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ABSTRACT

Time series operations are sought in numerous applications, while the observations used in such
operations are generally contaminated by data outliers. The objective is thus to design outlier resistant
or “robust” time series operations whose performance is characterized by stability in the presence versus
the absence of data outliers. Such a design is guided by the theory of qualitative robustness and is
completed by saddle-point game formalizations. The approach is used for the development of outlier
resistant filtering and smoothing operations.
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1 Introduction

The fundamental desirable characteristic of outlier resistant or “robust: time series operations is
performance stability; that is, a robust statistical procedure should guarantee small performance
deviations for small perturbations in the data generating stochastic process. Thus, statistical robustness
may be qualitatively defined along the latter lines, where for an analytical definition, the use of
appropriate stochastic distance measures is essential. This qualitative definition is developed by the
theory of qualitative robustness, while it also intimately related to the robust saddle-point game theoretic
formalizations. The theory of qualitative robustness provides necessary conditions to be satisfied by
robust operations, while the robust saddle-point game theoretic formalizations provide specific solutions
within the qualitatively robust class of operations. In this paper, we will review this composite
construction of statistically robust operations. We will then present solutions for outlier resistant or
robust filtering and smoothing.

The definition of qualitative robustness was first given by Hampel (1971, who considered only memoryless
data processes. The definition was extended to include processes with memory, first by Papantoni-
Kazakos and Gray (1979) and then by Cox (1978), Bustos et al (1984) and Papantoni-Kazakos (198443,
1984b, 1987). Solutions for outlier resistant prediction, filtering and smoothing were first developed by
Tsaknakis et al (1988, 1986), while an overview of the theory can be found in Kazakos et al (1990).
Extensions of the theory of qualitative robustness to include robust block encoders and quantizers were
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developed by Papantoni- Kazakos (1981a, 1981b). Finally, a stochastic neural network was developed by
Kogiantis et al (1997) and Burrell et al (1997), for implementation of robust prediction, and has been
applied by Burrell et al (2012) for predictive model mapping.

The organization of the paper is as follows: In Section 2, we present the outline of the qualitative
robustness theory and its relationship to robust saddle-point game theoretic formalizations. In Section 3,
we describe the process for developing robust filtering operations. In Section 4, we draw from the
derivations in Section 3, to develop non-causal filtering or smoothing operations, when the nominal
information and noise processes are both Gaussian. In Section 5, we focus on robust causal filtering
solutions for nominally Gaussian information and noise processes. In Section 6, we include concluding
remarks.

2 Qualitative Robustness And Robust Saddle-Point Game Theoretic
Formalizations

As discussed in the introduction, qualitative robustness corresponds to small performance deviations for
small perturbations in the data generating processes. Alternatively, qualitative robustness is a continuity
property defined on the space of stochastic processes via appropriate stochastic measures. In particular,
let x" and y" denote n-dimensional data sequences, generated respectively by two non-identical n-

dimensional probability density functions fon and f". Let g(-) denote some function or operation on n-

dimensional data sequences, where g(-) could be, for example, a test function in hypothesis testing or a
parameter estimate. Let h o and h, denote respectively the density function of the random variables

g(X") and g(Y") (where X" is generated by fy', and where Y" is generated by f"), and let

dy (&', £™) and d,(h

0g° hg) be two stochastic distance measures respectively between the densities

fon and f" , and the densities h o3 and hy. Then we can present the following definition,

Definition 1: The operation g () is qualitatively robust at the density function fon , in stochastic distance

measures dy(-,-) and d,(-,-) ,iff:

Given & >0, there exists & > 0 such that if f" is such that dl(fon, f") <&, then hy is such that

dy(hyg.hy) <.

From the above definition, we conclude that qualitative robustness is a local (around fon ) stability

property, parallel to the continuity property of real function. The specific analytical properties of a
qualitatively robust data operation ¢( - ) depend on the choice of the stochastic distance measures and

di(-,-) and d,(-,-). The latter stochastic distances are initially selected to best reflect the desired
stability properties of the qualitatively robust data operation, where the weaker the distance dq(-,-)

and the stronger distance d2( -, +), then the stronger the qualitative robustness properties. The main
issue arising here is the relationship of the qualitative robustness to the robust saddle-point
formalizations, and the choice of the stochastic distance measures dl( -,+). We will first address the

relationship to the robust saddle-point game-theory formalizations.
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Let us consider a saddle-point game with payoff function f(x,y), where the function f(-,-) and its

arguments x and y are all real and scalar, and where x and y take values respectively in the subsets A and
B of the real line R. Consider the metricd (u,v)=| u—v | onthe real line, and let the subsets A and B
both be convex with respect to that metric. Let at least one of those two subsets also be compact with
respect to the metric d (-, ), and let the payoff function f (x , y) be convex in x, concave in y, and
continuous in x and y, with respect to the same metric. Then, the existence of a saddle-point solution (x*
,y') such that f (X*, y) < f (X*, y*) < f(x, y*) ;VXxeAandV y e B isguaranteed and it is unique.
If, on the hand, the function f (x, y) is not continuous in x and y, then the existence of a saddle-point
solution is not generally guaranteed. The continuity of the payoff function is thus an essential property

for the guaranteed existence of a saddle-point solution. The same is true when instead of x and y, we have
density functions f " and h, as in Definition 1. In the latter case, the metric | u — v | on the real line is

replaced by the stochastic distance measure d;( -, -) for the data generating densities f", and by the
stochastic distance measure d, (-, ) , for densities hy induced by some f" and some data operation g.

Therefore, qualitative robustness is essential for the guaranteed solutions of the robust saddle-point
game-theory formalization.

Let us now turn to the choice of the distancesd;(-,-) and d,(-,-) in Definition 1. As we already
pointed out, to make the qualitative robustness property strong, we need a weak distance dl( -, +)and

a strong distance dz( -, +) . A weak distance that also represents closeness in data sequences and best

reflects the outlier model as well is the Prohorov distance [10], with data distortion measure p, (Xn , y”)

as follows.

n
n‘lz|xi —Yi|=7a(x{,y1')  if ngivenand finite
i=1
pa (X", y") = (1)
inf{a:n [y (G YT > @l < a}
if n>ngy, where mand n are postive integers

The Prohorov distance with data distortion measure as in (1) is a metric; that is, it satisfies the triangular
property. For classes of memoryless processes, the distance is identical to the Prohorov distance with

dtata distortion measure p,(X ,Y )=|X— y|. Regarding the choice of the distance d,(-,-), the

Vasershtein or Rho-Bar distances [10] are appropriate. Indeed, those two distances are strong and they
both bound difference in expected error performance. The choice of the data distortion measure within
the latter distances depends on the particular application, where a popular and useful such choice is the

difference squared distortion measure p*(X Y ):(X—y)z. The Rho-Bar distance is used for

. . : N+n
closeness in stochastic processes. Given some data sequences Y; ~ ={Yq,..., YN+nJtand some scalar

operation g (-),let g ( yi|+n ) estimate the datum x of some process whose arbitrary dimensionality

density function is f and whose data sequence are ..., x-1, X0, X1 .... If the sequence y1N+n is generated
URL :http://dx.doi.org/10.14738/tnc.61.2480
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by the density function f (l)\l+n , let h o; denote the arbitrary dimensionality density induced by f (l)\l+n

and the data operation g (). Let hg denote the arbitrary dimensionality density induced by g (:) and some

other data density function f N+n Then, h 02 and h , both estimate f.. Given some data distortion
measure p (-,-), the goodness of those two estimates is respectively measured by the Rho-Bar
distances ;(fz,hog) and ;(fz,hg) . If p (u,v) =|u—v| ,  then
‘ ;( f2,hog) —;( f2,hg )‘ < ;(hog ,Ng) ; thus, the Rho-Bar distance ;(hog ,ng) measures how
closely h og fits f, as compared to the fitness of hg to f, . A similar conclusion is drawn, when the data

distortion measure is the difference  squared, p*(u,v):(u—v)z where  then
Lo "(f2,000) 1% =L p "(f2,1g)1V2 | < [p “(hog .1g)1"2.

The definition of qualitative robustness, in conjunction with the Prohorov and Rho-Bar or Vasershtein
distances lead to constructive sufficient conditions that data operations should satisfy [2], [6], [7] and [10].
These conditions are included in Theorem 1 below, whose proof can be found in [2].

Theorem 1 : Consider a scalar real operation g(x") on data sequences x" of length n. Let g(x") be bounded,
and such that :

i If nis finite, then g(x") is pointwise continuous as a function of the data. That is,

given € > 0, there exists & > 0, such that n‘lzi|xi —yi| <& implies

g(x")-g(y")|<e.

ii. If n is asymptotically large, and given some data generating density function fo, then g (x") is
pointwise asymptotically continuous at fo. That is, given € >0 and n > 0, there exist § > 0, positive

integers m and no, and for each n > no some set A" € R", such that Pr(x" € A" | f;') >1-7nand
x" e A" and inf{a n 7 #iy, (M Y S gl <a}< S implies
190X ~g(y") [<e ¥ n>ng, where 7, (X7, yiT) =m YT [~y . Then the
operation ¢ (+) is qualitatively robust at the density function fon , Where in Definition 12.1.1,

d,(-,-)isreplaced by the Prohorov distance with data distortion measure asin (1) and d, (-, ")
is replaced by either the Vasershtein or the Rho-Bar distances with distortion measure p (U, V)

equal either to |u—v| or some continuous function of | u—v]|.
From Theorem 1, we conclude that to be qualitatively robust, it suffices that a data operation be bounded

and continuous. For data sequences of finite length continuity is defined in the usual functional sense. For
asymptotically large data sequences, continuity is defined as follows at some data generating density
function: If some sequence x" is representative of the latter density function, in the sense that it belongs
to a high-probability set A", and if the majority of the elements of another sequence y" are close to the
corresponding elements of the sequence x", then the values g(x") and g(y") of the data operating are close
as well. Due to the above results, we conclude that linear operations are not qualitatively robust. This is
so because such operations are not bounded, and because closeness between the majority of
corresponding elements of two sequences does not guarantee closeness in the values of those operations.
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Qualitative robustness is a property that does not induce uniqueness. That is, given a specific problem,
and some data generating density function f,, there generally exists a whole class & of data operations
that are qualitatively robust at f, . Additional performance criteria are thus needed, to evaluate and
compare different data operations in class 4. Such performance criteria are the break-down point and
the sensitivity, both defined asymptotically (N — o0) and at the density function fo. Given fo and given
some operation g(-) in class & , consider the density functions f that are included in the Prohorov ball

H (fg, f) <&, where p, isasin(1). Let ho and hg be the density functions induced by the data
N, on

operation g (-) and the densities foand frespectively. Given some scalar data distortion measure p(-,-)

, consider the Rho-Bar distance ;(hog ,Ng) . Then, the breakdown point €, of the operation g (') at fo

is the largest value g, such that, if fis some density in the ball lim I I (fg, f) <&, thenthe distance
n—oo N, on

;(hog /Ny ) is a function of e. The sensitivity of the operation g () at the density fo is defined as

;(hOg ! hg )

235 1L, (for 1)

It can be found that if bounded sensitivity at fo is required (parallel to bounded derivative) then the
qualitatively robust operation ¢ (-) should also be differentiable almost everywhere as a real function of

the data, and for asymptotically large sequences it should be such that
lg(x")—g(y") s cinf{a:n ' [#i:y, (61, yiy) > el < a}

where c is some bounded constant, and where X" € A" for A" as in part ii of Theorem 1 [see Papantoni-
Kazakos (1984b)].

As may be deduced from the presentation in this section, qualitative robustness is a performance stability
property and its time series applications include prediction, interpolation and filtering or smoothing.
Solutions for the later time series operations require the marriage of qualitative robustness with the
theory of saddle-point game theoretic formalizations. In this paper, we present such solutions for non-
causal filtering or smoothing as well as for causal filtering.

3 Robust Filtering

The objective of either non-causal or causal filtering is the extraction of information carrying data from
noisy observations. That is, the outcomes generated by an information process are estimated, when
distorted by interferences from a noise process. We will assume that the relationship between the
information and noise processes is additive. In the robust filtering problem, the information and noise
processes are modeled by two disjoint classes, #and Zy, respectively. Arbitrary dimensionality probability

density functions in classes #and # are respectively denoted fsand f.
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Let fos and fon be two nominal well known, stationary density functions, such that fos € % and fon € Z v
. Let us assume that some density function f; from class % is a priori selected by the system designer to
represent the information process throughout the over all observation interval, and let us denote by ...,
X1, Xo, X1, ... arandom data sequence generated by f;. We initially assume that the class %, consists of fos

only.

Let us denote by ..., W1, Wy, Wi, ... random noise data sequences, and let ..., Z1, Zo, Z1, ... be data

sequences from the nominal noise density function fon . Given some number &y in (0,1), let the class #'x

of noise processes then be such that
Wh =(Q-éenN)Z, +en Vi (2)

where ..., V.1, Vo, V4, ... is a random sequence generated by any arbitrary dimensionality stationary density

function. The noise model in (2) represents the occurrence of outliers, with probability &y per datum.

Given fsin # and fyin Z, we assume that the data sequences from f;and fy. are additive and that f;and

fn. are mutually independent. Then, if ..., Y1, Yo, Y1, ... denote random observation sequences, we have,

Yo =X, +W, Vn (3)

where X, is generated by f; , W, is generated by fv [ as in (2)], and the sequences ..., X1, Xo, X3, ... and ...,

W.i, Wo, W, ... are mutually independent. Let @, ¢ (y'j) denote a filtering operation, estimating the
information datum Xo , via the observation sequence y'.' . Let e (g, . fs, fyy ) denote the mean-

squared error induced by the operation g, ¢ (yl_ﬁl) + at the density functions f; € Z and fy € # . That

is,

eF (gn+I,F, fs' fN) = E{[XO - gn+I,F (Y—_nl)]2 | fs’ fN} (4)

Consider then the following saddle-point game. Search for the triple (g:H’F ,f., fy) such that fs* €

#Zand fy €7y and

Vise &, fne Fn, e (nars fo s fu)S e (Gnaes o T S e (Gnaes fo0 T0) YV Onanr
(5)

The right part of (5) is satisfied for g:+l,F (y'")  being the conditional expectation of X, at fs* and fy .
That is

Orre (V') =BG 1Y 1 £ ) (©)

The game in (5) reduces then to the following search. Find the pair ( fs*, f,i; ) such that fs* € % and

fy €, and
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E{[Xo - E{Xo [ y5 £ N }] | fs, fN} =

= sup E{[XO—E{Xoly"nl,fs,fN}]Z|fs,fN} (7)
b

and select g;H‘F (y'1) asin (6).

Givenfs € Zand fy € #n, and due to their additivity and mutual independence, the induced observation

density f equals the convolution f; * fuv , between the densities f; and fyv . If 15 and 0'5 denote

respectively the mean and variance of the density f; and defining then
I- - - -1 -
a (Y5 = [ xS f ) fu (v X) (®)

we easily find, for f= fg * f

E{[Xo CEX 1y fN}:

, 142
[y ey - F 0] o)
S R y_n f 11

(y5)
Let ®,(D_,,...,D,1,) and A(D_,,..,D|_;,) denote the characteristic functions (or Fourier

=0

transforms) at {Di —n<i<l- i}of respectively the densities f_ (y'."), f,(y'.)), f(y'') andthe

function « (y'_;l) in (8), assuming that the former exist. Let us define the operator :

0
—® . (D_,,...,D|_
8D0 s( -n | 1)

P(D_y,...,Dy1) = @ (D_p,..,D14)

(10)

Then, the supremum in (7) reduces to the search of the infimum below, where 7 denotes the class
induced by fos and fu ; thatis, 7={F=fs */n. fu € #n}.

inf Idy',gl (PO_,....0p[F ]} (11)

e 2 f(y'h

We consider the class Fy of noise processes, as described by the probability density functions these
processes induce and we select this class to be given by expression (12) below.

_ {f . f :(1_8N)f05*f0N +8Nh

Fn=
"~ his any arbitary dimensionality density function }

(12)

We then express Theorem 2 below. This theorem and the subsequent Lemma 1 are due to Tsaknakis et.
al. (1986).
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Theorem 2 : Let the density fos have a nonzero and analytic characteristic function @ (D,n yeeny D|,1,) =
@4 (D), that also admits a Taylor series expansion everywhere. Consider then the operator P(D) =
P(D

and denote

0 D)_1,) in (10) which also admits then a Taylor series expansion. Consider the class #in (12),

fo = fos ™ fon (13)

Let d (y:rl] ) be a positive solution of the equation
|PD)d (y'7) [=2d(y5) 2>0 (14)

such that d(yl__nl) is integrable over R ™, it is analytic for all nonzero vectors yl_}l , and the quantity

P(D)[d* (yl__n1 )] exists for all yl_?]l in R™, where

NENE {(1—8N>fo<y'_#) for ylyt < A™ 15)

Ad (y'_}]l) otherwise
where, A" includes all yI:nl ,such that | P(D)[f, (yl__nl)]/ fo(yl__nl) | <A.
Then, the infimum in (11) with substitution of 7' for #, exists and is attained by the following density f"

i) =d () (16)
with A such that

[ oty -1,

rN+1
Furthermore, the filtering operation g:ﬂ F (Y_'E1 = E{XO | yl__nl, f *} that satisfies (5) then the game

in(5)on #yis

P(D)1fo(y )] 11 ani
Onerr (V) = fo(y'a foryn <A (17)
n+1.F (Yon oY)
+1 for y L e [R™ - A

Lemma 1 below is a consequence of Theorem 2.

Lemma 1 : Let the densities fosand fov in Theorem 2 be both zero mean Gaussian, with respective auto-
covariance matrices My.1 and Np.1, where the elements of M,.1 are denoted {m,;}.Then, the density fo in
(13) is zero mean Gaussian, with auto-covariance matrix Ans1= Mhn:1 + Nye1 and the density £ in (16) and
the filtering operator g"in (17) take then the following special form, where | An:1 | means determinant, T

means transpose and (-1) denotes inverse, where it is assumed that A, ,, is nonsingular, and where

agﬂ =[Mg 4+ My_n], sSgNXx={L;x=0and-1;x <0}.
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L-en)@r) "2 AL |

/ _
Y2 expf-2t(y"hT ALy

|-
for Y—nl n+1An+1y o < /1‘

1/2

£y = L= ) @) D2 A L [T expf-2 7 (v T ALy (18)

]2

[ﬂv ‘an+1An+1y n

1-1.
T Yon ‘ n+1An+1y n > A
28-n+1An+1an+1
I-1.],T -1 11
g* (yl—l) _ n+1A”+1 y n for Yon ‘ any Apiy Yon [S4 (19)
n+LFAS-n /™ - -1 I-1.] T A1 -1
A Sgn(an+1 An+1 Yon for Yon- ‘ an+1 An+1 Yon|> A
1/2

where denoting c = A [an+1An+1an+l] , and for ¢(X) and ®(X) denoting respectively the density

at x and the cumulative distribution at x of the zero mean, unit variance Gaussian random variable, the
constant A is such that,

D(c)+c ) =27 1+ (1—ey) ] (20)

Given ey, n and /, the constant A is positive and unique. Given n and /, A decreases monotonically with
increasing en. For ey = 0, A equals infinity, and the filtering operation in (19) becomes then identical to the
optimal at the Gaussian noise, linear, mean-squared filter.

Denoting, I1(f )= .[d y Ty H{P(D)[f (y' )1}, for the operator, P(D) , in (10), we also find

Rn+1

I(f *) for density f “in (18), where cis as in (20).

I(f)=20-ey)ap Atia . [®C)-27] (21)

n+1

We observe that the filtering operation is (19) is a truncated linear function of the data; it is thus bounded
and continuous in the sense of partiin Theorem 1, but it is not asymptotically continuous in the sense of
part ii in the same theorem. The latter operation is therefore qualitatively robust for finite data
dimensionalities n+/ only. We will extend the operation in (19), to create a filtering operation that is both
asymptotically and non-asymptotically robust. We distinguish between casual and non-casual filtering,
and we present then two different extensions.

4 Robust Non-Causal Filtering or Smoothing for Nominally Gaussian
Information and Noise Processes

Consider the Gaussian densities fosand fov in Lemma 1. We then select some &y and some finite non-

negative integer m. Let {..., X1, Xo, X1, ... }and { ..., W.1, Wo, W, ... } denote sequences of random variables
that are respectively generated by fosand fon . Given some integer k and some non-negative integer n, let
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N 2n+1,k and M 2441,k denote respectively the auto-covariance matrices E{W k+n (W KN ) | fON }and
E{xk+“(Xk+“)T| foo} . Let a}nﬂ,k denote the (n+1) ™ row of the matrix M 21+ 1« , let
Appiik = Mopa + Nopa . and let g3 (X0, %7);n>1, denote the optimal mean-squared

interpolation operation at the Gaussian density fos for the datum xi , given Xk ~, and Xk+n Let us then
define the sets {dy ) j;k—n<j<k-I,k+lI<j<k+n} and {by,j; k—-n<j<k+n}

of coefficients as follows, where A,,.1  is assumed non-singular.

k-1 k+n
k
{ k,nl, ]} gkl (Xk n 'inln = de,n,l,jxj + de,n,l,jxj (22)
j=k-n j=k+l

T 1
[y nknoo Bk nkin] = Q2niak Aznia k

Let us now define

if [ x|<2,
9,(x) = . (23)
Aa sgn(x) otherwise
where C = l[agnﬂ,k A_21n+1,k Q041K 1742 is such that
D) +clgc) =27 1+ 1-ey) ] (24)

Let X «.n denote the estimate of the signal datum x, from the observation vector yl|<(+rr,1 .

Then the estimate x ; , is designed as in (25) below, where it can be shown that it is qualitatively
robust both non-asymptotically and asymptotically.

Sfal -1 k+n H
A 9 (Qonsik Aznik Yiin) ifn<m
X k,n: k+n (25)
gkl(xkn’xk+l n>m

where X -—[X Cmeen Xiplii>j and @ (k)l() is as in (22).
Let us define
T -1
ry(n) = niak Nonaak Ronsak (26)

Then, rs(n) represents a variance gain in estimating the signal datum xx from the observation vector

yff*,? at the zero mean Gaussian noise density whose auto-covariance matrix is as in (22). Therefore,

r, (n) is monotonically non-decreasing with increasing n. Given ey, the same monotonicity characterizes

the truncation constant A, in (23), whose maximum value 1., equals ¢ lim[r’(n)]"? , where c is the
n—oo
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solution of (24). If the densities fosand fon are both stationary, with respective power spectral densities,

Pos (4) and pon (A) ; A€[-7, 7] andif m — oo , then directly from (19) we obtain

Ao = C[E{XZ | fos}—er (Pos, Pon 12

=@ [ pos()dA-@0) [ pog (D)pos(2)+ Pon (D] pon (D44}

T
=c{2m) ™ [ P8 (Apos (D) + pon (AT 0¥
5 Robust Causal Filtering for Nominally Gaussian Information and Noise
Processes

Given the Gaussian densities fosand fov in Lemma 1 and the sequences { ..., X1, Xo, X1, ... }and { ..., W1,
Wo, Wi, ... }of random variables as in the non-causal filtering, let M,k and N,k denote respectively the

auto-covariance matrices E{ X, (X, )| f,. } and E{Wkk_n+1 (Wkk_n+1 )" | fon } ,wherenz0
. Let then al,k denote the first row of the matrix Mnc, and let A , =M , +N_ . Let
g5 (X'k‘:r'Hl), n—1>1, denote the optimal mean-squared prediction operation at the Gaussian density

fos for the datum xi , given X::r'Hl . Assuming that A, is nonsingular, let us then define the sets
{Cnarj i k=n+1<j<k-I}and {h  ;;k—n+1<j<k}of coefficients as
0 [y kI S
{Cnan 9u (X nu) = zck,n—l,l,j X; (27)
j=k—-n+1

T -1
[hk,n,k—n+1""’ hk,n,k] = an,k An,k

Let us now define

if [x|<
HOE x| <y (28)
M, sgn(x) otherwise
where ¢ = u [a), Ar @, J7"% is such that
®(c)+cp(c) =21+ (1-&,) 7] (29)

AN
Let X ,(n) denote the estimate of the signal datum x. from the observation vector y||2_n+1 . Then, the

AN
estimate X ,(n) is designed as follows, where ey and m are a priori selected.
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T -1 k H
gr:(an,k An,k ykfn+1) If n<m
k—-m A
c
A c ch,n—l,m‘j X jy j+n-k
X =1 Isknit (30)

j=k-m+1

k AL .
+g;[ th,n,j[y,-—gj-’p(x;_?+1)]] ;o ifn>m

AN AN N
Where g(j)p (") isasin(27),and where X 'J-: [x (]j,j+n7k’---’ X ﬁi+nfk]
Let us define,

T Al
ne(n) = any Ak @, (31)

Then, rlf (n) represents the variance gain in estimating the datum x. from the observation vector

y||<(_n+1 at the zero mean Gaussian density, whose auto-covariance matrix is as in (27). Thus, I ﬁ(n) is

monotonically non-decreasing with increasing n, and so is then the truncation constant u, in (27), where

&N remains fixed.

It can be shown [Tsaknakis (1986)] that the operations in (30) are qualitatively robust, in both the
asymptotic and the non-asymptotic sense. In the later operation, the integer m and ey represent a tradeoff
between optimality at the Gaussian noise fon density robustness, and they are both system parameters.
As m increases and ey decreases, the filtering operation in (30) tends to the optimal at the Gaussian
density fon, linear data operation.

6 Conclusions
We have examined outlier resistant time series operations in the light of the theory of qualitative
robustness. The resulting operations are continuous, both in a pointwise and an asymptotic sense, as well
as bounded. Their performance is controlled by two parameters, one of which represents outlier
contamination level. Special attention has been given to causal and non-causal filtering.
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