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ABSTRACT 

This paper presents four new iterative decoders of two dimensional product block codes 
(2D-PBC) based on Genetic Algorithms. Each one runs in parallel on a number of processors 
connected by a network. As for the conventional iterative decoder, each elementary decoder of 
these new schemas uses as input, the received word and the extrinsic information computed by 
the previous elementary decoder. They have polynomial complexities in parameters of the 
code and those of the genetic algorithm. These are almost the same of the conventional 
iterative decoder complexity, but the performances are improved. Indeed, at each iteration, the 
new parallel decoders preserve the better of extrinsic information computed by elementary 
decoders running simultaneously on all processors. 

Keywords: Error Correcting Codes, Product Block Codes, Genetic Algorithms, Parallel 
Decoding, Iterative Decoding, Time Complexity. 

1. INTRODUCTION 
In digital transmission, the information encoded in a binary sequence may be translated 

(modulated) into an analog signal to cross the communication channel, which is always noisy. 
The Noise due to channel parasites and modulation /demodulation processes can alter the 
useful signal. Likewise, the data stored in the storage media can be corrupted because of 
several factors (scratches, wear, etc). The encoder receives the information symbols provided 
by the source and adds redundancy symbols, carefully chosen, so that the maximum of 
infiltrated errors can be corrected. Upon arrival, the decoder attempts to restore the original 
sequence, using the redundancy symbols. 

    The analytical decoding techniques prove to be limited. Either they do not give 
satisfactory performance, or they are efficient, but require a high execution time and/or very 
large memory space like Maximum Likelihood decoding. This is why research in coding theory is 
oriented towards probabilistic, iterative, or meta-heuristic decoding techniques, where 
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performances of some decoders approaching the Shannon limit [1]. This is the case for example 
for Turbo codes [2] and LDPC codes [3-4]. 

The challenge is to find methods which ensure a compromise between their correction 
capabilities and their complexities(acceptable execution time and memory space). Thus, in 
1975, Holland introduced Genetic Algorithms(GAs) inspired by biological laws and natural 
selection [5]. They were then developed and popularized by Goldberg [6]. 

In 1994, Maini proposes a decoder based on GAs (GAD) giving good performances [8]. The 
works we have proposed in [9-12], have as objectives to improve performances and/or 
complexities of decoders based on GAs. In this paperwe propose four new parallelization 
schemas of two dimensional product block codes iterative decoding, where an 
elementarydecoder based on GAs is used [8]. 

This paper is organized as follows. Section 2 reminds some fundamental theoretical 
concepts. Section 3 presents elementary,iterative and parallel decoders that we use in the 
proposed schemas. Section 4 describes our parallelization schemas of aniterative decoding. In 
section 5 we discuss and study their time complexities. Finally, we give in section 6 our 
conclusions andperspectives of this work. 

2. BACKGROUND 
In In this section, we first make a quick reminder of product block codes. We then define 

the main classes of complexity, and we finish by presentation of genetic algorithms. 

2.1 Product blockcodes 

 Linear block codes 2.1.1

Let F₂ = {0, 1} be the binary alphabet and (F₂)nbe the set of vectors of length n. i.e. : 

 

(1) 

A linear code C of length n on F₂ is a vector subspace of (F₂) n. Such that the hamming distance 
between two different code-words is greater than the minimum distance of the code. i.e. : 

 

(2) 

Note that in F₂, the second condition is equivalent to 0∈C. Letk = dim(C),be the dimension of C, 
and B = (gi)1≤i≤ka base of C.Since gi∈C, then length(gi) = n. The matrix G whose rows are the 
vectors of the base, is called the generator matrix of the code C. Note that the matrix Gis not 
unique, since the base B is not. Thus: 
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So we have C={αG/α∈(F₂)k }.i.e : 
 

 
 

The parity check matrix H is a marix such that GHT= HGT= 0, where HT is the transpose of matrix 
H. We have then v =uG ⇔vHT=HvT =0. H has a crucial role in decoding. Indeed, the received 
word vis a codeword (without errors) if and only if vHT = 0. It is said, in this case, that the word 
vsatisfies the parity constraints of the code C. 

The dual code of C, denoted by CT(n,n−k), is a linear block code whose generator matrix is 
H(parity matrix of C). Then, we can write: 

 

(3) 

where<x,y>is the scalar product of xand y. 

 Product block codes 2.1.2

A product code is built from two or more elementary block codes, generally linears. Let 
C1(n1, k1, d1)and C2(n2,k2, d2)be two linear block codes. The product code C= C1⊗C2 is 
constructed as follows: 

• The information symbols are arranged in a matrix of k1 rows and k2 columns (k1 × k2 symbols) ; 

• Eachone of the k1 rows is coded by the code C2; 

• Eachone of the n2 columns is coded by the code C1. 

Thus, a codeword of the product code Cis a block of n2 rows and n1 columns (n2 × n1 symbols). 
We show [13] that allrows are codewords of C1 and all columns are codewords of C2. 
Furthermore, the parameters of the product code C(n, k, d)are : 

• k= k1 × k2 ; 

• n= n1 × n2 ; 

• d= d1 × d2; 
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• R= R1 × R2; 

Where R1,R2, and Rare respectively the rates of C1,C2, and C. 

Product block codes represent a particular case of serial concatenated codes. Their highlight 
is that they allow the construction of codes of large lengths and large minimum distances, by 
concatenating two or more codes of small lengths and small minimum distances. Product code 
built with a large minimum distance will have then a large capacity for detection and correction 
of errors. 

 
Figure 1: Product block code 

2.2 Decoding Complexity 

 Complexity Classes 2.2.1

The complexity theory is a recent discipline that aims to classifying problems, according to 
their degree of difficulty of resolution. Several classes of complexity as well temporal as spatial 
have been defined. The best known are the classes P, NP and NP-Complete. Class P includes 
problems for which there exists an algorithm with a polynomial running time in the size of data, 
allowing solving them. The problems of this class are called "easy". The class NP contains all 
optimization problems where the number of potential solutions, is at worst exponential such 
that we can verify in a polynomial time whether a potential solution satisfies the question. A 
problem X of class NP is said NP-complete (or NP-hard), if each problem Y of class NP is 
polynomially reducible to X. i.e., there is a polynomial algorithm used to brought back the 
search of solution of Y to the search of solution of X. NP-Complete class contains all the 
problems of class NP such that if one of them is proven to be easy (solvable in polynomial time) 
then all NP problems are easy. If one of them is hard, then P ̸= NP. 

 Complexity of linear codes decoding  2.2.2

In 1978, Berlkamp, McEliece and Van Tilborg [14] have stated two conjectures: 

i) the problem of decoding linear codes is NP-complete; 

ii) computing the minimum weight of a code is an NP-complete problem.  
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For a linear code, the second conjecture is equivalent to the conjecture of calculating the 
minimum distance. If this is calculated, the error correction capacity is then determined. This 
conjecture was open until 1997, when it has been proved by Vardy [15]. 

The fact that a problem is NP-complete causes its computational difficulty, i.e., the 
inefficiency of deterministic algorithms to solve it. Thus, mathematicians and computer 
scientist’s recourse to meta-heuristic methods to find good solutions (not necessarily optimal) 
to NP-complete problems in polynomial time. 

2.3 Genetic Algorithms 

Genetic Algorithms (GAs) have been inspired in genetics and the theory of evolution of 
species, presented by Darwin in1860. It refutes the idea that the natural system is fixed forever. 
For him, the species are gradually adapting to their natural environment that could change 
depending on external parameters and constraints to which it is exposed. The AGs are designed 
to simulate processes of the natural systems required for evolution, especially those who 
respect the principle of “survival of stronger”. The Strongest individuals will reproduced and 
their offspring are improved over generations. The lowest ones will disappear. 

Researchers have tried to program and simulate natural phenomena since the 50s. 
However, these attempts were not very fruitful, because of the limitation of computer 
performance at this period. The use of GAs, made a big boom in the last three decades, when 
Holland has posed their theoretical foundations in 1975 in his book ”Adaption in Natural and 
Artificial Systems”[5], and when Goldberg wrote in 1989 his famous book ”Genetic algorithms 
in search, optimization, and machine learning”[6]. Thus we moved from natural Darwinism to 
artificial evolution, which began to be used increasingly in the solving of problems with very 
high complexity, in several fields. 

 Principle of GAs 2.3.1

GA generates randomly n individuals to form the initial population. For Every individual, 
which is a potential solution to the problem to be optimized, we associate a fitness (or cost) 
that measures its quality as solution. Then we select, with a probability that depends on the 
fitness, the best individuals that may be crossed to give birth of new individuals (children). 
These undergo, with a certain probability, to mutations in their genes. This forms the new 
population of the next generation. We repeat the same treatment until the stop condition is 
satisfied. 

Here is the basic genetic algorithm, as shown in figure 2: 

Algorithm: Basic GA 

1. [Initialization]: generate a random population of n individuals :(Ii)1≤i≤n; 

2. [Fitness]: compute the fitness f(Ii) for each individual Ii of the current population ; 

C o p y r i g h t  ©  S O C I E T Y  F O R  S C I E N C E  A N D  E D U C A T I O N  U N I T E D  K I N G D O M  53 
 



Abdeslam Ahmadi, Faissal El Bouanani and Hussain Ben-Azza; Four Parallel Decoding Schemas of Product BlockCodes, Transactions on 
Networks and Communications Volume 2 No 3 (2014), pp 49-69 
 

3. [Reproduction]: create a new population by repeating the following steps: 

• [Selection]: select two parents, taking into account their fitness; 

•[Crossover]: cross, with a probability pc, the parents to create new individuals ; 

• [Mutation]: mutate, with probability pm, the new individuals ; 

• [Insert]: add new individuals to the new population; 

4. [Replace]: use new generated population for the next iteration; 

5. [Test]: if the stop condition is satisfied, then return the best individual of the current  

population; 

6. [Loop]: else go to the step 2. 

 

Figure 2: Genetic algorithm flowchart 

 

 Convergence of GAs 2.3.2

The researches consisting of laying the theoretical foundations of GAs are very rare. The 
reference works in this sense are those of Eiben et al. [16], Fogel [17] and Rudolph [18].They 
have, first, given a mathematical formulation of the basic genetic algorithm, modeled its 
evolution as a Markov chain, and finally defined sufficient conditions for its convergence 
toward an optimum. They have shown that the convergence to the global optimum is not an 
inherent property of the basic genetic algorithm, but a consequence of the idea of keeping 
track of the best solution found over time (from one generation to another). In other words, 
the basic GA can be considered an optimization algorithm for static optimization problems, 

URL: http://dx.doi.org/10.14738/tnc.23.229  54 
 
 

http://dx.doi.org/10.14738/tnc.23.229


T R A N S A C T I O N S  O N  N E T W O R K S  A N D  C O M M U N I C A T I O N S ,  V O L U M E  2 ,  N O 3  ( J U N E  2 0 1 4 )  
 

because it is provable that it does not converge toward any subset of the set of states 
containing at least one global solution, even in infinite time. 

2.4 Parallel Systems 

The choice of distributed systems or parallel machines is strongly imposed for applications 
requiring very important treatment and/or memory space. There are many types of parallel 
machines which are classified by Flynn (1972) according to two independent concepts: the 
instruction stream and data stream used by these instructions. Thus, there are four possible 
combinations [7] : 

• Single Instruction Single Data: the machine executes one instruction on a data each 
clock cycle. It’s not really a parallel machine but rather a classical Von Newman 
computer; 

• Single Instruction Multiple Data: a processor, with a single control unit (CU) and multiple 
arithmetic logic units (ALUs),executes the same instruction on different data each clock 
cycle ; 

• Multiple Instruction Single Data: systems executing multiple instructions on the same 
data at each clock cycle  

• Multiple Instructions Multiple Data (MIMD): these systems have multiple independent 
processors. i.e., each processor has its own CU and its own ALU. In the same clock cycle, 
each processor executes a different instruction on a different data. 

These instructions can be synchronous or asynchronous. Most parallel systems are MIMD. A 
MIMD system can be either a multiprocessor, or a multi-computer or a hybrid of both. 

A multiprocessor contains several autonomous processors and a single shared memory, 
figure 3. This last can also provide communication between different processors. A multi-
computer contains a given number of autonomous computers, having a control unit, an ALU 
and a private memory each one, figure 4. The communication between the computers is 
provided by a network. 
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Figure 1:A Parallel system  with 4 processors 

 

 

Figure 4:A multi-computer with 4 computers 

A multiprocessor contains several autonomous processors and a single shared memory, 
figure 3. This last can also provide communication between different processors. A multi-
computer contains a given number of autonomous computers, having a control unit, an ALU 
and a private memory each one, as shown in figure 4. The communication between the 
computers is provided by a network. 
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3. DECODING ALGORITHMS BASED ON GENETIC ALGORITHMS 
Let C(n,k, d) be a linear block code with generator matrix G, and F = (F1,...,Fn), r = (r1,...,rn), 

respectively the vector of fading and the received sequence (associated with the transmitted 
sequence). The parameters Np, Ng, Ne, pc, pmare respectively the size of the population, the 
number of generations, the number of elites, the crossover and the mutation rates. 

3.1 Elementary decoder 

We take GAD the decoder of block codes based on GAs that we have already used in [10-
12]. It’s a HISO (Hard-In Soft-Out) and uses GAs to decide the code word D, knowing r and F. 

Algorithm : GAD 

D = GAD (r, F,k,n,Np, Ng, Ne, pc, pm) 

• Step1 :sort the elements of received vector r in descending order of magnitude to have a 
new vector r(1). i.e., find a permutation π1 such that r(1) = π1(r) and  |r1

(1)|≥ |r2
(1)|≥... 

≥|rn
(1)|.This will put, for BPSK modulation, reliable elements in the first ranks. Indeed, 

when the absolute value is large (far from 0), there is no risk to decode the bit 1 to 0 or 0 
to 1. Let F(1) be the permutation of F by π1. i.e., F(1) = π1(F). Likewise, G(1) = π1(G). Then, 
permute G(1) by π2 to have G′, such that its first k columns are linearly independent, 
permute the vectors r(1) and F(1) by the same permutation. Let r′ = π(r) and F′ = π (F), 
where π = π2 ◦ π1. 

• Step 2 : quantize the first k bits of r′ (r’i∈R) to obtain a binary vector I1 and randomly 

generate (Ni − 1) information vectors of k bits each one. This vectors form with vector I1 

the initial population of Np individuals (I1, ...,INp). 
• Step 3 : encode individuals of the current population, using G′ to obtain code words : Ci= 

IiG′ (1 ≤ i ≤ Np). Then, compute individuals fitness, defined as Euclidian distance between 
Ci and r′, and sort individuals in ascending order of fitness. 

• Step 4 : place the first Ne individuals (Ne: elite number ≤ Np) to the next population, which 
will be completed by offsprings generated using reproduction operators : selection of two 
best individuals as parents (a,b) using the following linear ranking : 

 

(4) 

whereWi is the ith individual weight and Wmax weight assigned to the fittest (nearest) 
individual.  

• Step 5 :Reproduce the (Np- Ne) remaining individuals of the next population using 
crossover and mutation operations. Let Rand be a uniformly random value between 0 
and 1, generated at each time. 

ifRand<pc then ∀i∈ {Ne+1, ..., Np}, ∀j ∈{1, ..., k}, 
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(5) 

and then, 

 (6) 

else, 
 

 
(7) 

end if 

Repeat steps 3 to 5 for Ng − 1 next generations. 

• Step 6 :The first (fittest) individual D′ of the last generation is the nearest to r′. So, the 
decided code word is D =π(-1) (D’) 

3.2 Iterative decoder 

An iterative algorithm receives at its input soft information and produces another one called 
extrinsic information which depends on the decided code word. This extrinsic information will 
be combined with the received word and fed back to its input. The processing is repeated Nit 
times and the decided code word will be the one decided at the last iteration. 

For product block codes, an iterative decoder consists of placing in series two or three 
decoders. The extrinsic information computed by the ith decoder is combined with the received 
word and the result is fed to the input of the (i + 1)th decoder. 

The result of the combination of the extrinsic information of the last decoder and the 
received word is injected at the input of the first decoder. The process is repeated Nit times. 
The iterative decoder for product block codes with two dimensions is depicted in figure 5. 

 
Figure 5:The iterative decoder based on AGs (IGAD) 

Our iterative decoder here, is IGAD (Iterative decoder based on Genetic Algorithms), where 
the elementary decoders are GADs. 
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Let D denote the GAD decision of the input sequence r, and ω be the extrinsic information, 
and H(j) be the competitor codeword of D corresponding to the jth bit defined by : 

 

where : 

- Q(p) is the pth codeword of the last generation 

- Qj
(p),Dj  are the jth bits of Q(p), D 

- ‖.‖is the Euclidean distance. 

The algorithm executed by each of the elementary decoders of the iterative decoder, 
accepts as input r, k, n, Np, Ng, Ne, Nit, pc, pm, and coefficients (αj)1≤j≤2Nit and  (βj)1≤j≤2Nit. These 
coefficients are optimized for each code and SNR to enhance the algorithm performance. 

Algorithm : IGAD 

(ω,D) = IGAD(r, F,k,n,Np, Ng, Ne, Nit, pc, pm, α,β) 

•Step1 :θ = 0, ω0 = 0 ; 

•Step2 :Iterative decoding 

While (θ < 2(Nit− 1)) do 

o Run D(θ) = GAD (r+ α(θ)ω(θ), F, k,n,Np, Ng, Ne, pc, pm) on the first decoder 
to decide the codeword D(θ) ; 

o Compute the extrinsic information ω(θ+1) in terms of D(θ) 
For j = 1 tondo 

If H(j) exists then 

 

(8) 

else 

 

 

(9) 

End if 

End for 
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o Run D(θ+1) = GAD (r+ α(θ+1)ω(θ+1), F, k,n,Np, Ng, Ne, pc, pm) on the second 

decoder to decide the codeword D(θ+1) ; 
o Compute the extrinsic information ω(θ+2) in terms of D(θ+1) 
o θ = θ + 2; 

End While 

•Step3 :Decision 

 Select the codeword decided by the second decoder at the last iteration D(2(Nit -1)) 

3.3 Parallel decoder 
  

We give here the sub-algorithm of our parallel decoder PGAD, based on GAs that we 
proposed in [12]. It runs in parallel on each one of the Ns processors: 

Algorithm : PGAD 

D = PGAD (r, F, k,n,Np, Ng, Ne, pc, pm,Ns, Nc) 

•Step1:Permutations and Initialization 

 Run the two first steps of the algorithm GAD 

•Step 2:Reproduction 

 Encode individuals of the current population to obtain code words Ci= IiG′ (1 ≤ i ≤ Np) 
 Compute individual fitness, defined as Euclidian distance between Ci and r′ : 

𝑓𝑓(𝐶𝑖) = � (𝐶𝑖𝑗 − 𝑟′𝑗)2
𝑛

𝑗=1
,∀𝑖𝑖 ∈ {1, … ,𝑁𝑁𝑝} 

 Sort the current population individuals in descending order of their fitness ; 
 gen← 0 (gen is the current generation number). 

While (gen<Ng) do 

 Copy the Nebest individuals (elites) from the current population to the new one ; 
 Select parents from the Np–Ne individuals of the current population ; 
 Quantize the first k bits of each selected parent ; 
 Cross with probability pc the selected parents to generate Nc new individuals of k bits 
 Mutate the new individuals with a probability pm if their parents are crossed ; 
 Encode and the Nc new individuals, compute their fitness, and insert them into the 

new population ; 
 Receive Nm migrant elites (with their fitness) from the previous population of each 

Ns− 1 other processors, to complete the new population ; 
 Send the best Nm= (Ni–Ne–Nc)/( Ns− 1 ) individuals (with their fitness) to the new 

populations of Ns−1 other processors ; 
 Sort the Np individuals (codewords) in descending order of their fitness ; 
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 Replace the current population with the new one ;gen←gen + 1 ; 

End While 

•Step 3:Decision 

 Get the best individuals (D’(i))1≤i≤Ns of the last populations of all processors. The best 
one D′ of them is the closest to r′.i.e. D′ = arg min {‖D’(i)– r’‖, 1≤i ≤ Ns}. The 
decided codeword is then D =π(-1) (D’). 

The flowcharts of the previous algorithm are illustrated in both figure 6 and figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6.The flowchart of the proposed PGAD sub-algorithm running on the ith processor. 
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Fig. 7.The codeword decision flowchart of the proposed PGAD algorithm. 

4. PARALLELIZATION SCHEMAS OF ITERATIVE 2D-PBC DECODING 
The purpose is not only to reduce the execution time and occupied memory space, but also 

improve the quality of error correction. So, the parallelization schemas can affect the entire 
iterative decoder or just its elementary decoders. 

Their corresponding algorithms can be run on parallel machines containing enough 
processors (multi-processors, multicomputer)or a network of computers. Communications 
between processors are performed using global variables stored in a common memory, or via 
send/receive primitives. To simplify the graphs, we have considered just four processors. 

4.1 First schema 

The figure 8 depicts the first parallel iterative decoder that we propose. It is simply runs in 
parallel, a conventional 2Diterative decoder on each one of the Ns processors of a parallel 
machine or a distributed system, a given number of iterations Nit. At the last iteration, the ith 
processor decides the codeword D(i). The final codeword to decide is the one with the best 
fitness of all D(i), where 1 ≤ i ≤ Ns. 

 
Figure 8.The first iterative parallel decoding schema on 4 processors. 
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The corresponding algorithm is given below: 

Algorithm: PARAL_ITER1 
For i=1toNsdo 

Run IGAD on the ithprocessor ; 
Get the decided codewordD(i); 

End For 
    D=arg max {fitness(D(i)), 1 ≤ i ≤ Ns} 

4.2 Second schema 

As shown in figure 9, the second schema consists in executing, Nit times, a parallel decoder 
which is composed of NsIGADs decoders. Each one is running on a dedicated processor. The 
processors are connected by a network. At each iteration, all decoders run in parallel according 
to their inputs. At the first iteration, the extrinsic information at the input of all decoders is 
zero. At tth iteration, the decoder of ith processor provides as output, extrinsic information 
which will be injected, in combination with the received word r, to the decoder input of 
processor s+1, at the iteration t+1. The extrinsic information given by the decoder of the last 
processor is fed to the decoder input of the first one. 

 

Figure 9. Second Parallel iterative decoding schema on 4 processors 

The algorithm of this schema is: 

Algorithm: PARAL_ITER2 

θ=0 ; ω0=0 ;    
Whileθ≤2(Nit-1)do 

Fori=1toNsdo 
RunIGAD1

(θ/2) ; 
Get the decided codeword on theithprocessorDi

(θ/2); 
Computeωi

(θ+2)based onDi
(θ/2); 

End For 
Temp=ωNs

(θ+2) ; 
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For i= Nsto2  do 
ωi

(θ+2)= ωi-1
(θ+2); 

End For 
ω1

(θ+2)=temp ; 
θ=θ+2 ; 

    End while 
    D=DNs

(Nit-1) ; 

4.3 Third schema 

The elementary decoder in the conventional iterative decoder which running on a single 
processor is replaced by the parallel decoder which will be run on Ns interconnected processors. 
At each iteration, these processors run their basis decoders independently, and each one 
decides its own code word. The extrinsic information provided by the parallel decoder at this 
iteration, is computed based on the best decided codeword. 

The first decoder accepts an input that depends on the received word r and the extrinsic 
information ω(θ), and provides another information ω(θ +1) which will form with r , the input of 
the second parallel decoder. Similarly, the second decoder makes a processing based on its 
input, to decide the codeword. It also provides a new extrinsic information ω(θ +2) to be injected 
in combination with r to the input of the first decoder. This processing is performed Nit times, 
before getting the code word decided by the second parallel decoder (figure 10). 

 
Fig. 10. Third Parallel iterative decoding schema on 4 processors 

The following algorithm describes well the conduct of this parallelization scheme of iterative 
decoding: 
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Algorithm : PARAL_ ITER3 

θ=0 ; ω0=0 ;    
Whileθ≤2(Nit-1)do 

For i=1toNsdo 
RunIGAD1

(θ/2+1) ; 
Get the decided codeword on the ith processor Di

(θ/2+1); 
End For 
Getω(θ+1)using D1

(θ/2+1) =arg max{fitness(Di
(θ/2+1), 1≤i ≤ Ns} ; 

For i= Ns+1to2Nsdo 
RunGADi

(θ/2+1); 
GetDi

(θ/2+1); 
End For 

       Getω(θ+2)using D2
(θ/2+1) =arg max {fitness (Di

(θ/2+1)),} ; 
θ=θ+2 ;Ns+1≤i ≤2Ns 

   End while 
   D=arg max {fitness (Di

(Nit)), Ns+1≤i ≤2Ns} 

4.4 Fourth schema 

The principle of the fourth scheme is the same as the previous one, by replacing the two 
elementary parallel decoders based on GAD by two elementary parallel decoders PGAD1 and 
PGAD2. As shown in figure 5, the processors do not runindependent decoders but decoders 
working together. 

 
Fig. 11. Fourth Parallel iterative decoding schema on 4 processors 
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Its algorithm is presented below: 

Algorithm: PARAL_ITER4 

θ=0 ; ω0=0 ;    
Whileθ ≤ 2(Nit-1)do 

RunPGAD1 ; 
GetD(θ +1); 
Compute ω(θ+1) using D(θ+1); 
RunPGAD2 ; 
GetD(θ+2); 
Compute ω(θ+2) using D(θ+2); 
θ=θ+2 ; 

End while 
 D=D(Nit) ; 

5. TIME COMPLEXITY OF THE PROPOSED SCHEMES 
In this section, we interest to the expression of the time complexity of each proposed 

algorithm. 

The complexity of GAD is [9] : 

𝑂[𝑘²𝑒𝑒 + 𝑁𝑁𝑝𝑁𝑁𝑔𝑔(𝑘𝑒𝑒 + ln(𝑁𝑁𝑝))] (10) 

For the IGAD decoder, its complexity is [11] : 

𝑂�𝑁𝑁𝑖𝑡�𝑘2𝑔𝑔�𝑘1,𝑒𝑒1,𝑁𝑁𝑝,𝑁𝑁𝑔� + 𝑒𝑒1𝑔𝑔�𝑘2,𝑒𝑒2,𝑁𝑁𝑝,𝑁𝑁𝑔���, (11) 

where 

𝑔𝑔(𝑘,𝑒𝑒,𝑁𝑁𝑝,𝑁𝑁𝑔) = 𝑘²𝑒𝑒 + 𝑁𝑁𝑝𝑁𝑁𝑔(𝑘𝑒𝑒 + ln(𝑁𝑁𝑝)) + 𝑁𝑁𝑝𝑒𝑒 + 𝑒𝑒² (12) 

The complexity of PGAD is derived in [12] as : 

𝑂[𝑒𝑒𝑙𝑒𝑒(𝑒𝑒) + 𝑘2𝑒𝑒 + 𝑘𝑒𝑒�𝑁𝑁𝑝 + 𝑁𝑁𝑔𝑁𝑁𝑐� + 𝑁𝑁𝑝𝑁𝑁𝑔 ln�𝑁𝑁𝑝� + 𝑁𝑁𝑝 ln�𝑁𝑁𝑝�] (13) 

5.1 First iterative Parallel decoding complexity 

The algorithm PARAL_ITER1 contains a loop of instructions that run in parallel on Ns 
processors. The last instruction which sorts, in descending order, code words decided by all 
processors, has a complexity of Nsln(Ns). Thus the complexity of PARAL _ITER1 is 
Complexity(IGAD) + Nsln(Ns). i.e. : 
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𝑂(𝑁𝑁𝑖𝑡[𝑘₂𝑔𝑔(𝑘₁,𝑒𝑒₁,𝑁𝑁𝑝,𝑁𝑁𝑔) + 𝑒𝑒₁𝑔𝑔(𝑘₂,𝑒𝑒₂,𝑁𝑁𝑝,𝑁𝑁𝑔)] + 𝑁𝑁𝑠ln(𝑁𝑁𝑠)) (14) 

Note that the complexity of this new iterative decoder is increased by Nsln(Ns) relative to 
that of the conventional one (IGAD). However, it increases the probability of having decided the 
correct code word, Nstimes. 

5.2 Second Iterative Parallel decoding complexity 

The block instructions of the first loop of the algorithm PARAL_ITER2 are run in parallel on 
each one of Ns processors. Therefore their complexity is the same as that of IGAD. The 
complexity of the loop in the second algorithm is NitNs. So, the total complexity of this 
algorithm is : 

𝑂(𝑁𝑁𝑖𝑡[𝑁𝑁𝑠 + 𝑘₂𝑔𝑔(𝑘₁,𝑒𝑒₁,𝑁𝑁𝑝,𝑁𝑁𝑔) + 𝑒𝑒₁𝑔𝑔(𝑘₂,𝑒𝑒₂,𝑁𝑁𝑝,𝑁𝑁𝑔)]) 

 

(15) 

However, the turbo effect with Nit iterations in IGAD is equivalent to that of PARAL_ITER2 
with Nit /Ns iterations. Furthermore, this scheme has the advantage of being able to cascade 
different types of decoders, where some of them can compensate inefficient other at each 
iteration. 

5.3 Third Iterative Parallel decoding complexity 

For this scheme, the extrinsic information computed by the two elementary decoders, 
depends on the best codeword decided by their Ns processors. The complexity of descending 
sort of these decided words for Nit iterations is Nit Nsln(Ns). The last instruction has a complexity 
of Nsln(Ns). Thus its complexity is increased by NitNsln(Ns) compared to IGAD. i.e. : 

𝑂(𝑁𝑁𝑖𝑡[𝑘₂𝑔𝑔(𝑘₁,𝑒𝑒₁,𝑁𝑁𝑝,𝑁𝑁𝑔) + 𝑒𝑒₁𝑔𝑔(𝑘₂,𝑒𝑒₂,𝑁𝑁𝑝,𝑁𝑁𝑔) + 𝑁𝑁𝑠𝑙𝑒𝑒(𝑁𝑁𝑠)]) 
 

(16) 

5.4 Fourth Iterative Parallel decoding complexity 

It is clear that the complexity of PARAL_ITER4 is Nit × complexity(PGAD). i.e. : 

𝑂[𝑒𝑒𝑙𝑒𝑒(𝑒𝑒) + 𝑘2𝑒𝑒 + 𝑘𝑒𝑒�𝑁𝑁𝑝 + 𝑁𝑁𝑔𝑁𝑁𝑐� + 𝑁𝑁𝑝𝑁𝑁𝑔 ln(𝑁𝑁𝑖) + 𝑁𝑁𝑝 ln�𝑁𝑁𝑝�] (17) 

The complexity is multiplied by the iteration number, but the turbo effect is significantly 
augmented. So the correction capacity is improved. 

6. CONCLUSION 
We have presented four iterative parallel decoders for two dimensional product block 

codes. They can run on a parallel machine with enough processors or on a network of 
computers. One of their advantages is that they allow combining elementary decoders with the 
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same or different genetic parameters. This allows benefiting from the highlights of each code, 
at each iteration. We have shown that their complexities were slightly increased, but improve 
the decoding performances. 

We intend to implement these schemes and test them on certain codes like BCH codes to 
validate the theoretical results with simulations. 

The proposed schemes can also be applied to three dimensional product block codes. Also, 
for the first three schemes, their elementary decoders can be any ones, not necessarily based 
on GAs. 
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