
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It is evident from the above relationship that after obtaining the each row of Jacobin with 
respect to a measurement, corresponding sub-matrices of resultant matrix (A and b) can be 
obtained. Hence it is not necessary to form the complete Jacobian matrix before multiplication 
of [J]T *W*[J] =[A] and [J]T*W*[∆z] = [b]. It reduces the Dynamic size of ‘J’ matrix from m*(2n-1) 
to 1*(2n-1). Also A1, A2.. Am and b1, b2… bm can be formed independently. The equations (6) and 
(7) can be re-written by grouping the measurements as node wise clusters, which is shown 
below. 

All possible measurements at nth node cluster is 
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similarly for other measurements.

where 'cb' number of connected nodes of 'n ' bus; 'k' varies up to 'cb'. 
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The equation (13) or (6) and (7) can be used to compute Matrices ‘A’ and ‘b’ 
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Step 2: - From system parameters find Ybus. 

Step 3: - Initialize [vi]T = 1; and [∂i]T=0; 

 For( r = 1 to m) 

{ Step 4.: - Find zr
cal  

Step 5: - Find Jr : - Jacobian row corresponding ‘zr ‘ and ∆zr =  zr
mes- zr

cal 

Step 6: - Find Jr
T*Wrr*Jr =[A] +[Ar] and Jr

T*Wrr* ∆zr = [b] +[br] } 

Step 7: - Find [∆xi] = [A]-1*[b]; 

Step 8: - check for [∆xi] 

 if [∆xi]<<€; 

if No - Update [xi]; [xi]new = [xi]old +[∆xi]old; then repeat from step 6. 

if yes – Stop 

2.4 Advantages: - From the above facts it is clear that 
i. The task from Step 1 to step 4 can be distributed to ‘n’ processors.  

ii. Dynamic size of Jacobian is (1 * 2n-1) but in conventional method ‘J’ size is (m * 2n-1) 
iii. Dynamic size of ∆z is just a simple variable. In conventional method ‘∆z’ size is (m*1).  
iv. No need to store the zcal in file/array variables.   
v. Local indexing for ‘Jacobian’ elements is easier 

vi. Multiplication of Jr
T*Wrr*Jr =[A] +[Ar] and Jr

T*Wrr* ∆zr = [b] +[br] can be done easily for 
non zero elements using local indexing.  

vii. It is observed that the multiplication time required by the new method is much lesser 
than the conventional method. 

2.5 Sparse Technique 
 The following C++ program demonstrates the use of new logic, taking line flow measurement 
example.  Let the global variable sij[][] and h[] structure is 

• sij[i][1] na; sij[i][2]- node from (i); sij[i][3]- node to (j) 

• sij[i][4] = pij measured & sij[i][5] = qij measured  

• sij[i][6] = y/2 half line charging between i & j 

• sij[i][7] = Gij & sij[i][8] = Bij  

• h[] = Jacobian row variables 

find_jaco_lf(int r,int n): - is the sub-program to find the elements of A and b corresponding to a 
measured line flow values using this new technique. In the following program all the 
computations are focused only for non-zero elements.  
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void find_jaco_lf(int r,int n) 
 { 
  int i,j,q,p,kl,g,k,l,x1,x2,x3,x4; // (x1 to x4) non-zero location of Jacobian row 
  long double delz,a1,b1,deg,yij,tea, smp,smq; 
  for(q=0;q<=2*n;q++) 
       h[q].x = 0.0; 
  for(g=1;g<=kl;g++) // kl - number of line flow measurements 

  { 
  i = (sij[g][2].x); // node 1 is taken as reference 
  j = (sij[g][3].x); 
  

  x1=i-1; 
  x2=j-1; 
  x3=n+i-1; 
  x4=n+j-1; 
  z[1].x=x1;  
  z[2].x=x2; 
  z[3].x=x3; 
  z[4].x=x4; 

 a1 = sij[g][7].x; 
 b1 = sij[g][8].x; 
 yij = sqrt((a1*a1)+(b1*b1)); 
 tea= atan(b1/a1); 
 if(a1==0.0) 
 tea=-(11./7.); 
 deg = (del[i].x - del[j].x - tea); 

  smp=yij*(v[i].x*v[i].x*cos(tea)-(v[i].x*v[j].x*cos(deg))); 
  smq=yij*(v[i].x*v[i].x*sin(-tea)- v[i].x*v[j].x*sin(deg)) -  (sij[p][6].x* v[i].x * v[i].x);  

/*----To find  Jr- for line flow "pij. For the sake of simplicity ‘Wii’ is assumed to be unity*/ 
 h[x1].x = v[i].x*v[j].x*yij*sin(deg);                  /*h5i*/ 
 h[x2].x= -v[i].x*v[j].x*yij*sin(deg);                 /*h5j*/ 
 h[x3].x=yij*(2*v[i].x*cos(tea)-v[j].x*cos(deg));/*h6i*/ 
 h[x4].x = -v[i].x*yij*cos(deg);                        /*h6j*/ 

/*----A = A + Jr
T*Jr and b = b+ Jr

T*∆zr---- (for line flow "pij")*/ 
 delz = (sij[g][4].x-smp); 
  for(p=1;p<=4;p++)  
     { 

   k=z[p].x; 
   b[k].x = (b[k].x + h[k].x*delz); 

   for(q=1;q<=4;q++) 
      { 

     l=z[q].x; 
     a[k][l].x = (a[k][l].x + h[k].x*h[l].x); 

        } } 
/*----To find  Jr- for line flow "qij"…..*/ 

h[x1].x = -v[i].x*v[j].x*yij*cos(deg);        /*h7i*/ 
h[x2].x =  v[i].x*v[j].x*yij*cos(deg);                     /*h7j*/ 
h[x3].x = (2*v[i].x*sin(-tea)-v[j].x*sin(deg))*yij;    /*h8i*/ 
h[x4].x = -v[i].x*yij*sin(deg);                            /*h8j*/ 
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/*----A = A + Jr
T*Jr-and b = b+ Jr

T*∆zr---- (for line flow "qij")*/ 
  delz = (sij[g][5].x-smq); 
  for(p=1;p<=4;p++) 
     { 

   k=z[p].x; 
   b[k].x = b[k].x + h[k].x*delz; 

   for(q=1;q<=4;q++) 
      { 

     l=z[q].x; 
     a[k][l].x = a[k][l].x + h[k].x*h[l].x; 

      } } } } 
 

2.6 Computational Efforts 
A matrix is said to be sparse if a given finite discrete ample space Ω and a non-empty set of 
sample S is such that the cardinality │S│ of S is small compared to the cardinality │ Ω │ of Ω i.e. 
│S│ << │ Ω │. As discussed L.P.Singh [ 2],  

2.6.1  Effort for Conventional technique 

• Let p= │S│ and Q = │ Ω │.   
• ‘ti’ is the time taken to perform operation by elements ‘i’ of ‘S’ 
• ‘ri’ is the additional time taken to retrieve an element of  elements ‘S’ in a compact 

storage scheme. 
• ‘si’ is the additional time taken to store an element of  elements ‘S’ in a compact storage 

scheme. 

The total processing time without compact storage is =∑
=

Q

i
it

1
 

The total processing time with compact storage is = ii

p

i
i srt ++∑

=1
 

For sparse matrix ii

p

i
i srt ++∑

=1
<∑

=

Q

i
it

1
 

2.6.2  Effort for New technique: -  

As seen earlier no special storing and retrieving scheme is required for Jacobian in this new 
technique,  

The total processing time for new scheme =  ∑
=

p

i
it

1
 

Normally JT*Wi*J is carried out by taking the row of JT into column of J. In conventional method, 
the identification of non-zero elements of each column of J takes more time than row wise non-
zero elements identification of J.  This is because of the fact that the non-zero elements in each 
row of Jacobian have direct relation with the corresponding row of network incident matrix.  
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The time ‘ri’ in the new technique will be very small as compared to the old scheme because of 
local dynamic indexing. The time ‘Si’ in the new technique is considered zero without compact 
storage for the resultant matrix ‘A’. When the measurements are grouped node-wise the 
resultant matrix ‘A’ for the given node will be dense matrix.  

3 Example & Results 
 A simple four bus example has been considered. First ‘A’ is calculated using conventional 
method, where A= (JT*W*J). Next ‘A’ is computed using new method, where A=

)**(
1

jjj

m

j

T
j JWJ∑

=

; ‘m’ is the total number of measurements taken.  

The new method (Distributed technique) results are also processed with single processor. 

3.1: Circuit & Input tables 

 
 

Fig-1: - Circuit diagram 

Table 1:  Line data 

I - j R X G B Y/2 
1--2 0.01008 0.0504 3.815629 -19.0781 0.05125 
1--3 0.00744 0.0372 5.169561 -25.8478 0.03875 
2--4 0.00744 0.0372 5.169561 -25.8478 0.03875 
3--4 0.01272 0.0636 3.023705 -15.1185 0.06375 

 

Table 2: Injected power, Voltage & Phase measurements 

Pi Qi Vi ∂i 
1.3718 0.8431 1 0 
-1.6945 -1.0735 0.982 -0.0171 
-1.9914 -1.2416 0.969 -0.032 
2.3809 1.3299 1.02 0.026 
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Table 3 Line flow measurements 

na i j Pij
mes Qij

mes 
1 1 2 0.3877 0.2825 
1 1 3 0.9792 0.6514 
2 2 1 -0.3852 -0.2809 
2 2 4 -1.3138 -0.715 
3 3 1 -0.969 -0.5999 
3 3 4 -1.0266 -0.5446 
4 4 2 1.3311 0.8013 
4 4 3 1.0266 0.6361 

 

3.2 Results: 

The results are divided into two parts. 

Part-I: - Tables R1 to R6 shows the resultant matrix ‘A’ by either method for first iteration. 

(Note: - In the below tables “the smallest value is represented by ‘E-06’) 

Table-R1: - 1)]-(2n x [m  is J'' of size  and 1)]- x(2n1)-[(2n  is A'' of size    ]**[][ === JWJA T  
5320.17 919.265 -3698.6 1.56322 -3.68118 E-06 1.71871 
919.265 4544 -1763.67 2.11791 E-06 -2.72392 1.00527 
-3698.6 -1763.67 4544.01 E-06 2.11791 1.00527 -2.72398 
1.56322 2.11791 E-06 5304.04 -2532.97 -3688.65 919.265 

-3.68118 E-06 2.11791 -2532.97 5304.04 919.265 -3688.65 
E-06 -2.72392 1.00527 -3688.65 919.265 4527.25 -1757.47 

1.71871 1.00527 -2.72398 919.265 -3688.65 -1757.47 4527.25 

Table-R2: - [ ] 1)]-(2n x [1  is 'J' of size  and 1)]- x(2n1)-[(2n  is A'' of size   ][ r
1

===∑
=

n

i

i AA  

5320.17 919.265 -3698.6 1.56321 -3.6811 E-06 1.71868 
919.265 4544.01 -1763.67 2.11794 E-06 -2.72402 1.0053 
-3698.6 -1763.67 4544.01 E-06 2.11794 1.0053 -2.72402 
1.56321 2.11794 E-06 5304.04 -2532.97 -3688.65 919.265 
-3.6811 E-06 2.11794 -2532.97 5304.04 919.265 -3688.65 

-E-06 -2.72402 1.0053 -3688.65 919.265 4527.25 -1757.47 
1.71868 1.0053 -2.72402 919.265 -3688.65 -1757.47 4527.25 

Table-R3: -      ][][ 111111
1 δAAAAAAA vq

k
p
k

QP +++++=  

757.068 512.853 0 1.56323 E-06 E-06 0 
512.853 1389.67 0 2.11793 E-06 E-06 0 

0 0 0 0 0 0 0 
1.56323 2.11793 0 3157.3 -1266.49 -1897.87 0 

E-06 E-06 0 -1266.49 757.068 512.853 0 
E-06 E-06 0 -1897.87 512.853 1389.67 0 

0 0 0 0 0 0 0 
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Table-R4: -      ][][ 222222
2 δAAAAAAA vq

k
p
k

QP +++++=  

3173.44 0 -1902.52 E-06 -3.6811 0 E-06 
0 0 0 0 0 0 0 

-1902.52 0 1389.67 E-06 2.11793 0 E-06 
E-06 0 E-06 757.068 -1266.49 0 512.853 

-3.6811 0 2.11793 -1266.49 3157.3 0 -1897.87 
0 0 0 0 0 0 0 

E-06 0 E-06 512.853 -1897.87 0 1389.67 
 
 
 

Table-R5: -    ][][ 333333
3 δAAAAAAA vq

k
p
k

QP +++++=  

0 0 0 0 0 0 0 
0 2678.92 -881.837 E-06 0 -2.72402 E-06 
0 -881.837 475.425 E-06 0 1.00529 E-06 
0 E-06 E-06 1389.67 0 -1790.78 406.412 
0 0 0 0 0 0 0 
0 -2.72402 1.00529 -1790.78 0 2662.16 -878.737 
0 E-06 E-06 406.412 0 -878.737 475.425 

 

Table-R6: -    ][][ 444444
4 δAAAAAAA vq

k
p
k

QP +++++=  

1389.67 406.412 -1796.08 0 E-06 E-06 1.71871 
406.412 475.424 -881.836 0 E-06 E-06 1.00529 

-1796.08 -881.836 2678.92 0 E-06 E-06 -2.72402 
0 0 0 0 0 0 0 

E-06 E-06 E-06 0 1389.67 406.412 -1790.78 
E-06 E-06 E-06 0 406.412 475.424 -878.737 

1.71871 1.00529 -2.72402 0 -1790.78 -878.737 2662.16 
 

Part-II: -  

The graph in figure 2 shows the computing time for ‘A’ by either method. 

In the graph the New Algorithm and Old Algorithm represents the computational time for the 
new and old method respectively. The above relation is obtained under following assumption. 

• The number of measurements is assumed to be equal to the number of state variables.  
• Approximately 15% of the Jacobian elements are assumed to be non-zero; this fact is 

based on the practical system. 

The profiling is conducted on Core2-Duo X-86 2GB RAM machine with Operating System 
Windows 7, we were able to fetch the above results. The result may vary with the different 
hardware configuration but the ratio of the Old Vs New Algorithm remains almost constant no 
matter what hardware configuration has been adapted.  
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(Note: - Both the above results are obtained using single processor.) 

Figure 2: Computation time 

4 Conclusions 
The results show that the resultant matrixes ‘A’ computed by both methods are same. In Old 
Algorithm (Algo) the time was exponentially increasing with the number of network nodes, 
whereas in the new Algo the exponential growth has been reduced to almost linear growth. 
Using new algorithm, the time can be reduced further by employing more number of 
processors.   Even though both the methods are mathematically same, new method results in 
drastic reduction in computational time. In the new method up to Jacobian product can be 
computed by parallel processing using the equations (6) and (7).  By grouping the 
measurements in the form of node clusters [equations (8), (9) & (10)] it is possible to divide the 
Matrix ‘A’ (& b) as node cluster wise gain matrix [nA] and [nb]. The size of [nA] and [nb] is 
directly related to the size of node cluster state variables. For example, at node cluster No. 2, 
[refer table-R4] state variables are (∂2, ∂4,v1, v2,v4) taking node-1 as angle reference node. 
Hence the size of [2A] is (5x5) and not (7x7) similarly, the size of [2b] is (5x1) & [2∆x] is (5x1). It is 
not necessary to have separate reference node at each node cluster.  Hence, solution for [∆xi] 
can also be divided into ‘n’ independent sub tasks which will further reduces the computational 
time, which will be presented in further papers.  

(JT*W*J) = A 

AJWJ jj

m

j

T
j =∑

=

)**(
1

 

Matrix ‘A’ – (N x 
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