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ABSTRACT   

Elliptic curve cryptography (ECC) is an approach to public key cryptography (PKC) that is 
based on algebraic operations with elliptic curves defined over finite fields. Security of elliptic 
curve cryptography is based on the hardness of the elliptic curve discrete logarithm problem 
(ECDLP). Although there is no theoretical proof that ECDLP is intractable, no general-purpose 
sub-exponential running time algorithm has been found for solving the ECDLP if the elliptic 
curve parameters are chosen properly. In this study, we develop a new security attack based on 
the binary division of elliptic curve points over prime fields that may be used to solve the ECDLP 
when the order q of elliptic curve satisfies the congruence q = 2 (mod 4). To perform the binary 
division, we devise a novel algorithm of point halving on elliptic curves defined over prime fields 
that applies to the cases when q = 1 (mod 2) and q = 2 (mod 4). The binary division attack has 
exponential worst-case asymptotic time complexity but in certain practical cases can be used to 
solve the ECDLP in a relatively efficient way. We therefore make a recommendation to avoid 
the case of q = 2 (mod 4) in elliptic curve cryptosystems. 

Keywords: Elliptic Curve Cryptography, Discrete Logarithm Problem, Security Attack, Point 
Halving, Cryptoanalysis, Public-Key Cryptography. 

1 Introduction 
Elliptic curve cryptography (ECC) is an approach to public key cryptography (PKC) that is 

based on the algebra of elliptic curves defined over finite fields. ECC is more efficient than RSA 
and discrete logarithm (DL) systems: smaller keys in ECC can be used to achieve the same 
security level as in RSA and DL systems [1]. The ECC algorithms substantially outperform both 
RSA and DL systems when carrying out private-key operations, such as digital signature 
generation and decryption. The benefits of ECC are most pronounced when processing power, 
storage, bandwidth, or power consumption is constrained. 

An elliptic curve E over a field K is defined by a Weierstrass equation [1] 
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+ + = + + +2 3 2
1 3 2 4 6:E y a xy a y x a x a x a  ,   (1) 

where constants ∈1 2 3 4 6, , , ,a a a a a K  and discriminant ∆ ≠ 0 . 

If the characteristic of K is not equal to 2 or 3, then Equation (1) can be simplified to 

= + +2 3:E y x ax b  .     (2) 

where coefficients ∈,a b K . Here, the transformed coordinates x and y are obtained using the 
admissible change of variables 

( )  + −− − −
→ − 

 

32
1 1 2 31 2 1 4 123 12 3

x, ,
36 216 24

a a a ax a a y a xy .  (3) 

The discriminant of this curve is evaluated as ( )∆ = − +3 216 4 27a b .  

The security of all ECC schemes is based on the hardness of the elliptic curve discrete 
logarithm problem (ECDLP) formulated as follows [1]: given an elliptic curve E defined over a 
finite field u , a point ( )∈ uP E   of order n, and a point ∈Q P , where P  is the subgroup of E 

generated by P, find the integer [ ]∈ −0, 1t n  such that  

=Q t P .      (4) 

The integer t is called the discrete logarithm Q to the base of P, denoted = logPt Q . 

The main attacks on the ECDLP include Pohlig-Hellman algorithm [1], Pollard’s rho attacks 
and its modifications [1-5], and several isomorphism attacks that attempt to efficiently reduce 
ECDLP to the discrete logarithm problem (DLP) known to have sub-exponential algorithms [1]. 
The most efficient general-purpose attack on the ECDLP is a combination of the Pohlig-Hellman 
algorithm and Pollard’s rho algorithm (or its modifications), which has a fully-exponential 

running time of ( )O p , where p is the largest prime divisor of n. Sub-exponential algorithms 

devised using isomorphism attacks are available only for special cases [1]. 

The special-purpose attacks, particularly those associated with polynomial-time and 
subexponential-time running times, are examined to devise countermeasures for verifying that 
a given elliptic curve is immune to these attacks.  Currently, the following cryptographically 
weak special cases and corresponding countermeasures are known. (1) The Pohlig-Hellman 
algorithm reduces the computation of = logPt Q  to the computation of discrete logarithms in 

the prime order subgroups of P  [1]. This implies the elliptic curve parameters should be 

selected to yield the order n of P that is divisible by a large prime. (2) For prime-anomalous 
elliptic curves ( ( ) =# uE p ) , ECDLP can be transformed to an equivalent DLP as part of the 

Araki-Satoh-Semaev-Smart attack [1]. It is simple to circumvent this attack by verifying that 
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( ) ≠# uE p . (3) In the case when gcd(n,u) = 1, the Weil and Tate pairing attacks find an 

isomorphism between P  and a subgroup of order n of the multiplicative group ∗
ku

  of some 

extension field ku
  [1]. To ensure that an elliptic curve E defined over u  is not susceptible to 

the Weil and Tate attacks, it is sufficient to check that n, the order of the base point ( )∈ uP E  , 

does not divide −1Ku  for all small k for which the DLP in ∗
ku

  is tractable (for > 1602n , the 

verification interval of k is [1,20] ).  (4) To protect against the Weil descent attack specifically 
designed for binary fields [1], it is suggested to avoid the use of elliptic curves 

2m , where m is 

composite. 

The two kinds of elliptic curves recommended by the National Institute of Standards and 
Technology (NIST) for cryptographic protocols are elliptic curves over binary fields 

2m  (with the 

characteristic of 2) and elliptic curves over prime fields p  (with the characteristic of p) [1, 6]. 

Ten specific elliptic curves over 
2m  and five elliptic curves p  are recommended in the FIPS 

186-2 standard for U.S. federal government use [6]. 

In this paper, we devise a “binary division” attack for elliptic curves defined over prime 
fields p  that is based on the binary division of the integer = logPt Q . The binary division 

approach was previously examined for binary fields [7]. It was shown that this method has 
exponential complexity due to the fact that every point halving for the elliptic curves over 
binary fields yields two distinct points, which requires the consideration of two branches at 
each step where division is carried out. 

2 Binary Division Algorithm 

Consider an elliptic curve E defined over prime field p  by Eq. (2). Let P be a generator point 

such that there is no point ( )∈ pA E   that satisfies = 2P A . In other words, the point P is not 

divisible by 2. In this case, the sought integer t in Eq. (4) can be found using the following binary 
division algorithm: 

Algorithm 1. Binary Division Algorithm for ECDLP 
INPUT: ( )∈ pQ E  , ( )∈ pP E  , P is not divisible by 2 

OUTPUT: −1 1 0..n nt t t t  (t in binary format) 
1. Set ←R Q , ← 0i . 
2. While ( ≠R O  and ≠R P ) 

2.1 If R is divisible by 2, then ← 0it .  
2.2 Else ←1it , ← −R R P . 
2.3 ← / 2R R . 
2.4 ← +1i i . 

3.  If =R P  then ←1it . 
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4.  Else ← 0it . 

Here, = 0it  denotes the case when point iQ  is divisible by 2, and =1it  corresponds to the case 

when there is no such point ( )∈ pA E   that satisfies = 2iQ A . 

To find the integer t, one needs to have both an efficient point divisibility criterion and an 
efficient point halving algorithm for elliptic curves over prime fields p . There is an efficient 

point halving algorithm for binary fields [1, 5, 8, 9, 10] that is used to perform efficient scalar 
multiplication for elliptic curves over binary fields. However, there is no known point halving 
algorithm for elliptic curves defined over prime fields [11]. 

3 Point Halving Algorithm over Prime Fields 

3.1 Formulation of the problem 

The group law for elliptic curve E given by Eq. (2) over prime field p  has the following rule 

for point doubling [1]:  

Let ( ) ( )= ∈1 1, pP x y E  , where ≠ −P P . Then ( )= 2 22 ,P x y , where  

 +
= − 
 

22
1

2 1
1

3
2

2
x ax x

y
, ( ) +

= − − 
 

2
1

2 1 2 1
1

3
2
x ay x x y

y
.   (5) 

To solve the inverse problem of finding a point ( )∈ pA E   such that = 2P A , one needs to 

solve the system of nonlinear equations for 1x  and 1y  given the values of 2x  and 2y . To the 

best of our knowledge, there is no efficient general-purpose algorithm for solving system (5). 
The naïve approach of substituting every point ∈A P  into ( )1 1,x y  until a match is found (or 

no match if the system has no solution) requires the worst-case number of operations equal to 
the order of point P, which ultimately results in the exponential asymptotic complexity of same 
or higher order as the exhaustive search algorithm for ECDLP [1]. 

At the same time, efficient algorithms for some special cases can be devised. We separate 
the further discussion into the cases of odd and even elliptic curve orders. 

3.2 Elliptic curve of odd order 

Theorem 1: If the number q of points on elliptic curve ( )PE   given by Eq. (2) is odd, i.e., 

( ) =# mod2 1PE  , then for every point ( )∈ pP E   there exists such a point ( )∈ pA E   that  

= 2P A       (6) 

and  
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        + =  
 

1
2

qA P .     (7) 

Proof: For every point ( )∈ pP E   

=qP O       (8) 

because q is the order of elliptic curve E. Here, O is the point at infinity. We need to show that 

expression (7) implies (6). Indeed, 

( )= + = + = + =2 1A q P qP P O P P .    (9) 

Corollary 1: Every point  of ( )PE   with odd order q is divisible by two. 

This suggests that the Binary Division Algorithm cannot solve ECDLP when the order of 
elliptic curve ( )PE   is odd  (no generator point P that is indivisible by two can be selected), and 

thus any odd-order elliptic curve ( )PE   is immune to the Binary Division Attack developed in 

this study. 

3.3 Elliptic curve of even order 
3.3.1 Theorems and challenges 

The order of ( )PE   can be even only if the curve contains at least one point with the y-

coordinate of zero. Generally, for each x-coordinate such that ( ) ( )= ∈, pP x y E  , there is 

another point ( ) ( )= − ∈, pQ x p y E  , which follows from the square root operation performed 

when finding the value of y-coordinate for a given value of x-coordinate in Eq. (2). These two 
points coalesce into a single point when y = 0. Since the equation 

( )+ + ≡3 0 modx ax b p      (10) 

can practically have only 0, 1, or 3 roots (2 roots may occur only if the discriminant 

( )∆ = − + =3 216 4 27 0a b , which is not acceptable for ECC), the order of ( )PE   with at least one 

y-coordinate of 0 is the sum of 1 (for the O point) + the number of points with non-zero y-
coordinate multiplied by 2 + 1 or 3 (depending on the number of roots to Eq. (10)). It is evident 
that this sum is always even. 

Theorem 2: Let the number q of points on elliptic curve ( )PE   given by Eq. (2) be even, i.e., 

( ) =# mod2 0PE  . Let the points ( )∈, pP A E   such that = 2P A  exist. If = 2mq r , where r is odd, 

≥ 0m , and 
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=r P O ,     (11) 

then  

      + =  
 

1
2

rA P .     (12) 

Proof: Indeed, Equations (11) and (12) imply that 

( )= + = + = + =2 1A r P rP P O P P .    (13) 

It should be noted that Theorem 1 is a special case of Theorem 2 when m = 0. 

Let us denote the points with the y-coordinate of 0 as iZ , where integer { }∈ 1,3i . Let ( )# Z  

denote the number of such points on a specific elliptic curve. The definition of point doubling 
given by Eq. (5) implies 

=2 iZ O .     (14) 

This suggests that expression (12) is not unique and the following values of A are also possible: 

     + = + 
 

1
2 i

rA P V .     (15) 

In order to apply the Binary Division Algorithm to the elliptic curve of even order, one also 
needs to find the divisibility criterion and determine if expressions (12) and (15) can be used to 
find the coordinates of point = / 2A P  for all divisible points on even-order elliptic curves. This 
analysis is performed using numerical experiments. 

3.3.2 Numerical experiments 

Consider elliptic curve (2) defined over the prime field 23 . According to Hasse’s theorem 

[1],  

( )+ − ≤ ≤ + +1 2 # 1 2pp p E p p ,    (16) 

which implies that ( )≤ ≤2315 # 33E  . Our goal is to consider all even-order cases and both 

scenarios ( ) =# 1Z  and ( ) =# 3Z . A representative sample is listed in Table 1. 
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Table 1: Even-order cases of E(F23) 

Curve # a b #(E) #(Z) 

1 5 15 16 3 
2 7 15 18 1 
3 16 1 20 1 
4 12 10 20 3 
5 14 1 22 1 
6 8 1 24 3 
7 13 1 26 1 
8 6 1 28 3 
9 19 1 30 1 

10 7 1 32 3 

 

For each elliptic curve in Table 1, the following procedure was executed: 

1. Count the order ( )23#E   for each elliptic curve (including the at infinity point O). 

2. Compute 2A for each point ( )∈ 23A E  . 

3. Compute the order of each point A, which is denoted as #(A). 

4. Count ( )# Z . 

To simplify the analysis, the following definitions are introduced: 

• Odd point: An elliptic curve point that is not divisible by two; 

• Even point: An elliptic curve point that is divisible by two. 

The results of numerical experiments are listed in Tables 2 through 11. The even points are 
underlined. Only the points with y<p/2 are listed because points (x,y) and (x, p-y) have the same 
order and divisibility property. 

Table 2: Results for E:  y2=x3+5x+15, #(E) = 16, #(Z) = 3 

A (5,2) (6,10) (7,5) (12,3) (13,0) (14,0) (18,7) (19,0) (22,3) 

2A (22,3) (14,0) (22,20) (22,20) O O (22,3) O (14,0) 

#(A) 8 4 8 8 2 2 8 2 4 

Table 3: Results for E:  y2=x3+7x+15, #(E) = 18, #(Z) = 1 

A (1,0) (7,4) (8,10) (9,5) (10,2) (13,7) (18,4) (20,6) (21,4) 

2A O (13,7) (9,18) (9,18) (7,4) (10,21) (13,7) (7,4) (10,2) 

#(A) 2 9 6 3 9 9 18 18 18 
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Table 4: Results for E:  y2=x3+16x+1, #(E) = 20, #(Z) = 1 

A (0,1) (1,8) (2,8) (9,0) (11,6) (12,9) (14,5) (16,11) (18,7) (20,8) 

2A (18,16) (11,6) (12,9) O (2,8) (2,15) (11,6) (18,16) (12,9) (9,0) 

#(A) 20 20 5 2 10 5 20 20 10 4 

Table 5: Results for E:  y2=x3+12x+10, #(E) = 20, #(Z) = 3 

A (1,0) (3,2) (7,0) (10,7) (11,1) (14,1) (15,0) (18,3) (19,6) (20,4) (21,1) 

2A O (10,16) O (19,6) (19,17) (19,17) O (19,17) (10,16) (10,16) (10,16) 

#(A) 2 10 2 5 10 10 2 10 5 10 10 

Table 6: Results for E:  y2=x3+14x+1, #(E) = 22, #(Z) = 1 

A (0,1) (1,4) (3,1) (4,11) (5,9) (6,5) (8,2) (17,0) (18,6) (20,1) (22,3) 

2A (3,1) (0,1) (6,18) (18,6) (6,18) (20,22) (20,1) O (0,1) (18,17) (3,1) 

#(A) 11 22 11 22 22 11 22 2 11 11 22 

Table 7: Results for E:  y2=x3+8x+1, #(E) = 24, #(Z) = 3 

A (0,1) (2,5) (3,11) (6,9) (7,3) (8,5) (10,0) (12,10) (13,5) (15,0) (16,4) (17,6) (21,0) 

2A (16,4) (0,22) (0,22) (0,22) (10,0) (16,19) O (0,1) (10,0) O (16,19) (16,19) O 

#(A) 6 12 12 12 4 6 2 12 4 2 3 6 2 

Table 8: Results for E:  y2=x3+13x+1, #(E) = 26, #(Z) = 1 

A (0,1) (2,9) (4,5) (10,2) (11,7) (14,11) (15,11) (16,2) (17,11) (18,8) (19,0) (20,2) (21,6) 

2A (2,9) (21,17) (0,1) (21,17) (14,11) (4,5) (20,2) (4,18) (2,14) (0,22) O (14,12) (20,21) 

#(A) 13 13 13 26 26 13 26 26 26 26 2 13 13 

Table 9: Results for E:  y2=x3+6x+1, #(E) = 28, #(Z) = 3 

A (0,1) (1,10) (3,0) (5,8) (6,0) (7,8) (8,3) (9,5) (10,7) (11,8) (14,0) (15,4) (17,5) (20,5) (21,2) 

2A (9,18) (7,8) O (15,19) O (15,19) (15,19) (7,8) (9,5) (9,18) O (9,18) (15,4) (7,8) (7,15) 

#(A) 14 14 2 14 2 7 14 7 14 14 2 7 14 14 14 

Table 10: Results for E:  y2=x3+19x+1, #(E) = 30, #(Z) = 1 

A (0,1) (2,1) (3,4) (4,7) (6,3) (9,2) (10,8) (11,0) (12,5) (15,2) (16,10) (17,4) (20,3) (21,1) (22,2) 

2A (4,7) (12,5) (17,19) (0,22) (15,2) (0,1) (6,20) O (12,18) (17,19) (4,16) (20,3) (6,20) (20,3) (15,2) 

#(A) 5 6 30 5 15 10 30 2 3 15 10 15 15 30 30 

Table 11: Results for E:  y2=x3+7x+1, #(E) = 32, #(Z) = 3 

A (0,1) (1,3) (2,0) (3,7) (4,1) (5,0) (6,11) (7,5) (10,6) (11,11) (13,9) (15,10) (16,0) (18,5) (19,1) (21,5) (22,4) 

2A (18,5) (11,11) O (6,12) (18,5) O (11,12) (18,5) (6,12) (5,0) (6,12) (18,5) O (11,11) (11,12) (6,12) (5,0) 

#(A) 16 8 2 16 16 2 8 16 16 4 16 16 2 8 8 16 4 
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3.3.3 Observations 

Tables 2-11 suggest that all even-order elliptic curves contain both odd and even points. 
This implies that the Binary Division Algorithm presented in Section 2 can generally be applied 
to any even-order elliptic curve. 

Let ( )= 23#q E  . For all cases when ( )≡ 2 mod4q , Equation (11) holds, which implies that 

expression (12) can be used to find the coordinates of point = / 2A P  when = 2P A  exists. On 

the other hand, the tables corresponding to ( )≡ 0 mod4q  contain a number of points with the 

order that is even and not divisible by the odd number r, which does not allow one to use 
Theorem 2 in this case. 

It should be noted that ( )≡ 2 mod4q  is equivalent to = 2q r , where r is odd, suggesting 

that expression (12) can be transformed to 

+ =  
 

2
4

q
A P .     (17)  

Next we need to determine when a certain point ( )∈ pP E   is divisible by two. Tables 3, 6, 

8, and 10, corresponding to ( )≡ 2 mod4q , show that for even points the order is r or a divisor 

of r. On the other hand, all odd points have even orders. This implies that the divisibility 
criterion for the case of ( )≡ 2 mod4q  can be expressed as 

If ( )≡ 2 mod4q  and (q/2)P = O, then P is divisible by two.   (18) 

Our further analysis of the results of experimental data for this case suggests that when 
(q/2)P = O does not hold, expression (q/2)P = Z  is valid, where Z is a point with the y-coordinate 
of zero, which can be restated as 

If ( )≡ 2 mod4q  and (q/2)P = Z, then P is not divisible by two.  (19) 

Expressions (18)-(19) can be considered as the Euler criterion for the elliptic curves over 
prime fields that correspond to the case of ( )≡ 2 mod4q . 

When the number of points with the y-coordinate of 0 is one or higher, point halving no 
longer has a unique solution, as shown by Eqs. (14) and (15). Table 1 suggests that in the case of 

( )≡ 2 mod4q , there is only one such point, denoted for simplicity as Z (the index i is dropped).  

This means that every point halving operation yields exactly two points in this scenario.  

As an example, consider point (12,5) in Table 10. The first point found by Eq. (17) is (12,18). 
The second point found with Eq. (15) is (2,1). When each of this points is doubled, the result is 
the same: (12,5). 

Combining expressions (15), (17)-(19), we can formulate the following conjecture: 
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Conjecture 1: Let the number q of points on elliptic curve ( )PE   given by Eq. (2) satisfy the 

congruence ( )≡ 2 mod4q . Let a point ( )∈ pP E   be given. If (q/2)P = O, then P is divisible by 

two and the two points ( )∈ pA E   satisfying = 2P A  can be computed as 

+ =  
 

2
4

q
A P and + = + 

 

2
4

q
A P Z ,   (20) 

where Z is the point with the y-coordinate of zero. If (q/2)P = Z, then P is not divisible by two. 

This conjecture is valid for all of the experiments we ran, but it needs to be either formally 
proven or numerically (for a large number of elliptic curves with various prime characteristics) 
verified. 

Tables 2, 5, 7, 9, 11 suggest that for the case of ( )≡ 0 mod4q  and ( ) =# 3Z , the divisibility 

criterion can be formulated as follows: 

Conjecture 2: Let ( )≡ 0 mod4q  and ( ) =# 3Z . If (q/4)X=O, then X is divisible by two; if 

(q/4)X=Zi, where Zi is a point with the y-coordinate of zero, then X is not divisible by two. 

In this case, Equation (12) cannot be used because its necessary condition (11) is rarely 
satisfied. 

4 Counting Points on Elliptic Curves 
Section 3 implies that the binary division attack can be applied only to even-order elliptic 

curves. Moreover, a non-brute-force point halving algorithm is available only for the case when 
the even order q of elliptic curve satisfies the congruence ( )≡ 2 mod4q . In view of the above, 

the binary attack has to incorporate an algorithm for counting the number of points on elliptic 
curves (2) defined over prime fields. 

Main practical algorithms for counting the order of elliptic curves over prime fields include 
Baby Step Giant Step (BSGS), Mestre’s algorithm (improved BSGS), Schoof’s algorithm, and 
Schoof-Elikes-Atkin (SEA) method [12]. They are implemented in standard number-theory 
software packages, such as Pari-GP and Sage. 

The BSGS and  Mestre’s algorithms have the asymptotic computational complexity of 

( )4O p ; the most efficient variant has the space complexity of ( )2O n , where = logn p . Schoof’s 

algorithm has the computational complexity of ( )5O n  and space complexity of ( )3O n  - it was 

the first deterministic polynomial-time algorithm for counting points on elliptic curves. The SEA 

algorithm is probabilistic and has the asymptotic running time of ( )4O n  and space complexity 

between ( )3 logO n n  and ( )4O n . 
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5 Examples 
Section 3 suggests that the Binary Division Algorithm may practically be used only in the 

case of ( )≡ 2 mod4q . When ( )≡1 mod2q , every point is divisible by two, and thus the 

necessary condition for a generator point does not hold. When ( )≡ 0 mod4q , no non-brute 

force point halving algorithm is known. 

According to Eq. (20), each step in the loop of the Binary Division Algorithm for 

( )≡ 2 mod4q  should be run for two different values of R. This branching for each bit may 

theoretically run for all n bits of integer t, resulting in the exponential complexity of 2n . Let us 
consider several examples to determine if certain branches can be truncated at early stages. 

Example 1: Consider the problem of finding t in ( ) ( )=16,10 21,1t  for elliptic curve ( )23E  :  

y2=x3+19x+1 (the answer is 21). The recursive application of Algorithm 1 is illustrated in Fig. 1 as 
a binary tree. The root node has (16,10) as the initial value for R. As R is not divisible by 2, the 
bit t0 is set to 1, and the new value of R is set to − =(12,1) (12,18)R . Then the breadth-first 
traversal (BFT) algorithm is used to visit both child nodes of the root node: (12,5) and (2,22). 

Figure 1 shows that + =  
 

2
4

q
A P (left node) always yields an even point (bit: 0) and 

+ = + 
 

2
4

q
A P Z (right node) always gives an odd point. This follows from the fact that = 2q r , 

where r is odd. It should be noted that some points are repeated, for example, point (12,18). 
This observation can be used to ignore certain “irrelevant” branches: If point R has previously 
been visited (traversed), then the current point R should not be traversed. The comparison of 
the current point with any points already visited can be implemented using a dynamic hash 
table. 

The solution to Example 1 is retrieved as a bit sequence in the reverse order. In this case, it 
is “10101”, which is 21. The number of binary divisions (scalar multiplications given by Eq. (17)) 
needed to find the solution is 7. 
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Figure 1: Tree Representation of the Solution for Example 1 

Example 2: Consider the problem of finding t in ( ) ( )=10,15 3,4t  for elliptic curve ( )23E  :  

y2=x3+19x+1 (the answer is 19). In this case, the solution is “11001”, which corresponds to 19. 
The number of binary divisions is 9. 

 
Figure 2: Tree Representation of the Solution for Example 2 
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Example 3: Consider the problem of finding t in ( ) ( )=11,16 10,2t  for elliptic curve ( )23E  :  

y2=x3+13x+1 (the answer is 17). In this case, the solution is “10001”, which corresponds to 17. 
The number of binary divisions is 7. 

 
Figure 3: Tree Representation of the Solution for Example 3 

6 Analysis 
The most time-consuming operations in the binary tree implementation of Algorithm 1 for 

the case where ( )≡ 2 mod4q  include (1) the counting of the number of points on elliptic curve, 

(2) the scalar multiplication involved in each point halving, and (3) the branching at each point 
halving leading to a binary tree traversal.  

The first operation has to be executed only once and has a polynomial time complexity of 

( )4O n , where = logn p  (see Section 4 for details). 

Equation (17) can be efficiently computed using one of the double-and-add methods, such 
as windowed, sliding-window, wNAF, or Montgomery ladder algorithm [1]. These algorithms 
generally require ( )O k  iterations of point doubling and addition, where = logk q . 

The branching at each point results in at most q/2 binary divisions. Certain branches, as 
illustrated in the Examples, may be truncated at early stages. Still, the worst-case number of 

binary divisions is ( ) ( )= 2kO q O , leading to the overall complexity of ( )2kO k . This implies that 

the binary division attack developed in this paper has exponential time complexity due to non-
uniqueness of the point halving operation for elliptic curves defined over prime fields, which 
was also observed for the binary field case [7]. 
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7 Conclusion 
The binary division attack developed in this study can be used to solve the ECDLP when the 

order q of elliptic curve ( )pE   given by Eq. (2) satisfies the congruence ( )≡ 2 mod4q . 

Although in the worst-case scenario the algorithm has an exponential asymptotic time 
complexity, in certain cases the number of visited branches in the binary tree representation of 
the algorithm (for example, see Fig. 1) may be relatively small making the solution of ECDLP 
practically feasible. Therefore, our recommendation is to avoid the case of ( )≡ 2 mod4q  in 

practical ECC systems. 
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