

Gain Matrix Distributed Computing Technique for Power
System State Estimation

1H. Nagaraja Udupa, 2H. Ravishankar Kamath
1Mewar University, District Mewar, Chittograh, Rajasthan, India
2Malwa Institute of Technology, RGPV University, Indore, India

1 hnudupa@gmail.com; 2 rskamath272@gmail.com

ABSTRACT

The Electric Power System State Estimation problem involves large sparse matrices. The
Jacobian matrix is highly sparse in nature and the computational efforts can be enhanced by
avoiding arithmetic operations resulting in ‘zero’. The researchers have introduced sparse
matrix techniques so as to store only non-zero elements of the matrix and thereby reducing the
huge dynamic memory requirements, which intern reduce the computational time. A few such
techniques [2],[3], [4] are listed in the reference. The primary focuses of these sparse
techniques are on the memory/storage space reduction.

This paper elaborates a different technique to obtain the “effective operation” with the focus
on the computational time and the storage space reduction. The “effective operation” can be
achieved without applying conventional compact storage techniques to find the Jacobian
product. A different style for multiplication of two large sparse Jacobian matrices is adopted to
obtain this novel approach. As a result, computational time is reduced and also Jacobian array
size is reduced form two dimensional array to single dimensional array. The solution gives scope
for distributed/parallel computing without disturbing the network structure [6].

Key Words: SE - State Estimation, WLS – Weighted Least Square, NR – Newton Rapson, ISE –
Integrated State estimation, ‘A’ gain matrix, , NA – Node Area- A node along with its connected
Node is referred as Node Area, H1 to H12 are the sub set of Jacobian metrics ‘J’.

1 Introduction
The state of power system is to be known for healthy planning, operation and energy
management for both online and off-line system. The complex non-linear equations along with
large sparse matrix involved in the power system makes it complicated and difficult for fast
computation of state variables. Many researchers have presented different technique to
overcome this problem. A few such papers [5], [7] & [8] are given in reference. Interestingly,
there is a one to one relation between the network incident matrix and the Jacobian matrix for
DOI: 10.14738/tnc.24.311
Publication Date: 4th August 2014
URL: http://dx.doi.org/10.14738/tnc.24.311

mailto:hnudupa@gmail.com

Transact ions on Networks and Communications; Volume 2, Issue 4, August 2104

non-zero elements. Using this intelligence it is possible to focus all the computations only for
non-zero elements and thereby minimize the computational time with minimum dynamic
storage space. It is essential to modify the NR solution steps to achieve the same. An insight of
the procedural steps involved in the existing NR method is given below for better
understanding of the modification detailed out in the later session.

1.1 State Estimation:- Newton-Raphson technique
By applying the tylor series to the nonlinear equations of power system following equations is
derived [1].

(JT W J) Δx = JT W Δz
A= (JT WJ) & b = JT W Δz
A Δx = b (1)
xi– No of state variables :- = (2*n-1)
n – No.of network nodes : - = 1,2,…n.
m– Total no of measurements
J – Jacobian matrix, size is : - m*(2n-1)
W - Diagonal weigh matrix of the order of (m*m)
A – Gain matrix of the order of (2n-1)*(2n-1)

[] [],,......,;,....., 21121 nn
T vvvx −= δδδ ; of the order of x is (2n-1)*1.

[zmeasured]T = [Pi ,Qi ,pij ,qij, Vi ,δi]; of the order of (m*1); These measurements may include one or all
quantities.
Pi ,Qi = Real & Imaginary part of injected power respectively.
pij ,qij = Real & imaginary part of line follows respectively
∆z = zmeasured – zcalculated, size is: - m*1;
b = J0

T W Δz of the order of (2n-1)*1;

(2)

ix

][

 0 1

 1 0
8H 7H

6H 5H

4H 3H

2 1

][







∆













∆

∂∆

































⇒

∆































∂∆

∆

∆

∆

∆

∆

iv
i

J

HH
iz

i

iv
ijq
ijp
iQ
iP

This is a set of linear equations, if higher order terms of the taylor expansion of f(x) were really
negligible, the solution yield the correct ‘x’. The state variable vector x is obtained by solving
the equation A*Δx = b iteratively. The vector x should therefore be changed accordingly after
every iteration till the convergence is obtained.

xc+1 = xc + ∆xc ; ‘c’-iteration count. Elements of Jacobean are derived from injected power, and
line flow equations.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 17

H. Nagaraja Udupa and H. Ravishankar Kamath; Gain Matrix Distributed Computing Technique for Power System
State Estimation, Transactions on Networks and Communications, Volume 2 No 3 Aug (2014); pp: 16-28

1.2 Conventional Computing Steps
Step 1: - Read input data
Step 2: - From system parameters find Ybus
Step 3: - Initialize [vi]T = 1; and [∂i]T=0;
Step 4: - Find [z]cal and [∆z]= [z]measured -[z]cal
Step 5: - Find all rows of [J] and [∆z]
Step 6: - Find [J]T*[W]*[J] =[A] and [J]T*[W]*[∆z] = [b]
Step 7: - Find [∆xi] = [A]-1*[b];
Step 8: - check for [∆xi]

 if [∆xi]<<€;
if No - Update [xi]; [xi]new = [xi]old +[∆xi]old; then repeat from step 4.
if yes – Stop

2 Distributed Technique: - New Method
The dimension/size of the matrices involved in equation (1) depends on the number of network
nodes. The conventional algorithm can be divided into two parts,

i. up to the formation of matrix ‘A’ and ‘b’
ii. obtaining the solution for [∆xi] = [A]-1*[b]

It is difficult to allot multiple processors to solve the problem in its present form. A new novel
distributed computing technique is discussed to address the issue.

2.1 Matrix Multiplication – Alternate Technique
Let us consider the conventional way of multiplication of two matrices.

1,2,.... 11,2,...

[C]*[D] [A]; (*)
m

ij ik kj
i n kj r

a c d
= =
=

= =∑
 (3)

Order of ‘C’ is : – (n*m), Order of ‘D’ is : – (m*r) and Order of ‘A’ is – (n*r)
From the (3), the resultant matrix can be rearranged as shown below

Each sub-matrices of ‘A’ can be obtained by taking a Coolum of ‘C’ and corresponding row of

∑
=

m

k 1

k=1

k=m

A =

)*(mjim dc

rj

ni

,...2,1

;,....2,1

=

=

)*(11 ji dc

1,2,...rj

1,2,....n;i

=

=

k= p

(4)

URL: http://dx.doi.org/10.14738/tnc.24.311 18

http://dx.doi.org/10.14738/tnc.24.311

Transact ions on Networks and Communications; Volume 2, Issue 4, August 2104

‘D’, for example Am is obtained by multiplying the mth column of ‘C’ and mth row of ‘D’, which
is as follows

[]

1

2

1 2[] ; (5)
.

m

m

m m m mr

nm

c
c

A d d d

c

 
 
 
 =
 
 
  

.

2.2 Distributed Approach
From the above relationship, the components of ‘A’ can be computed by considering a Column
of ‘C’ and corresponding row of ‘D’. By applying the above relationship to [J]T*[W]*[J] =[A] and
[J]T*[W]*[∆z] = [b], yields, (‘W’ assumed unity diagonal)

[])12(21

)12(

2

1

 . . .
.
.][−

−






















= nmmm

nm

m

m

m JJJ

J

J
J

A

k=1

k=m

A =

k=1

k=m

b =

1 1 2 2
1

[] [] [] [] (6)
m

k k m k m m
k

A A A A A= = =
=

= + + + =∑

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 19

H. Nagaraja Udupa and H. Ravishankar Kamath; Gain Matrix Distributed Computing Technique for Power System
State Estimation, Transactions on Networks and Communications, Volume 2 No 3 Aug (2014); pp: 16-28

1 1 2 2

1 1 2 2

[] [] [] [] (6)

and [] [] [] []

k k m k m

k k m k m

A A A A

b b b b

= = =

= = =

= + + +

= + + + (7)

It is evident from the above relationship that after obtaining the each row of Jacobin with
respect to a measurement, corresponding sub-matrices of resultant matrix (A and b) can be
obtained. Hence it is not necessary to form the complete Jacobian matrix before multiplication
of [J]T *W*[J] =[A] and [J]T*W*[∆z] = [b]. It reduces the Dynamic size of ‘J’ matrix from m*(2n-1)
to 1*(2n-1). Also A1, A2.. Am and b1, b2… bm can be formed independently. The equations (6) and
(7) can be re-written by grouping the measurements as node wise clusters, which is shown
below.

All possible measurements at nth node cluster is

{ } { }
cb

P q
n nk

k

P
n

[, , , , ,]; (8)

 A [] *[]*[] ; A [] *[]*[] (9)

b

n
n n nk nk n n

P T P q T q
n Pn n n qn n

z P Q p q v

J W J J W J

δ ∆ = ∆ ∆ ∆ ∆ ∆ ∆ 

   = =   

 
 

∑

{ } { }
cb

q
nk

k

th

[] *[]*[] ; b [] *[]*[] , (10)

similarly for other measurements.

where 'cb' number of connected nodes of 'n ' bus; 'k' varies up to 'cb'.

P T P T
n Pn n n Pn nkJ W P J W q = ∆ = ∆  ∑

i

[] [] (11)

[] [] (12)

[A] A

n P Q p q v
n n n nnk nk

n P Q p q v
n n n nnk nk

A A A A A A A

b b b b b b b

δ

δ

= + + + + +

= + + + + +

=
n n

i

i 1 i 1

 and [b] b (13)
= =

=∑ ∑

Note: - P/Q/p/q/v/ - stands for type of measurements

 - stands for noden

A δ

The equation (13) or (6) and (7) can be used to compute Matrices ‘A’ and ‘b’

2.3 Jacobian Distributed Computing:
Step 1: - Read Input data

]z[
.
.][b m

)12(

2

1

m ∆























=

−nm

m

m

J

J
J

URL: http://dx.doi.org/10.14738/tnc.24.311 20

http://dx.doi.org/10.14738/tnc.24.311

Transact ions on Networks and Communications; Volume 2, Issue 4, August 2104

Step 2: - From system parameters find Ybus.

Step 3: - Initialize [vi]T = 1; and [∂i]T=0;

 For(r = 1 to m)

{ Step 4.: - Find zr
cal

Step 5: - Find Jr : - Jacobian row corresponding ‘zr ‘ and ∆zr = zr
mes- zr

cal

Step 6: - Find Jr
T*Wrr*Jr =[A] +[Ar] and Jr

T*Wrr* ∆zr = [b] +[br] }

Step 7: - Find [∆xi] = [A]-1*[b];

Step 8: - check for [∆xi]

 if [∆xi]<<€;

if No - Update [xi]; [xi]new = [xi]old +[∆xi]old; then repeat from step 6.

if yes – Stop

2.4 Advantages: - From the above facts it is clear that
i. The task from Step 1 to step 4 can be distributed to ‘n’ processors.

ii. Dynamic size of Jacobian is (1 * 2n-1) but in conventional method ‘J’ size is (m * 2n-1)
iii. Dynamic size of ∆z is just a simple variable. In conventional method ‘∆z’ size is (m*1).
iv. No need to store the zcal in file/array variables.
v. Local indexing for ‘Jacobian’ elements is easier

vi. Multiplication of Jr
T*Wrr*Jr =[A] +[Ar] and Jr

T*Wrr* ∆zr = [b] +[br] can be done easily for
non zero elements using local indexing.

vii. It is observed that the multiplication time required by the new method is much lesser
than the conventional method.

2.5 Sparse Technique
 The following C++ program demonstrates the use of new logic, taking line flow measurement
example. Let the global variable sij[][] and h[] structure is

• sij[i][1] na; sij[i][2]- node from (i); sij[i][3]- node to (j)

• sij[i][4] = pij measured & sij[i][5] = qij measured

• sij[i][6] = y/2 half line charging between i & j

• sij[i][7] = Gij & sij[i][8] = Bij

• h[] = Jacobian row variables

find_jaco_lf(int r,int n): - is the sub-program to find the elements of A and b corresponding to a
measured line flow values using this new technique. In the following program all the
computations are focused only for non-zero elements.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 21

H. Nagaraja Udupa and H. Ravishankar Kamath; Gain Matrix Distributed Computing Technique for Power System
State Estimation, Transactions on Networks and Communications, Volume 2 No 3 Aug (2014); pp: 16-28

void find_jaco_lf(int r,int n)
 {
 int i,j,q,p,kl,g,k,l,x1,x2,x3,x4; // (x1 to x4) non-zero location of Jacobian row
 long double delz,a1,b1,deg,yij,tea, smp,smq;
 for(q=0;q<=2*n;q++)
 h[q].x = 0.0;
 for(g=1;g<=kl;g++) // kl - number of line flow measurements

 {
 i = (sij[g][2].x); // node 1 is taken as reference
 j = (sij[g][3].x);

 x1=i-1;
 x2=j-1;
 x3=n+i-1;
 x4=n+j-1;
 z[1].x=x1;
 z[2].x=x2;
 z[3].x=x3;
 z[4].x=x4;

 a1 = sij[g][7].x;
 b1 = sij[g][8].x;
 yij = sqrt((a1*a1)+(b1*b1));
 tea= atan(b1/a1);
 if(a1==0.0)
 tea=-(11./7.);
 deg = (del[i].x - del[j].x - tea);

 smp=yij*(v[i].x*v[i].x*cos(tea)-(v[i].x*v[j].x*cos(deg)));
 smq=yij*(v[i].x*v[i].x*sin(-tea)- v[i].x*v[j].x*sin(deg)) - (sij[p][6].x* v[i].x * v[i].x);

/*----To find Jr- for line flow "pij. For the sake of simplicity ‘Wii’ is assumed to be unity*/
 h[x1].x = v[i].x*v[j].x*yij*sin(deg); /*h5i*/
 h[x2].x= -v[i].x*v[j].x*yij*sin(deg); /*h5j*/
 h[x3].x=yij*(2*v[i].x*cos(tea)-v[j].x*cos(deg));/*h6i*/
 h[x4].x = -v[i].x*yij*cos(deg); /*h6j*/

/*----A = A + Jr
T*Jr and b = b+ Jr

T*∆zr---- (for line flow "pij")*/
 delz = (sij[g][4].x-smp);
 for(p=1;p<=4;p++)
 {

 k=z[p].x;
 b[k].x = (b[k].x + h[k].x*delz);

 for(q=1;q<=4;q++)
 {

 l=z[q].x;
 a[k][l].x = (a[k][l].x + h[k].x*h[l].x);

 } }
/*----To find Jr- for line flow "qij"…..*/

h[x1].x = -v[i].x*v[j].x*yij*cos(deg); /*h7i*/
h[x2].x = v[i].x*v[j].x*yij*cos(deg); /*h7j*/
h[x3].x = (2*v[i].x*sin(-tea)-v[j].x*sin(deg))*yij; /*h8i*/
h[x4].x = -v[i].x*yij*sin(deg); /*h8j*/

URL: http://dx.doi.org/10.14738/tnc.24.311 22

http://dx.doi.org/10.14738/tnc.24.311

Transact ions on Networks and Communications; Volume 2, Issue 4, August 2104

/*----A = A + Jr
T*Jr-and b = b+ Jr

T*∆zr---- (for line flow "qij")*/
 delz = (sij[g][5].x-smq);
 for(p=1;p<=4;p++)
 {

 k=z[p].x;
 b[k].x = b[k].x + h[k].x*delz;

 for(q=1;q<=4;q++)
 {

 l=z[q].x;
 a[k][l].x = a[k][l].x + h[k].x*h[l].x;

 } } } }

2.6 Computational Efforts
A matrix is said to be sparse if a given finite discrete ample space Ω and a non-empty set of
sample S is such that the cardinality │S│ of S is small compared to the cardinality │ Ω │ of Ω i.e.
│S│ << │ Ω │. As discussed L.P.Singh [2],

2.6.1 Effort for Conventional technique

• Let p= │S│ and Q = │ Ω │.
• ‘ti’ is the time taken to perform operation by elements ‘i’ of ‘S’
• ‘ri’ is the additional time taken to retrieve an element of elements ‘S’ in a compact

storage scheme.
• ‘si’ is the additional time taken to store an element of elements ‘S’ in a compact storage

scheme.

The total processing time without compact storage is =∑
=

Q

i
it

1

The total processing time with compact storage is = ii

p

i
i srt ++∑

=1

For sparse matrix ii

p

i
i srt ++∑

=1
<∑

=

Q

i
it

1

2.6.2 Effort for New technique: -

As seen earlier no special storing and retrieving scheme is required for Jacobian in this new
technique,

The total processing time for new scheme = ∑
=

p

i
it

1

Normally JT*Wi*J is carried out by taking the row of JT into column of J. In conventional method,
the identification of non-zero elements of each column of J takes more time than row wise non-
zero elements identification of J. This is because of the fact that the non-zero elements in each
row of Jacobian have direct relation with the corresponding row of network incident matrix.

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 23

H. Nagaraja Udupa and H. Ravishankar Kamath; Gain Matrix Distributed Computing Technique for Power System
State Estimation, Transactions on Networks and Communications, Volume 2 No 3 Aug (2014); pp: 16-28

The time ‘ri’ in the new technique will be very small as compared to the old scheme because of
local dynamic indexing. The time ‘Si’ in the new technique is considered zero without compact
storage for the resultant matrix ‘A’. When the measurements are grouped node-wise the
resultant matrix ‘A’ for the given node will be dense matrix.

3 Example & Results
 A simple four bus example has been considered. First ‘A’ is calculated using conventional
method, where A= (JT*W*J). Next ‘A’ is computed using new method, where A=

)**(
1

jjj

m

j

T
j JWJ∑

=

; ‘m’ is the total number of measurements taken.

The new method (Distributed technique) results are also processed with single processor.

3.1: Circuit & Input tables

Fig-1: - Circuit diagram

Table 1: Line data

I - j R X G B Y/2
1--2 0.01008 0.0504 3.815629 -19.0781 0.05125
1--3 0.00744 0.0372 5.169561 -25.8478 0.03875
2--4 0.00744 0.0372 5.169561 -25.8478 0.03875
3--4 0.01272 0.0636 3.023705 -15.1185 0.06375

Table 2: Injected power, Voltage & Phase measurements

Pi Qi Vi ∂i
1.3718 0.8431 1 0
-1.6945 -1.0735 0.982 -0.0171
-1.9914 -1.2416 0.969 -0.032
2.3809 1.3299 1.02 0.026

URL: http://dx.doi.org/10.14738/tnc.24.311 24

http://dx.doi.org/10.14738/tnc.24.311

Transact ions on Networks and Communications; Volume 2, Issue 4, August 2104

Table 3 Line flow measurements

na i j Pij
mes Qij

mes
1 1 2 0.3877 0.2825
1 1 3 0.9792 0.6514
2 2 1 -0.3852 -0.2809
2 2 4 -1.3138 -0.715
3 3 1 -0.969 -0.5999
3 3 4 -1.0266 -0.5446
4 4 2 1.3311 0.8013
4 4 3 1.0266 0.6361

3.2 Results:

The results are divided into two parts.

Part-I: - Tables R1 to R6 shows the resultant matrix ‘A’ by either method for first iteration.

(Note: - In the below tables “the smallest value is represented by ‘E-06’)

Table-R1: - 1)]-(2n x [m is J'' of size and 1)]- x(2n1)-[(2n is A'' of size]**[][=== JWJA T
5320.17 919.265 -3698.6 1.56322 -3.68118 E-06 1.71871
919.265 4544 -1763.67 2.11791 E-06 -2.72392 1.00527
-3698.6 -1763.67 4544.01 E-06 2.11791 1.00527 -2.72398
1.56322 2.11791 E-06 5304.04 -2532.97 -3688.65 919.265

-3.68118 E-06 2.11791 -2532.97 5304.04 919.265 -3688.65
E-06 -2.72392 1.00527 -3688.65 919.265 4527.25 -1757.47

1.71871 1.00527 -2.72398 919.265 -3688.65 -1757.47 4527.25

Table-R2: - [] 1)]-(2n x [1 is 'J' of size and 1)]- x(2n1)-[(2n is A'' of size][r
1

===∑
=

n

i

i AA

5320.17 919.265 -3698.6 1.56321 -3.6811 E-06 1.71868
919.265 4544.01 -1763.67 2.11794 E-06 -2.72402 1.0053
-3698.6 -1763.67 4544.01 E-06 2.11794 1.0053 -2.72402
1.56321 2.11794 E-06 5304.04 -2532.97 -3688.65 919.265
-3.6811 E-06 2.11794 -2532.97 5304.04 919.265 -3688.65

-E-06 -2.72402 1.0053 -3688.65 919.265 4527.25 -1757.47
1.71868 1.0053 -2.72402 919.265 -3688.65 -1757.47 4527.25

Table-R3: -][][111111
1 δAAAAAAA vq

k
p
k

QP +++++=

757.068 512.853 0 1.56323 E-06 E-06 0
512.853 1389.67 0 2.11793 E-06 E-06 0

0 0 0 0 0 0 0
1.56323 2.11793 0 3157.3 -1266.49 -1897.87 0

E-06 E-06 0 -1266.49 757.068 512.853 0
E-06 E-06 0 -1897.87 512.853 1389.67 0

0 0 0 0 0 0 0

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 25

H. Nagaraja Udupa and H. Ravishankar Kamath; Gain Matrix Distributed Computing Technique for Power System
State Estimation, Transactions on Networks and Communications, Volume 2 No 3 Aug (2014); pp: 16-28

Table-R4: -][][222222
2 δAAAAAAA vq

k
p
k

QP +++++=

3173.44 0 -1902.52 E-06 -3.6811 0 E-06
0 0 0 0 0 0 0

-1902.52 0 1389.67 E-06 2.11793 0 E-06
E-06 0 E-06 757.068 -1266.49 0 512.853

-3.6811 0 2.11793 -1266.49 3157.3 0 -1897.87
0 0 0 0 0 0 0

E-06 0 E-06 512.853 -1897.87 0 1389.67

Table-R5: -][][333333
3 δAAAAAAA vq

k
p
k

QP +++++=

0 0 0 0 0 0 0
0 2678.92 -881.837 E-06 0 -2.72402 E-06
0 -881.837 475.425 E-06 0 1.00529 E-06
0 E-06 E-06 1389.67 0 -1790.78 406.412
0 0 0 0 0 0 0
0 -2.72402 1.00529 -1790.78 0 2662.16 -878.737
0 E-06 E-06 406.412 0 -878.737 475.425

Table-R6: -][][444444
4 δAAAAAAA vq

k
p
k

QP +++++=

1389.67 406.412 -1796.08 0 E-06 E-06 1.71871
406.412 475.424 -881.836 0 E-06 E-06 1.00529

-1796.08 -881.836 2678.92 0 E-06 E-06 -2.72402
0 0 0 0 0 0 0

E-06 E-06 E-06 0 1389.67 406.412 -1790.78
E-06 E-06 E-06 0 406.412 475.424 -878.737

1.71871 1.00529 -2.72402 0 -1790.78 -878.737 2662.16

Part-II: -

The graph in figure 2 shows the computing time for ‘A’ by either method.

In the graph the New Algorithm and Old Algorithm represents the computational time for the
new and old method respectively. The above relation is obtained under following assumption.

• The number of measurements is assumed to be equal to the number of state variables.
• Approximately 15% of the Jacobian elements are assumed to be non-zero; this fact is

based on the practical system.

The profiling is conducted on Core2-Duo X-86 2GB RAM machine with Operating System
Windows 7, we were able to fetch the above results. The result may vary with the different
hardware configuration but the ratio of the Old Vs New Algorithm remains almost constant no
matter what hardware configuration has been adapted.

URL: http://dx.doi.org/10.14738/tnc.24.311 26

http://dx.doi.org/10.14738/tnc.24.311

Transact ions on Networks and Communications; Volume 2, Issue 4, August 2104

(Note: - Both the above results are obtained using single processor.)

Figure 2: Computation time

4 Conclusions
The results show that the resultant matrixes ‘A’ computed by both methods are same. In Old
Algorithm (Algo) the time was exponentially increasing with the number of network nodes,
whereas in the new Algo the exponential growth has been reduced to almost linear growth.
Using new algorithm, the time can be reduced further by employing more number of
processors. Even though both the methods are mathematically same, new method results in
drastic reduction in computational time. In the new method up to Jacobian product can be
computed by parallel processing using the equations (6) and (7). By grouping the
measurements in the form of node clusters [equations (8), (9) & (10)] it is possible to divide the
Matrix ‘A’ (& b) as node cluster wise gain matrix [nA] and [nb]. The size of [nA] and [nb] is
directly related to the size of node cluster state variables. For example, at node cluster No. 2,
[refer table-R4] state variables are (∂2, ∂4,v1, v2,v4) taking node-1 as angle reference node.
Hence the size of [2A] is (5x5) and not (7x7) similarly, the size of [2b] is (5x1) & [2∆x] is (5x1). It is
not necessary to have separate reference node at each node cluster. Hence, solution for [∆xi]
can also be divided into ‘n’ independent sub tasks which will further reduces the computational
time, which will be presented in further papers.

(JT*W*J) = A

AJWJ jj

m

j

T
j =∑

=

)**(
1

Matrix ‘A’ – (N x

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 27

H. Nagaraja Udupa and H. Ravishankar Kamath; Gain Matrix Distributed Computing Technique for Power System
State Estimation, Transactions on Networks and Communications, Volume 2 No 3 Aug (2014); pp: 16-28

ACKNOWLEDGEMENT

The authors would like to thank Mr. Antriksha Somani, Assit. Prof., Dept. Cs, MIT, Indore, MP,
for his help in programming and profiling.

REFERENCES

[1]. H.N. Udupa, Dr. H.R.. Kamath et al., Modified electric power system state estimation – Multi- processing
technique, IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET)
ISSN 2321-8843 Vol. 1, Issue 5, Oct 2013, 47-56

[2] L.P. Singh, third edition 1992, “Advanced Power System Analysis & Dynamic,” New Age International
Publishers. P.No. 254 – 287.

[3] L.P Singh and H.C Srivastava. ‘Sparsity and Optimal ordering’. Journal of The Institute of Engineers (India),
vol.57,pt EL6, June 1977, p274

[4] K.K.Goyal and L.P Singh. ‘Optimal Elimination of Sparse System Using Dynamic Programming Technique’.
Proceeding CS 9-81, March 1-4,1981, New Delhi.

[5] EPRI, “Exploring applications of Digital parallel Processing to Power System Problems,” Seminar proceedings,
Oct 4- 7, 1979.

[6] Y. Wallach, E. Handschin, C.Bongers, “An Efficient Parallel Processing Method for Power system State
Estimation,” Trans. IEEE, Vol. PAS-100, Nov.1981, pp.4402 – 6.

[7] M.Y.Patel, A.A.Girgis,, “Two-Level State Estimation for Multi-Area Power system”, 1-4244-1298/$25.00
@2007IEEE

 [8] Patel M. Y., Girgis A. A., "Two-Level State Estimation for Multi-Area Power System",1-4244-1298-
6/07/$25.00 ©2007 IEEE.

BIOGRAPHIES

First Author was born in south Indian Village, Udupi District in 1963. He received the B.E in Electrical
Engineering from National Institute of Technology (formerly known as “Regional Engineering College”), Silchar,
Gwhati University of India, in 1988 and M.Tech honors degree, in Power System from IIT Roorkee (formerly
known as “University of Roorkee”), Utarakhand, India, in 1995. The Author is the Ph.D scholar of Mewar
University, Rajastan, India. From 1990 to 1999, he was a faculty at Manipal Institute of Technology, Manipal,
India. From 2000 to 2009 he has been an Associate Professor with Sikkim-Manipal University.

Dr. H Ravishankar Kamath, completed his Bachelor of Engineering from Mysore University in the year 1989 and
Master of Technology from National Institute of Technology Surathkal Karnataka in the year 1996 in power and
energy system. He has done PhD from Manipal University in the year 2008.He has subject specification in soft
computing and its various application in the field of power system and Nonconventional energy systems

URL: http://dx.doi.org/10.14738/tnc.24.311 28

http://dx.doi.org/10.14738/tnc.24.311

	Gain Matrix Distributed Computing Technique for Power System State Estimation
	Abstract
	1 Introduction
	1.1 State Estimation:- Newton-Raphson technique
	1.2 Conventional Computing Steps

	2 Distributed Technique: - New Method
	2.1 Matrix Multiplication – Alternate Technique
	2.2 Distributed Approach
	2.3 Jacobian Distributed Computing:
	2.4 Advantages: - From the above facts it is clear that
	2.5 Sparse Technique
	2.6 Computational Efforts

	3 Example & Results
	4 Conclusions
	Acknowledgement
	References
	Biographies

