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ABSTRACT 

An understanding of how well networks will respond to ongoing attack threats is an important task in 

formulating strategies to protect unauthorized network activities. The study of topological properties of 

network architecture sheds some light in this effort. The purpose of this paper is to study several scenarios 

that address topological structures and related analyses of network systems to begin the appropriate 

discussion towards this question. Analysis of the probabilistic state finite automation and its probability 

distribution theory play a pivotal role in the discussion.  
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1 Preliminaries 

There is an urgency to harden the software used in network systems as increasing incidents of network 

intrusions have been reported. In addition, hardening software in general is designed based on the 

topological construction of the network systems. Malicious incidents on the Internet as reported to CERT 

(Computer Emergency Response Team) provide evidence that these attacks increased exponentially from 

6 incidents reported in 1988 to 314,246 incidents reported in 2011 [1 & 2]. It appears that these incidents 

were not widely reported for general public since then. Furthermore, from 1988 to 2003, incidents 

exhibited exponential growth; after that the number of incidents increased sharply even with the 

increased resistances due to precautionary protective measures in place, according to Figure 1 [3]. 

  

Figure 1. Exponential Growth of Malicious 
Incidents on the Internet 

Figure 2. Exponential Growth of Malicious Incidents 
on the Internet 
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Figure 2 exhibits exponential growth of increasing malicious incidents on the Internet as plotted using the 

data in [4]. Moreover, in the recent past, these reported incidents grew significantly and have caused 

enormous disruptions for our banking and trading sectors causing unprecedented financial losses and 

privacy concerns. 

Three aspects of the theory that are distinguished for analysis pertain to (a). the formal logic content, (b). 

the intuitive background, and (c). the applications. The character and applications of the structure as a 

whole cannot be appreciated without considering all three aspects in their relations for network traffic 

anomaly detections. Probability theory, on the other hand, is the mathematical theory of random 

(nondeterministic) phenomena. The probability distribution is derived by beginning with a statistical 

model, a set of assumptions about how responses are generated, and the calculations of associated 

probabilities. However, intrusion detection systems have widely been based on the characterization of an 

attack [5]. The primary focus in this effort will be the tracing of activities on the network to see if they 

match the known characterization. In addition, there are also a few flow-level detection schemes available 

[6]. Recently, intrusion detection systems based on previous known system data have appeared in the 

literature. In brief, the purpose is to inspect the network activities for suspicious activities that may 

indicate a system attack or an occurrence of misuse by unscrupulous network users [7]. An effective ISD 

logs actions executed by users or processes for investigation, alerts the system administrator when the 

activities are indicative of an attempted intrusion, and if appropriate, takes corrective measures such as 

expelling the intruder [8]. These vulnerabilities and bugs of information systems are often exploited by 

the intrusions. The extent of all possible scenarios for a network resulting from an intrusion can vary from 

none to an actual intrusion as depicted and appropriately color corded in Table 1. A unique obstacle 

eclipse effect in obstructed barriers has been observed that generates a sensor movement strategically 

performing definite obstructed barriers prevent intrusions [9].   

 Table 1. Vulnerability: Network Hardware vs. Outside Threats 
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Network hardening 

 None Mild Reasonable High  Very High 

None      

Slight      

Moderate      

Extreme       

Severe      

 

Optimal design of network topologies in multi-agent systems to facilitate effective communication on the 

network system is posed in the associated cost factors and the efficiency of performance [10]. This 

depends on the extent of network hardening software and severity of instruction in each component. The 

network vulnerability needs to be addressed in terms of the extent of intrusion, ranging from slight to 

extreme, and of network hardening which varies from mild to very high. Vulnerable devices, applications, 

and network software on an organization's network pose a great risk to the organization. The 
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determination of probability of vulnerability under these scenarios can be calculated using the conditional 

probabilities such as        

abilty)Pr(Voluner

lty)VolunerabiandHardeningPr(
)ltyVolunerabi|HardeningPr(     and 

.
ng)Pr(Hardeni

Hardening) andlty VolunerabiPr(
)Hardening|ltyVolunerabiPr(   

These calculations determine other vulnerabilities under consideration in the areas of threat detection 

and vulnerability analysis. Other scenario can also be considered using Theorem of Total Probability and 

Bayes’ Theorem, respectively. Let  nBBB ,,, 21   be a set of nonempty subsets of the sample space S 

of an experiment. If the events nBBB ,,, 21   are mutually exclusive and .21 SBBB n    For, 

a partition of S,  :,,, 21 nBBB  Theorem of Total Probability concludes if ,, 21 BB  is a partition of S, 

and A is any event, then )()Pr()Pr(
1

i

i

i BPBAA 




  and that of Bayes’ Theorem states if ,, 21 BB  is a 

partition of S, and A is any event, then
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The probability )Pr( iB is called the priori probability and  )|Pr( ABi  is called the posteriori probability. 

Accordingly, Bayes’ Theorem determines the posteriori probability )|Pr( ABi  from the observation given 

that the event A  has already occurred. This result is of many practical importances leading to Bayesian 

classification and Bayesian estimation.   

Additionally, the attacks not only create havoc in the network system but also make the system highly 

congested holding the safety and the internal mechanism fails for hours and hours [11]. The characteristics 

of an efficient ISD that included 1) decentralized and distributed monitoring, 2) identification of 

coordinated attacks, and 3) passive network traffic analysis disrupting smooth automation networks [12].    

2 Probabilistic State Finite Automata (PSFA) 

A novelty approach that evolves around finite state automation is fascinating. A finite automaton is a 

mathematical model consisting of a set of states, a set of transitions between states, an input alphabet, 

an initial state, and a final state [13]. The following is a simple example of a transition diagram of finite 

automata.  

 

Figure 3. An Example of a Transition Diagram of Finite Automata 
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Components in Figure 3 specify: the set of states as },,{ tsS   the input alphabet as },,{ baA   the 

initial state as ,s  and the set of terminal states as }.{t  The transition function SAS :  given by 

,),( sas   ,),( tbs  ,),( sat   and .),( tbt   

A PSFA is an extended finite automaton in which each state has an associated probability based on a user 

signature. Some familiar UNIX commands such as login, lpr, cd, vi, ls, pico, mv, mail, 

www, and exit are used to create an example of intrusion paths with probabilities calculated in Table 2, 

where jp  denotes the associated probabilities for each UNIX command listed.  

Table 2. Probability Distribution of Traffic Paths 

Traffics Probability 
lpr/cd/vi 

321 ppp   

ls/pico/mv 
654 ppp   

ls/mail/www 
874 ppp   

For the j  number of traffic paths, each path has issued k  number of commands 

 .,,, ,321 kjjjj pppp , then  
j k

kjp .1,  In general, computation of network reliability can often 

be calculated. Let   be the set of all nodes and links in the network and ep  be the probability that the 

intruder is successful at some node, .e  The subset iE  consists of these successful nodes and 

links. Thus, the probability that the intruder has succeeded in the network is 

 
 


i iEe Ee

eei ppE
\

).1(]Pr[


 There are n2  possible network paths for an intruder to be successful in 

achieving this exponential growth of possible network avenues, where n  is the number of links in .   

The extension of time-dependent deterministic finite automation (TDFA) enables us to not only study 

more than just the sequence of input characters, but also to consider the time intervals between receiving 

input characters in recognizing behavioral patterns as normal. As a result, the uses of automata to 

recognize denial of service (DoS) attack signatures between arriving network packets will prove to be a 

reliable technique in the intrusion detection process [14]. However, TDFA uses the actual difference of 

arrival times between two input characters, leading to an infinite set of possible differences. This creates 

Boolean values resulting from the comparison of each of the differences to constants or variables defined 

in the automata. If we consider the problem of modeling network transition patterns, it is common to 

assume that rhythms occur with more frequency than those that correspond to random phonemes [15]. 

Hidden Markov Models (HMMs) are frequently used in many areas of pattern recognition and more 

specifically, in network intrusion detection. It is based on the fact that web information learning retains 

the ability to recognize other pattern domains, such as the Reber grammar provided in Figure 4. 
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Figure 4. A SDFA Related to the Reber Grammar   

A probabilistic automation defines a probability distribution over the set of strings of length n , for any 

particular n  [16].  

 

Figure 5. An Example of Probabilistic Automation 

 The probability assigned to this probabilistic automation in Figure 5 on the string baa   is 

computed below: 

𝑃(𝜔) = 𝜋𝑃(0). 𝑀𝑃 (0, 0, 𝑎). 𝑀𝑃 (0, 1, 𝑎). 𝑀𝑃 (1, 1, 𝑏) + 𝜋𝑃(0). 𝑀𝑃 (0, 1, 𝑎). 𝑀𝑃 (1, 1, 𝑎). 𝑀𝑃 (1, 0, 𝑏)

+ 𝜋𝑃(0). 𝑀𝑃 (0, 1, 𝑎). 𝑀𝑃 (1, 1, 𝑎). 𝑀𝑃 (1, 1, 𝑏)

+ 𝜋𝑃(1). 𝑀𝑃 (1, 1, 𝑎). 𝑀𝑃 (1, 1, 𝑎). 𝑀𝑃 (1, 0, 𝑏)

+ 𝜋𝑃(1). 𝑀𝑃 (1, 0, 𝑎). 𝑀𝑃 (0, 0, 𝑎). 𝑀𝑃 (0, 1, 𝑏)

+ 𝜋𝑃(1). 𝑀𝑃 (1, 1, 𝑎). 𝑀𝑃 (1, 0, 𝑎). 𝑀𝑃 (0, 0, 𝑏)

+ 𝜋𝑃(1). 𝑀𝑃 (1, 1, 𝑎). 𝑀𝑃 (1, 0, 𝑎). 𝑀𝑃 (0, 1, 𝑏)

+ 𝜋𝑃(1). 𝑀𝑃 (1, 0, 𝑎). 𝑀𝑃 (0, 0, 𝑎). 𝑀𝑃 (0, 0, 𝑏) 

= 0.5 × 0.2 × 0.3 × 0.1 + 0.5 × 0.3 × 0.1 × 0.3 + 0.5 × 0.3 × 0.1 × 0.1 + 0.5 × 0.1 × 0.1 × 0.3 + 0.5

× 0.5 × 0.2 × 0.4 + 0.5 × 01 × 0.5 × 0.1 + 0.5 × 01 × 0.5 × 0.4 + 0.5 × 0.5 × 0.2

× 0.1 

= 0.0480. 

3 From Queuing Theory 

Analysis of M/M/1 queue using a discrete time Markov chain (DTMC) during the times, 0, ,,3,2,   

where   is a small positive number, provides techniques for network intrusion detection. The transition 
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probabilities are up to an order of )(o  terms. The transition probabilities ]|Pr[ 1 iNjNp kkji    

that are independent of k  for a time-homogeneous DTMC are depicted in Figure 6.  

 

Figure 6. Transition Probabilities of DTMC for a M/M/1 queue from 1i  to 1i  States 

One powerful, but simple formula in queuing theory [17], called Little’s formula, has contributed to the 

study of intrusion detection. Little’s formula of M/M/1 queues has uncovered an important phenomenon 

in cyber attacks. The expected number of attacks is proportional to the expected waiting time of an 

intruder, where the constant of proportionality is an average arrival time of attacks, .   In packet 

networks, the average packet delay caused by queuing is ,
1

)(
 


c

cT  where   is the average 

packet arrival rate to a network link that follows a Poisson process, 


1
 is the mean of average packet size 

that is exponentially distributed, and c  is the link speed. 

 

Figure 7. Average Packet Delay, )(cT  as a Function of Link Speed, c  

Figure 7 concludes that for ,



c  average packet delay is exponentially decreasing and for ,




c

average packet delay stays negative, requiring some network justification.  

Let us assume the arrival time has the geometric distribution with a parameter )1(   [18]. Let X  be 

the number of unsuccessful attacks until the first successful attack has occurred. If p  is the probability of 

successful attack then the probability that the thk  attack has been successful is 

,2,1,0,)1(]Pr[  kppkX k and .10  p  This distribution has the same memory less 

property that has been held for Poisson distribution.  
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Figure 8. Probability that the 
thk  Attack has been Successful (taking )3.0p  

Figure 8 exhibits the high probabilities for an attacker to be successful in his/her early attempts, as well 

as the diminished probability in subsequent attempts. If the attacker is selecting an address from the 

entire space of 322N  addresses, the probability of detecting at least a single-packeted attack is 

  ,)1(1attack packeted-oneleast at  DetectingPr kp where 
N

n
p   is the probability of 

observing a single packet, assuming that the detector sensor monitors only n  IP addresses [19]. As a 

result, the graph in Figure 6 is entirely flipped vertically, demonstrating the new probabilities. The 

probability of seeking j  packets from the binomial distribution is       .1Packets Pr
jkj

pp
j

k
j











  

4 Profiles of Software Dynamics 

Operational, functional, and module profiles have been the topics of much discussion [20]. Packet-based 

traffic monitoring is an application of multinomial distribution [21]. We observe certain parameters to 

estimate them for the population distribution. Let X  be a random variable taking two values on the basis 

that an intrusion has occurred or otherwise. Thus,







 .

0

1
)(

Aif

Aif
X




  This experiment is repeated 

as many as n times. Let Y be another random variable indicating the number of successes the intruder 

had. That is, }.,1)(:{# AXiY ii    Accordingly, 



n

i

i pnBYXY
1

),,()(  where 

),( pnB  is the binomial distribution with parameters n  and .p  The combined probability function of 

nYYY ,., 21   gives the multinomial distribution. For a given specific operation, say ,kO it will distribute 

its activity across the set of functionalities, .
)( kO

F  At any arbitrary interval, ,n during the expression of 

,kO the program will be executing a functionality 
)( kO

i Ff   with a probability, ].|Pr[ kXiYn   

From this conditional probability distribution for all operations, we derive the functional profile for the 

design specifications as a function of a user operational profile: 

 
j

jXiYjXiY ].|Pr[]Pr[]Pr[  
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 
j j jXiYpiY ].|Pr[]Pr[  

.]Pr[/],Pr[]Pr[  
j j jXjXiYpiY  Three possible traffic paths occur with probabilities 





3

1

.1,3,2,1,
i

ii pip  Suppose that n independent replications of this traffic are initiated and let 

,3,2,1, iX i denote the number of times outcome i appears. Now if iY   and ,jX   then it follows 

that .jinZ   However, 

.
)!(!!

!
],,Pr[

)(

321

jinji
ppp

jinji

n
jinZjXiY




  This follows, since any particular 

sequence of n traffic paths having path 1 appearing i times, path 2 appearing j times, and path 3 

appearing )( jin   times has probability 
)(

321

jinji
ppp


 of occurring. Since there are 

])!(!!/[! jinjin   such sequences, we have 



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
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j
jnj
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j

pp
jnj
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ppp
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]Pr[

22

)(
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 where we have used the fact that Y has binomial 

distribution with parameter n  and .2p  






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









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
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]Pr[

2

1

2

1  For 

other profiles, more discussions are found in [22].  

Let us now assume that an intruder attempts to attack a network system which has n  components with 

probability .2p  The probability that he will be successful in each component is .1p  Let 2X  be the 

number of these components that are actually attacked. With this assumption, 2X  is then the binomial 

distribution with parameters 1x  and ,2p  given 1x  components. The joint probability function for 

21, XX  is the product given by 

,)1()1(),( 21211

21 22

2

1

11
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  for nx ,,1,01   and                          

.,,,1,0 12 xx   The marginal probability function for 2X  is obtained by summing over the range of 

possible 1x  values for the given :2x .,,1, 221 nxxx    
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


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
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    .1)( 22
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X pppp
x
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





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


  Accordingly, 2X  has a binomial distribution with parameters 

. and 21 ppn  

In addition, majority of assumptions in the domain of cyber security naturally meet the properties of a 

Poisson process, namely, the number of intrusions can be modeled by a Poisson distribution and in fact, 

the time between intrusions is exponentially distributed. However, the log-normal distribution 

significantly fits the modeling in terms of the number of detected intrusions and the time between 

intrusions. The Pareto distribution is an alternative to both of these distributions that analyzing whether 

time-to-compromise (TTC) increase for each successful intrusion of network systems [23 & 24]. 

5 Conclusions and Future Work 

The probability distribution theory assisted us in breaking down several parts of the analysis. The 

hardening hardware should be done at very appropriate levels using the topological nature of these 

analyses. In every case beginning with the identification of operating systems, network strengths, 

weaknesses, opportunities, and threats should be analyzed in a logical fashion. Assessing present 

strategies is done only when we are fully aware and conversant with the detective analysis of the systems. 

Necessary changes, improvements, and recommendations for any system will inevitably benefit the 

analysis and its mere purpose for preventing intrusion. Stating explicitly how to identify strengths of the 

methods to exploit the intrusion, rectifying the weaknesses, and preventing intrusion’s threats to thus 

outline precautions to safeguard the network system is in fact needed. 
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