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ABSTRACT 

Time series operations are sought in numerous applications, while the observations used in such 
operations are generally contaminated by data outliers.  The objective is thus to design outlier resistant 
or “robust” time series operations whose performance is characterized by stability in the presence versus 
the absence of data outliers.  Such a design is guided by the theory of qualitative robustness and is 
completed by saddle-point game formalizations.   The approach is used for the development of outlier 
resistant filtering and smoothing operations. 
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1 Introduction 

The fundamental desirable characteristic of outlier resistant or “robust: time series operations is 
performance stability; that is, a robust statistical procedure should guarantee small performance 
deviations for small perturbations in the data generating stochastic process.  Thus, statistical robustness 
may be qualitatively defined along the latter lines, where for an analytical definition, the use of 
appropriate stochastic distance measures is essential.  This qualitative definition is developed by the 
theory of qualitative robustness, while it also intimately related to the robust saddle-point game theoretic 
formalizations.  The theory of qualitative robustness provides necessary conditions to be satisfied by 
robust operations, while the robust saddle-point game theoretic formalizations provide specific solutions 
within the qualitatively robust class of operations.    In this paper, we will review this composite 
construction of statistically robust operations.  We will then present solutions for outlier resistant or 
robust filtering and smoothing. 

The definition of qualitative robustness was first given by Hampel (1971, who considered only memoryless 
data processes.  The definition was extended to include processes with memory, first by Papantoni-
Kazakos and Gray (1979) and then by Cox (1978), Bustos et al (1984) and Papantoni-Kazakos (1984a, 
1984b, 1987).  Solutions for outlier resistant prediction, filtering and smoothing were first developed by 
Tsaknakis et al (1988, 1986), while an overview of the theory can be found in Kazakos et al (1990).  
Extensions of the theory of qualitative robustness to include robust block encoders and quantizers were 
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developed by Papantoni- Kazakos (1981a, 1981b).  Finally, a stochastic neural network was developed by 
Kogiantis et al (1997) and Burrell et al (1997), for implementation of robust prediction, and has been 
applied by Burrell et al (2012) for predictive model mapping. 

The organization of the paper is as follows:  In Section 2, we present the outline of the qualitative 
robustness theory and its relationship to robust saddle-point game theoretic formalizations.  In Section 3, 
we describe the process for developing robust filtering operations.  In Section 4, we draw from the 
derivations in Section 3, to develop non-causal filtering or smoothing operations, when the nominal 
information and noise processes are both Gaussian.  In Section 5, we focus on robust causal filtering 
solutions for nominally Gaussian information and noise processes. In Section 6, we include concluding 
remarks. 

2 Qualitative Robustness And Robust Saddle-Point Game Theoretic 
Formalizations 

As discussed in the introduction, qualitative robustness corresponds to small performance deviations for 
small perturbations in the data generating processes.  Alternatively, qualitative robustness is a continuity 
property defined on the space of stochastic processes via appropriate stochastic measures.  In particular, 
let xn and yn denote n-dimensional data sequences, generated respectively by two non-identical n-

dimensional probability density functions nf0  and nf . Let g(·) denote some function or operation on n-

dimensional data sequences, where g(·) could be, for example, a test function in hypothesis testing or a 
parameter estimate. Let h 0g and  hg denote respectively the density function of the random variables 

)( nXg   and )( nYg  (where nX  is generated by nf0 , and where nY  is generated by nf ), and let 

),(d 01
nn ff  and ),(d 02 gg hh  be two stochastic distance measures respectively between the densities

nf0 and nf , and the densities h 0g and  hg . Then we can present the following definition,  

Definition 1: The operation g (·)  is qualitatively robust at the density function nf0  , in stochastic distance  

measures ),(d1 ⋅⋅  and ),(d2 ⋅⋅  , iff :    

 Given 0>ε , there exists 0>δ  such that if nf  is such that ),(d 01
nn ff  < δ , then hg  is such that  

),(d 02 gg hh  < ε.                                                                             

From the above definition, we conclude that qualitative robustness is a local (around nf0 ) stability 

property, parallel to the continuity property of real function. The specific analytical properties of a 
qualitatively robust data operation )(g ⋅ depend on the choice of the stochastic distance measures and 

),(d1 ⋅⋅  and ),(d2 ⋅⋅ . The latter stochastic distances are initially selected to best reflect the desired 

stability properties of the qualitatively robust data operation, where the weaker the distance  ),(d1 ⋅⋅  

and the stronger distance ),(d2 ⋅⋅ , then the stronger the qualitative robustness properties. The main 
issue arising here is the relationship of the qualitative robustness to the robust saddle-point 
formalizations, and the choice of the stochastic distance measures ),(d1 ⋅⋅ . We will first address the 
relationship to the robust saddle-point game-theory formalizations.   
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Let us consider a saddle-point game with payoff function f(x,y), where the function  ),(f ⋅⋅  and its 
arguments x and y are all real and scalar, and where x and y take values respectively in the subsets A and 
B of the real line R. Consider the metric d ( u , v ) = | u – v | on the real line, and let the subsets A and B 
both be convex with respect to that metric. Let at least one of those two subsets also be compact with 
respect to the metric ),( d ⋅⋅ , and let the payoff function f (x , y) be convex in x, concave in y, and 
continuous in x and y, with respect to the same metric. Then, the existence of a saddle-point solution (x* 

,y*) such that  B and;),(),(),( **** ∈∀∈∀≤≤ yAxyxfyxfyxf   is guaranteed and it is unique. 
If, on the hand, the function f (x , y)  is not continuous in x and y, then the existence of a saddle-point 
solution is not generally guaranteed. The continuity of the payoff function is thus an essential property 
for the guaranteed existence of a saddle-point solution. The same is true when instead of x and y, we have 
density functions f n and hg  as in Definition 1. In the latter case, the metric | u – v | on the real line is 
replaced by the stochastic distance measure ),(d1 ⋅⋅  for the data generating densities  f n , and by the 

stochastic distance measure ),(d2 ⋅⋅   , for densities hg  induced by some  f n and some data operation g. 

Therefore, qualitative robustness is essential for the guaranteed solutions of the robust saddle-point 
game-theory formalization.  

Let us now turn to the choice of the distances ),(d1 ⋅⋅  and ),(d2 ⋅⋅ in Definition 1. As we already 

pointed out, to make the qualitative robustness property strong, we need a weak distance ),(d1 ⋅⋅ and 

a strong distance ),(d2 ⋅⋅ . A weak distance that also represents closeness in data sequences and best 

reflects the outlier model as well is the Prohorov distance [10], with data distortion measure ),( nn
n yxρ  

as follows. 
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The Prohorov distance with data distortion measure as in (1) is a metric; that is, it satisfies the triangular 
property. For classes of memoryless processes, the distance is identical to the Prohorov distance with 

dtata distortion measure yxyx −=),(1ρ . Regarding the choice of the distance ),(d2 ⋅⋅ , the 

Vasershtein or Rho-Bar distances [10]  are appropriate. Indeed, those two distances are strong and they 
both bound difference in expected error performance. The choice of the data distortion measure within 
the latter distances depends on the particular application, where a popular and useful such choice is the 

difference squared distortion measure 2* )(),( yxyx −=ρ . The Rho-Bar distance is used for 

closeness in stochastic processes. Given some data sequences },...,{ 11 nN
nN yyy +

+ = and some scalar 

operation )( ⋅g , let  )( ni
iyg +    estimate the datum xk of some process whose arbitrary dimensionality 

density function is f 2  and whose data sequence are …, x - 1 , x 0 , x 1 …. If the sequence nNy +
1  is generated 
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by the density function  nNf +
0  , let h 0g denote the arbitrary dimensionality  density induced by nNf +

0  

and the data operation g (·). Let hg  denote the arbitrary dimensionality density induced by  g (·) and some 

other data density function nNf + . Then, h 0a and h a both estimate f2. Given some data distortion 

measure ),( ⋅⋅ρ , the goodness of those two estimates is respectively measured by the Rho-Bar 

distances ),( 2 oghfρ  and ),( 2 ghfρ . If   vuvu −=),(ρ , then  

),(),(),( 0202 gggg hhhfhf ρρρ ≤−     ; thus, the Rho-Bar distance ),( 0 gg hhρ measures how 

closely h 0g  fits f2, as compared to the fitness of  hg to f 2 . A similar conclusion is drawn, when the data 

distortion measure is the difference squared,  2* )(),( vuvu −=ρ  where then  

2/1
0

*2/1
2

*2/1
02

* ]),([]),([]),([ gggg hhhfhf ρρρ ≤− . 

The definition of qualitative robustness, in conjunction with the Prohorov and Rho-Bar or Vasershtein 
distances lead to constructive sufficient conditions that data operations should satisfy [2], [6], [7] and [10]. 
These conditions are included in Theorem 1 below, whose proof can be found in [2]. 

Theorem 1 : Consider a scalar real operation g(xn) on data sequences xn of length n. Let g(xn) be bounded, 
and such that : 

i. If n is finite, then g(xn) is pointwise continuous as a function of the data. That is,     

given ε > 0, there exists δ > 0, such that δ<−∑−
i ii yxn 1  implies  

   ε<− )()( nn ygxg . 

 
ii. If n is asymptotically large, and given some data generating density function f0, then g (xn) is 

pointwise asymptotically continuous at f0. That is, given  ε > 0 and  η > 0, there exist δ > 0, positive 

integers m and n0, and for each n > n0 some set An ε Rn , such that η−>∈ 1)|Pr( 0
nnn fAx and 

nn Ax ∈  and  δααγα <≤>+
+
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− }]),(:[#:inf{ 11
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11 ||),(γ  .     Then the 

operation )(⋅g  is qualitatively robust at the density function nf0 , where in Definition 12.1.1,  

),(d1 ⋅⋅ is replaced by the Prohorov distance with data distortion measure as in (1) and ),(d2 ⋅⋅  
is replaced by either the Vasershtein or the Rho-Bar distances with distortion measure ),( vuρ   
equal either to |u – v| or some continuous function of | u – v|.  

From Theorem 1, we conclude that to be qualitatively robust, it suffices that a data operation be bounded 
and continuous. For data sequences of finite length continuity is defined in the usual functional sense. For 
asymptotically large data sequences, continuity is defined as follows at some data generating density 
function: If some sequence xn is representative of the latter density function, in the sense that it belongs 
to a high-probability set An, and if the majority of the elements of another sequence yn are close to the 
corresponding elements of the sequence xn , then the values g(xn) and g(yn) of the data operating are close 
as well. Due to the above results, we conclude that linear operations are not qualitatively robust. This is 
so because such operations are not bounded, and because closeness between the majority of 
corresponding elements of two sequences does not guarantee closeness in the values of those operations. 
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Qualitative robustness is a property that does not induce uniqueness. That is, given a specific problem, 
and some data generating density function f0 , there generally exists a whole class ϑ of data operations 
that are qualitatively robust at f0 . Additional performance criteria are thus needed, to evaluate and 
compare different data operations in class ϑ . Such performance criteria are the break-down point and 
the sensitivity, both defined asymptotically ( ∞→n ) and at the density function f0. Given f0 and given 
some operation g(·) in class ϑ  , consider the density functions f that are included in the Prohorov ball 

ε
ρ

≤∏
nn

ff
, 0 ),( , where nρ  is as in (1). Let  h 0g and hg  be the density functions induced by the data 

operation )(⋅g  and the densities  f0 and f respectively. Given some scalar data distortion measure ),( ⋅⋅ρ

, consider the Rho-Bar distance ),( 0 gg hhρ . Then, the breakdown point  ε* , of the operation  )(⋅g  at f0 

is the largest value ε, such that, if f is some density in the ball ε
ρ

≤∏∞→ nnn
ff

, 0 ),(lim  , then the distance 

),( 0 gg hhρ  is a function of ε. The sensitivity of the operation )(⋅g  at the density f0 is defined as    

∏→
∞→

nn

gg

n ff
hh

ρε

ρ

, 0

0

0
),(

),(
lim  

 
It can be found that if bounded sensitivity at f0 is required (parallel to bounded derivative) then the 
qualitatively robust operation )(⋅g  should also be differentiable almost everywhere as a real function of 
the data, and for asymptotically large sequences it should be such that  

}]),(:[#:inf{c|)()(| 11
1 ααγα ≤>≤− +

+
+
+

− mi
i

mi
im

nn yxinygxg  
 
where c is some bounded constant, and where nn Ax ∈  for  An as in part ii of Theorem 1 [see Papantoni-
Kazakos (1984b)]. 

As may be deduced from the presentation in this section, qualitative robustness is a performance stability 
property and its time series applications include prediction, interpolation and filtering or smoothing.  
Solutions for the later time series operations require the marriage of qualitative robustness with the 
theory of saddle-point game theoretic formalizations.  In this paper, we present such solutions for non-
causal filtering or smoothing as well as for causal filtering. 

3 Robust  Filtering  
 

The objective of either non-causal or causal filtering is the extraction of information carrying data from 
noisy observations.  That is, the outcomes generated by an information process are estimated, when 
distorted by interferences from a noise process.  We will assume that the relationship between the 
information and noise processes is additive.  In the robust filtering problem, the information and noise 
processes are modeled by two disjoint classes, Fs and FN, respectively. Arbitrary dimensionality probability 
density functions in classes Fs and FN  are respectively denoted fs and fN.   
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Let f0S and f0N be two nominal well known, stationary density functions, such that f0s ∈  FS  and  f0N ∈F N 
. Let us assume that some density function fs from class Fs is a priori selected by the system designer to 
represent the information process throughout the over all observation interval, and let us denote by …, 
X-1 , X0, X1, … a random data sequence generated by fs . We initially assume that the class Fs, consists of  f0s 
only.  

Let us denote by …, W-1 , W0, W1, … random noise data sequences, and let …, Z-1 , Z0, Z1, … be data 
sequences from the nominal noise density function f0N . Given some number Nε  in (0,1), let the class F N 

of noise processes then be such that  

nNnNn VZW εε +−= )1(      (2) 

where …, V-1 , V0, V1, … is a random sequence generated by any arbitrary dimensionality stationary density 
function. The noise model in (2) represents the occurrence of outliers, with probability Nε   per datum. 

Given  fs in Fs and fN in F N , we assume that the data sequences from fs and fN. are additive and that fs and 
fN.  are mutually independent. Then, if  …, Y-1 , Y0, Y1, … denote random observation sequences, we have,  

nWXY nnn ∀+=                (3) 

 
where Xn is generated by fs , Wn is generated by fN [ as in (2)], and the sequences …, X-1 , X0, X1, … and …, 

W-1 , W0, W1, … are mutually independent. Let  )( 1
,

−
−+
l

nFln yg  denote a filtering operation, estimating the 

information datum X0 , via the observation sequence 1−
−
l

ny . Let ),( ,, NsFlnF ffge + denote the mean-

squared error induced by the operation )( 1
,

−
−+
l

nFln yg + at the density functions fs ∈Fs and fN  ∈F N . That 

is,  

[ ]{ }NsnFlnNsFlnF ffYgXEffge ,|)(),( 21
,0,,

−
−++ −=               (4) 

 
Consider then the following saddle-point game. Search for the triple ),,( ***

, NsFln ffg +  such that  *
sf  ∈  

Fs  and  *
Nf   ∈F N  and   

∀ fs ∈Fs  ,  fN∈F N ,  ≤+ ),,( *
, NsFlnF ffge ≤+ ),,( ***

, NsFlnF ffge   ),,( **
, NsFlnF ffge +   Fng ,1+∀  

       (5) 

The right part of (5) is satisfied for )( 1
,1

* −
−+
l

nFn yg     being the conditional expectation of X0 at **  and Ns ff  . 

That is  

 
{ }**1

0
1

,1
* ,,|)( Ns

l
n

l
nFn ffyXEyg −

−
−
−+ =                                    (6) 

The game in (5) reduces then to the following search. Find the pair ( *
sf , *

Nf ) such that *
sf  ∈  Fs  and  

*
Nf   ∈F N  , and   
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and select )( 1
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l

nFln yg  as in (6).          

Given fs ∈Fs and fN  ∈F N , and due to their additivity and mutual independence, the induced observation 

density f equals the convolution  fs * fN , between the densities  fs and  fN . If sµ  and 2
sσ   denote 

respectively the mean and variance of the density fs and defining then  
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we easily find, for f= sf * Nf  
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Let ),,...,( 1−−Φ lns DD  and ),,...,( 1−− ln DDA  denote the characteristic functions (or Fourier 

transforms) at { }ilinDi −≤≤−; of respectively the densities )( 1−
−
l

ns yf ,  )( 1−
−
l

nN yf  ,  )( 1−
−
l

nyf   and the 

function  )( 1−
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nyα   in (8), assuming that the former exist. Let us define the operator : 
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Then, the supremum in (7) reduces to the search of the infimum below, where F  denotes the class 
induced by  f 0S  and fN  ; that is, F  = { f  = f0S * f N  ,  fN   ∈  F N}.   
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We consider the class FN  of noise processes, as described by the probability density functions these 
processes induce and we select this class to be given by expression (12) below. 

F N =  
}function density lity dimensionaarbitary any  is 

*)1(:{ 00

h
hffff NNsN εε +−=

               (12) 

We then express Theorem 2 below. This theorem and the subsequent Lemma 1 are due to Tsaknakis et. 
al. (1986). 
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Theorem 2 : Let the density f0s have a nonzero and analytic characteristic function ),,...,( 1−−Φ lns DD = 

)(DsΦ , that also admits a Taylor series expansion everywhere. Consider then the operator )(DP = 

),,...,( 1−− ln DDP  in (10) which also admits then a Taylor series expansion. Consider the class  F N in (12), 

and denote  

Ns fff 000 *=          (13) 

Let )( 1−
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0)(|)()(| 11 >= −
−

−
− λλ l

n
l

n ydydDP                      (14) 

such that )( 1−
−
l

nyd  is integrable over R n+1, it is analytic for all nonzero vectors 1−
−
l

ny , and the quantity  

)](*)[( 1−
−
l

nydDP  exists for all 1−
−
l

ny  in R n+1 , where  





 ∈−

= −
−

+−
−

−
−−

− otherwise)(
  for )()1()(* 1

111
01

l
n

nl
n

l
nNl

n yd
Ayyfyd

λ
ε

                   (15) 

where, An+1 includes all 1−
−
l

ny , such that  λ≤−
−

−
− |)(/)]()[(| 1

0
1

0
l

n
l

n yfyfDP . 

Then, the infimum in (11) with substitution of  F N for F  , exists and is attained by the following density f*  
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Lemma 1 below is a consequence of Theorem 2.   

Lemma 1 : Let the densities f0s and f0N  in Theorem 2 be both zero mean Gaussian, with respective auto-
covariance matrices Mn+1 and Nn+1 , where the elements of  Mn+1 are denoted {mi,j}.Then, the density f0 in 
(13) is zero mean Gaussian, with auto-covariance matrix An+1=  Mn+1 + Nn+1 and the density f *  in (16) and 
the filtering operator g* in (17) take then the following special form, where | An+1 | means determinant, T 

means transpose and (-1) denotes inverse, where it is assumed that 1+Λn   is nonsingular, and where 

],...,[ ,01,01 nl
T
n mma −−+ = ,  0}x1;-and0;1{xsgn <≥= x . 
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where denoting c = 2/1
1

1
11 ][ +

−
++ Λ nn

T
n aaλ , and for  )(xφ  and )(xΦ   denoting respectively the density 

at x and the cumulative distribution at x of the zero mean, unit variance Gaussian random variable, the 
constant λ is such that,   

])1(1[2)()( 111 −−− −+=+Φ Nccc εφ          (20) 

Given εN , n and l, the constant λ is positive and unique. Given n and l, λ decreases monotonically with 
increasing εN. For εN = 0, λ equals infinity, and the filtering operation in (19) becomes then identical to the 
optimal at the Gaussian noise, linear, mean-squared filter.  
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)( *fI  for density  *f  in  (18), where c is as in (20).      
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We observe that the filtering operation is (19) is a truncated linear function of the data; it is thus bounded 
and continuous in the sense of part i in Theorem 1, but it is not asymptotically continuous in the sense of 
part ii in the same theorem. The latter operation is therefore qualitatively robust for finite data 
dimensionalities n+l only. We will extend the operation in (19), to create a filtering operation that is both 
asymptotically and non-asymptotically robust. We distinguish between casual and non-casual filtering, 
and we present then two different extensions.       

4 Robust Non-Causal Filtering or Smoothing for Nominally Gaussian 
Information and Noise Processes 

Consider the Gaussian densities  f0s and f0N  in Lemma 1. We then select some Nε   and some finite non-

negative integer m. Let  { …, X-1 , X0, X1, … } and { …, W-1 , W0, W1, … }  denote sequences of random variables 
that are respectively generated by f0s and f0N . Given some integer k and some non-negative integer n, let 
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Let s
nkx ,
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  denote the estimate of the signal datum xk from the observation vector nk
nky +

− .  

Then the estimate s
nkx ,

∧

 is designed as in (25) below, where it can be shown that it is qualitatively 
robust both non-asymptotically and asymptotically. 
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Then, )(nr s
k  represents a variance gain in estimating the signal datum xk from the observation vector

nk
nky +

− at the zero mean Gaussian noise density whose auto-covariance matrix is as in (22). Therefore, 

)(nr s
k  is monotonically non-decreasing with increasing n. Given εN , the same monotonicity characterizes 

the truncation constant λn  in (23), whose maximum value ∞λ  equals  2/1)]([lim nrc s
kn ∞→

 , where c is the 
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solution of (24). If the densities f0s and f0N  are both stationary, with respective power spectral densities,  
)(0 λsp   and )(0 λNp  ;  ],[ ππλ −∈  and if  ∞→m    , then directly from (19) we obtain 
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5 Robust Causal Filtering for Nominally Gaussian Information and Noise 
Processes 

Given the Gaussian densities   f0s and f0N   in Lemma 1 and the sequences { …, X-1 , X0, X1, … } and { …, W-1 , 
W0, W1, … }of random variables as in the non-causal filtering, let Mn,k and Nn,k denote respectively the 

auto-covariance matrices   }|)({ 011 s
Tk

nk
k

nk fXXE +−+−  and }|)({ 011 N
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nk fWWE +−+−  , where n ≥ 0  

. Let then T
kna , denote the first row of the matrix Mn,k , and let knknkn NM ,., +=Λ . Let  
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Let )(nx c
k

∧

  denote the estimate of the signal datum xk  from the observation vector k
nky 1+−   . Then, the 

estimate )(nx c
k

∧

  is designed as follows, where εN and m are a priori selected.   
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(30) 

Where )(0 ⋅jpg   is as in (27) , and  where   ],...,[ ,,
c
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Then, )(nr c
k   represents the variance gain in estimating the datum xk from the observation vector 

k
nky 1+−   at the zero mean Gaussian density, whose auto-covariance matrix is as in (27). Thus, )(nr c

k  is 

monotonically non-decreasing with increasing n, and so is then the truncation constant μn  in  (27), where 

Nε  remains fixed. 

It can be shown [Tsaknakis (1986)] that the operations in (30) are qualitatively robust, in both the 
asymptotic and the non-asymptotic sense. In the later operation, the integer m and εN represent a tradeoff 
between optimality at the Gaussian noise f0N density    robustness, and they are both system parameters. 
As m increases and εN decreases, the filtering operation in (30) tends to the optimal at the Gaussian 
density  f0N, linear data operation.  

6 Conclusions 
We have examined outlier resistant time series operations in the light of the theory of qualitative 
robustness.  The resulting operations are continuous, both in a pointwise and an asymptotic sense, as well 
as bounded.  Their performance is controlled by two parameters, one of which represents outlier 
contamination level.  Special attention has been given to causal and non-causal filtering. 
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