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ABSTRACT  

With increasing in heterogeneity of the mobile and wireless networks, including the use of licensed and 

unlicensed spectrum, and diversity in types of User Equipment (UEs), managing how traffic flows through 

network while maintaining high level of users’ quality of experience is crucial. In this paper, we present a 

novel traffic management mechanism that maintains the users’ quality of experience as well as 

guaranteeing fairness among users. This traffic management has two separate elements, one that is 

located at the UE and one that is located at the cloud-based network controller. While each UE maximizes 

their utility function, which is modelled based on the QoS parameters, selfishly, at the network side, the 

attempt is to maximize fairness among all users’ flows. 

Keywords: 5G mobile; QoS; Fairness; traffic management; LTE; WiFi; SDN; central controller. 

1 Introduction 

The next generation of mobile networks, a.k.a. 5G, will be deployed with dense small cells of different 

technologies including LTE femtocells and picocells, WiFi access points, and novel radios, such as 

millimeter wave. Faced with an ever larger portfolio of applications to serve and with a corresponding 

number of requirements to satisfy, it is commonly recognized that 5G need to consider various 

requirements of different application domains and industry sectors. 

To address the above, there has been number of initiatives for the design of new mobile network 

architecture. One of the avenues for the 5G architecture design is the fully decoupled architecture. 

Decoupling of uplink and downlink has been well studied over the past few years [1] and its pros and cons 

are discussed in the community. Decoupling of the control and data plane is another well-investigated 

topic that is mostly studied within the context of Software-defined Networking (SDN) [2], [3]. 

Virtualisation and cloudification of the mobile networking functionalities is another element of 5G 

network that is enabled in such a decoupled architecture [4]. 

On the other hand and with the ever increasing data traffic in mobile networks, traffic management and 

maintaining Quality of Service (QoS) is more than ever challenging. According to Cisco Visual Networking 

Index, global mobile data traffic reached the 2.5 exabytes per month at the end of 2014, and this figure 

will surpass 24.3 exabytes by 2019 [5]. Hence, more efficient traffic managements are needed that can 

deal with the backhaul congestion, and guarantee the QoS for users. In the SDN-based 5G network, it has 
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been shown that centralized traffic management mechanism can provide guaranteed QoS and more 

efficient traffic management [6]. 

To this end, we discussed a device-controlled mechanism in our previous work [7], where all decisions are 

made at the User Equipment (UE). Such device-controlled decision making mainly focuses on the users’ 

QoS requirements and is a fully “selfish” decision. We designed the algorithm for selecting radio access at 

the UE with a reinforcement learning process that takes Received Signal Strength (RSS) and battery status 

of the UE into consideration. Here, we extend our previously designed device-controlled traffic 

management to address the issue of fairness, i.e. while users maximize their own interest, network 

maintains fairness among users. 

Therefore, we define a traffic management mechanism based on “selfish” users and “fair” network, where 

the network side is a cloud-based central controller. We use Jain’s fairness index to quantify fairness [8], 

and simulated annealing as a heuristic to solve the optimization problem at the controller side. The Jain’s 

index has been well-used for quantifying fairness in communication networks [9]. At the UE side, the 

problem of long-term QoS maximization is formulated as a Q-learning problem. The contributions of this 

paper are threefold: 

 We propose a new QoS-based traffic management mechanism which can maximizes QoS utility

of each UEs while implementing fairness maximization for the network system. In this paper, we

call this scheme QoS and Fairness maximization (QFM). We use Jain’s fairness to define fairness

among UEs and assume such fairness in maintained at the “central controller”. Hence, the final

decisions of network selection will be made by both UE and central controller together in order

to maximize QoS utility of the UEs as well as Jain’s fairness index between all traffic flows.

 We maximize fairness levels of the system with QoS values constraints. It can be implemented by

our system model which combines device-controlled mechanism and cloud central controller

together. Device-controlled mechanism has been explained in our previous work which is a fully

distributed mechanism used to consider UEs’ location information and their QoS requirements.

In this paper, we add a cloud central controller on top of the whole system and devise an

optimization approach to ensure traffic resource has been effectively managed based on our QFM

mechanism.

 When backhaul congestion has been taken into account, we can maximize UEs’ QoS values by

using channels with less congestion. Backhaul congestion tends to decrease the overall system

performance and generate unfairness issues among UEs. In this paper, instead of measuring one-

way packet delay to detect congested transport backhaul link in LTE networks which has been

proposed in existing literature [10], we propose a novel approach using central controller on top

of the system to provide information of backhaul links to UEs in the future networks.

The remainder of this paper is organized as follows. Section II briefly reviews the state of art for cloud-

based central controller and fairness in traffic management. After elaborating our system model and 

fairness approach in Section III, our problem formulation and traffic management approach will be 

described in Section IV and V, respectively. Section VI presents simulation study and performance 

observations. Finally, highlights of this work and road ahead are discussed in Section VII. 
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2 Related Works 

In this section, we review the state of art in cloud-based control plane and also traffic management 

mechanisms in mobile networks. There is a large body of research on virtualization of mobile network 

functions and the design of different architecture for cloud-base control plane [10]. Using the SDN 

paradigm for decoupling data and control and managing network centrally has also been discussed in the 

5G literature. Examples of such work are the presented research in [2], [3] and [4]. In [2], new SDN-based 

architecture for 5G is presented so as to reduce latency for mission critical applications. In [3], it has been 

shown how logically central controller can be placed in the LTE network architecture. The effect of such 

architecture design on signalling overhead and agility of control are also discussed in this paper. 

Furthermore, research work in [4] focuses on the design of access cloud in SDN-based 5G architecture. 

On the other hand, the explosive growth of cloud-based applications for mobile devices, brought attention 

to the development of networking architectures and mechanisms to assist operators in managing traffic 

as dynamically as possible. Well-designed traffic management will allow network operators to draw 

maximum value from available capacity by managing network resources as efficiently as possible. Running 

traffic management at the UEs side allow such decision to be made where the required information are 

available in the most up-to-date and precise format (all measured at the UE and utilised at the UE). Hence, 

users can potentially achieve their desired QoS level that is either improving their received data rate, and 

communication latency or lowering their power consumption. In this regard, the device-centric network 

architecture has been listed as a solution to address users’ stringent QoS requirements in [11]. In [12], 

automatic Access Network Selection (ANS) has been proposed in a device-controlled manner for better 

traffic management. Furthermore, various ANS mechanisms for enabling “always-best” connectivity are 

reviewed in [13], and it has been concluded that introduction of cognition and advanced learning 

capabilities, can act as a catalyst for improving the quality of ANS decisions. Based on the discussed 

literature here, we propose a dynamic traffic management mechanism within SDN-based 5G architecture, 

and with integrating learning capabilities based on the analytics of networks. 

Cognition and learning capabilities have been introduced in different aspects of mobile networks including 

routing, resource management and dynamic channel selection [14], [15]. We use Q-learning in this paper 

that is a model-free reinforcement learning technique. Q-Learning and reinforcement learning are 

frequently used in the mobile and wireless networks. An online path selection algorithm based on Q-

learning has also been proposed in [16] for minimizing the probability of burst loss in optical switching 

networks. In [17], fuzzy Q-learning algorithm is used to optimize call dropping rate for traffic steering. 

The last topic we touch on, in our background section is consideration of fairness in mobile networks. 

Fairness has been well-studied in the context of scheduling and wireless recourse allocations, either on 

the wireless channel or over the end-to-end flow [18, 19]. Similarly fairness has been studied in workload 

distribution in Datacenters [20]. To quantify fairness, various different fairness measures have been 

proposed in the literature. The Jain’s fairness index [8], which was conceived to measure fairness in 

computer networks, is a very well used measure of fairness in both wired and wireless networks [21], 

thanks to its advantageous mathematical properties. Therefore, we also use Jain’s index to measure 

fairness in this paper. 

 



Menglan Jiang and Toktam Mahmoodi; Traffic Management in 5G Mobile Networks: Selfish Users and Fair Network, 
Transactions on Networks and Communications, Volume 4 No. 1, February (2016); pp: 1-15 

 

URL: http://dx.doi.org/10.14738/tnc.41.1447  
 

4 

 

3 System Model 

3.1 Model of the system-level architecture 

Different elements of our proposed QoS and fairness maximization (QFM) traffic management is detailed 

in this section, and depicted in Figure 1. The three main layers in this model are the UE layer, the wireless 

network layer (i.e. radio access and mobile core, e.g. EPC), and the cloud layer (i.e. central controller). 

These three layers are elaborated here and the flow chart of communication between these layers has 

been described in Fig 2. 

 
Figure 1. SDN-based System Architecture. 

 

 UE Layer: In our model, UEs can communicate with the Access Network Discovery and 

Selection Function (ANDSF) server via the S14 interface [22]. We further assume ANDSF 

includes network analytics server and UE can acquire network analytics through S14. The 

analytics, we consider here, are performance of different RANs in terms of QoS level for the 

UEs previously connected to the RAN. This information can be collected from database 

Candidate Networks Information (CNI) which connects with ANDSF directly. The central 

controller can also communicate with UEs through open interfaces, i.e. the OpenVSwitch on 

the mobile device operating systems, so that controller’s decision on fairness maximization 

can be communicated to the UEs. 

 

Figure 2. Communication Architecture 
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 Wireless Network Layer: The wireless network layer comprises of the radio access and mobile 

core network that provide connectivity to UEs. We model the radio access network with four 

different Access Points (AP), consisting of LTE macro (i = 1), pico (i = 2) and femto (i = 3) as 

well as one WiFi access point (i = 4). The coverage area of these wireless access points is a 

circle with diameter Ri meter, where R = {500; 300; 50; 100} (values from [23]). For simplicity, 

both of the WiFi AP and cellular base stations are referred to as wireless AP from this point 

on. The core network consists of serving gateway (S-GW), packet data network gateway (P-

GW), mobility management element (MME) and policy and charging rules function (PCRF) 

that have been used to implement connection, mobility and QoS management. 

 Cloud Central Controller: Our cloud-based central controller implements the following rules: 

(1) based on periodically updated information from UEs and APs, central controller can 

check if any of the AP is available. If only one AP is available for a given UE, controller will 

assign this AP to the UE; (2) if more than one AP is available for the UE, controller will run 

fairness maximization algorithm and provide the priority list of available APs to the access 

network selection at the UE.  

3.2 UE’s battery Models 

The UE’s battery consumption and how it will be affected by the application’s throughput, is modeled 

here. We use the model described in [27] for the battery discharging rate, ζ, during the lifetime of battery, 

T, based on Equation (1). 

𝜁(𝑇) =
𝜋2

3𝛽2 𝑒−𝛽2𝑇                                                 (1) 

where 𝛽 is the value of chemical parameter and may vary from battery to battery in the range of (0.4, 1). 

It has been shown in [28] that by running three different applications concurrently on various smart 

phones, their battery lasts for two hours. Therefore, T is set to 120 minutes working time is the value we 

used for our simulations. 

The energy consumption of the device, when connected to the i-th AP with distance d is detailed in 

Equation (2). 

𝐸𝑖 =  𝜁(𝑇) + 𝜂𝑑𝑖
𝑛                                                  (2) 

where 𝜂 and n denote the battery consumption per distance unit, and the propagation loss coefficient, 

respectively [28]. 

4 Problem Formulation 

In this section, we present details of the optimization problems that formulate our proposed QMF 

mechanism. We will describe two sets of problems, first those who describe the decision making of selfish 

users and then those that depict fairness maximization at the network. Throughout the problem 

formulation, we interchangeably use UE and user, assuming each user corresponds to a unique device. 

4.1 Selfish Users 

In our designed traffic management, UEs aim to maximize their QoE. We define QoE as a utility function 

based on received throughput and the battery consumption, as Equation (3). 

        Ω =
[∑ 𝐶𝑖𝑗𝑖 ]𝑤1+[∑ 𝐸𝑖𝑗𝑖 ]𝑤2

∑ 𝐶𝑖𝑗+∑ 𝐸𝑖𝑗𝑖𝑖
                                                      (3) 
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where 𝐶𝑖𝑗 and 𝐸𝑖𝑗  represent values of received throughput, and consumed energy by user j = {1, 2, …,U} 

as a result of connection to the i-th AP, i = {1, 2, …,N}. The first term in the numerator shows the total 

received throughput by user j, in case this user is connected to multiple APs. Similarly the second term is 

the total energy consumption at the UE. The 𝑤1 and 𝑤2 are weight values, representing the significance 

of these two different criteria in the utility. We further assume that backhaul congestion affects UE’s 

throughput. We model the backhaul link of each AP as a queue with exponentially distributed service 

time, 1/𝜇𝑖. Assuming 𝜎𝑖𝑗 is the received throughput over the wireless channel (using Shannon equation), 

then the received throughput through the i-th AP is 𝐶𝑖𝑗 = min {𝜎𝑖𝑗, 𝜇𝑖}. 

To this end, the following optimization problem will be solved at each UE, i.e. 𝑈𝐸𝑗. 

(P1): Maximize Ω𝑗 

Subject to: 

∑ 𝐸𝑖 𝑖𝑗
≤ 𝑃𝑗        𝑖 = {1, 2, … 𝑁}                                          (4) 

Where 𝑃𝑗 denotes the remaining battery at the j-th UE. 

4.2 Fair Network 

The cloud-based controller aims to maximize fairness among all connected UEs. As explained earlier, we 

use Jain’s fairness index to quantify the achieved fairness among UEs as a result of our proposed traffic 

management. Jain’s fairness index can be explained as: 

𝐽(𝑋) =
(∑ 𝑥𝑗

𝑈
𝑗=1 )2

𝑈∗∑ 𝑥𝑗
2𝑈

𝑗=1

                                      (5) 

Where 𝑥𝑗 = ∑ 𝐶𝑖𝑗𝑖 , that is the total received throughput by 𝑈𝐸𝑗. 

Therefore, the optimization problem at cloud-based controller can be formulated as: 

(P2): Maximize 𝐽(𝑋) 

Subject to: 

𝑥𝑗 ≥ 𝐶𝑗
𝑚𝑖𝑛      ∀𝑗 ∈ {1, … , 𝑈}                               (6) 

Where, 𝐶𝑗
𝑚𝑖𝑛 show the QoS requirement (in this case minimum required throughput) of user j depending 

on its application. 

5 Traffic Management Solutions 

We present different solutions for the proposed traffic management optimizations in section IV. First, we 

use Q-learning to solve the selfish user optimization problem (P1) and then we use simulated annealing 

as a metaheuristic to solve the fairness maximization problem (P2). 

5.1 Solutions to (P1) Using Q-learning 

In order to solve (P1) for QoS optimization, we use Q-learning. The main reason for using a learning based 

approach is the possibility of including historical data so as to make a decision that is optimal choice for 

longer period of time, and to potentially reduce the number of handovers.   
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Q-learning is an incremental dynamic planning process, which can be used to determine the optimal 

strategy through step by step approach. Hence, we need to define time-varying states, actions and reward 

function for the process of selecting the AP. At each time t, s(t) describes the state of a given AP, which 

will alter to s(t + 1) by executing action a(t). The Q-value of this transition is defined as the expected value 

in Equation (5). 

𝑄(𝑡)(𝑠, 𝑎) = 𝐸{𝑅𝑡|𝑠 = 𝑠(𝑡), 𝑎 = 𝑎(𝑡)}.                                     (7) 

The state s(t), action a(t) and reward value of R(t) are, 

 𝑠𝑖(𝑡): State of 𝐴𝑃𝑖  at time t is denoted by 𝑠𝑖(𝑡) ∈ 𝑆 and represent receiving service through 𝐴𝑃𝑖. 

 𝑎𝑖(𝑡): Actions 𝑎𝑖(𝑡) ∈ 𝐴 represent changing from one AP to another. 

 𝑅𝑖(𝑡): We define the “Reward Function” based on the value of Ω in Equation (3). Equations (8) 

and (9) describe the immediate reward, 𝑟𝑖(𝑡), and the weighted and aggregated reward function 

over time, 𝑅𝑖(𝑡). 

𝑟𝑖(𝑡) = (∑ Ω𝑗(𝑡)𝑖 − ∑ Ω𝑗(𝑡 − 1)𝑖 ),                (8) 

𝑅𝑖(𝑡) = ∑ 𝛾𝑘𝑟𝑖(𝑡 − 𝑘),10
𝑘=1                                (9) 

Where 𝑘 demonstrate number of historical records that are taken into account and 𝛾  is the discount 

factor. In other words, 𝛾 represents significance of the previously recorded reward values on 𝑅𝑖(𝑡). In the 

simulation study of this paper, we set 𝛾= 0.995 and the ten time stamps in Equation (9) similar to the 

described algorithm in [14]. 

Based on parameters described above, we can calculate Q-values by considering historical records, as 

follows: 

𝑄(𝑡)(𝑠, 𝑎) = 𝑄(𝑡)(𝑠, 𝑎) + 𝛼[𝑅(𝑡) + 𝛾𝑄(𝑡)(𝑠, 𝑎) − 𝑄(𝑡−1)(𝑠, 𝑎)]         (10) 

where 𝑄(𝑡)(𝑠, 𝑎) is the current value of 𝑄 for a given AP at time t, and 𝑄(𝑡−1)(𝑠, 𝑎) is the historic value 

that was stored in the CNI and retrieved by the UE. Parameter 𝛼 represents the learning rate, that is a 

value in the range of (0, 1), if 𝛼 = 0, the Q value is never updated. Summary of the Q-learning algorithm 

for solving (P1) is described in Algorithm 1. 
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5.2   Solution to (P2) using Simulated Annealing 

Simulated Annealing (SA) is a well-used heuristic for solving combinatorial problems. At each step of the 

SA algorithm, current solution will be replaced with a new solution given a certain probability. That 

probability depends on both difference between the current solution and randomly generated neighbor 

solution and also the temperature value T of the system [24]. 

In this section, we describe a solution for (P2) based on simulated annealing algorithm, which runs at the 

central controller. This algorithm, detailed in Algorithm 2, maximizes achieved fairness among the UEs. 

We are using Jain’s fairness index as explained in IV-B to quantify fairness. Solving (P2), using the SA 

algorithm to consider maximizing  𝐽(𝑋). If the value of 𝐽(𝑋) for the neighbor AP is higher than the current 

one, the algorithm triggers a move to the neighboring AP. Otherwise, the algorithm choose an AP between 

the current AP and the neighbor AP according to a generated probability value. The random selection will 

allow solution to converge to global optimal point. The generated probability value for replacing current 

AP to the neighbor AP is based on
T

XJ
p

)(
 , where )(XJ  shows the difference of J(X) value 

between the current AP and the neighbor one.  

 

6 Performance Evaluations 

In this section, we explain our simulation settings, discuss, and analyze the results.  

6.1   Simulation Parameters 

As mentioned earlier, we have modeled our system as an integrated wireless network that has four APs: 

one LTE macro cell, one pico cell and one femto cell, as well as one WiFi access point. We assume coverage 

areas of the three latter access points are included in the coverage area of the macro cell. The wireless 

channel is modeled with path loss (see Table I), and hence the RSS can be explained as 𝑅𝑆𝑆𝑖 = 𝑇𝑃𝑖 −

𝑃𝐿(𝑑𝑖), where 𝑇𝑃𝑖 denotes the transmit power of the i-th AP, 𝑑𝑖  is the distance between UE and the i-th 

AP and 𝑃𝐿(𝑑𝑖) is the associated path loss value [25]. Detailed simulation parameters are described in 

Table 1. 
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Table 1: Simulation Parameters 

Parameter  Value 

Peak Data Rate LTE 100 Mbps 

WiFi 11 Mbps 

Tx Power LTE Macro 46 dBm 

LTE Pico 23 dBm 

LTE femto 13 dBm 

WiFi 20 dBm 

Noise Spectral Density  128.1+37.6 log(d) 

Application 
throughput 

Video 500-700 Kbps 

Interactive 300-600 Kbps 

P2P 700-1000 Kbps 

E-service 600-800 Kbps 

Cell Coverage LTE Macro 500 meter 

LTE Pico 300 meter 

LTE femto 50 meter 

WiFi 100 meter 
  

6.2   Simulation Scenarios 

 Scenario One: QoS-based traffic mechanism: In this scenario, we examine QoS-based RAN 

selection without considering history records. Weight values of different criteria have been set as 

0.8 for received throughput and 0.2 for consumed energy by UEs, respectively. We assume 

decisions have been made by the UEs that can communicate with the ANDSF directly in order to 

receive information of candidate APs as described in 3.1. Therefore, UEs selects the AP that offers 

highest value of QoS utility, based on Equation (3). 

 Scenario Two: learning-based traffic mechanism: In this scenario, we examine reinforcement 

learning based RAN selection. Compared with scenario one, we run Q-learning algorithm at UEs 

side by considering history Q-values of each available APs. This is based on solving P1 as explained 

in section 5.1. The main aim of using history values is to reduce the potential number of handovers 

by selecting the AP that has high performance over a period of time (and not only 

instantaneously). 

 Scenario Three: QFM-based traffic mechanism: In this scenario, we examine our proposed QoS 

and Fairness maximization (QFM) based RAN selection. In scenario three we solve (P1) using Q-

learning at the UE side and (P2) at the network controller side. ??? If there exists conflict between 

the results from the UE side and network controller side, the received throughput values by 𝑈𝐸𝑗  

should be checked simultaneously. If received throughput values that generated from the 

network controller side are in the field of application throughput described in Table 1, then the 

process of selecting APs is based on the results generated from the network controller side. 

Otherwise, the selected APs are based on the results generated from UE side. 

6.3   Result Analysis 

Our considered Key Performance Indicators (KPI) are: Users’ throughput, UEs’ battery consumption, 

number of handovers and Jain’s fairness index. 
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Figure 4. Sum throughput Vs. number of active users 

Figure 4 indicates aggregated average received throughput for UEs in three different scenarios as we 

described above. Observing from this figure, it can be seen that throughput values in scenario one are the 

highest.  That is because, the aim of QoS-based traffic mechanism in scenario one is maximizing QoS values 

based on Equation (3). Maximizing QoS values means maximizing the value of UEs received throughput. 

Since backhaul congestion are also considered in Scenario one, users were able to connect with an AP that 

provides higher throughput (and not only higher data rate over the wireless channel). Therefore, the value 

of sum average throughput UEs received in scenario one is higher than that in scenario two and three.  

In scenario two, the sum average UEs’ throughput is approximately 50% lower than those of scenario one. 

That is because, the main aim of learning-based traffic mechanism in this scenario is reducing the potential 

number of handovers without focusing on improving UEs received throughput. Therefore, the value of 

throughput in this scenario has decreased dramatically and from this figure not all UEs receive their 

required throughput values. 

In scenario three, it can be explicit shown that the sum average UEs’ throughput is lower than that in 

scenario one but higher than that in scenario two. That is because, the aim of QFM-based traffic 

mechanism is improving fairness allocation for all UEs which is restricted by achieving minimum UEs 

required throughput. Therefore, the value of sum throughput should be increased compared with 

scenario two but still reduced compared with that in scenario one which is mainly focus on maximized 

throughput values. 

 

Figure 6. UEs’ average battery consumptions 
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Figure 6 shows battery consumption of the UEs in three different scenarios. It can be seen that values of 

battery consumption in scenario two are the lowest, and those values in scenario three are the highest. 

Because in scenario two, Q-learning algorithm has been implemented at UEs side. Cumulative reward 

values can help UEs to learn from history experience of candidate networks and can help them to perform 

best actions at each time steps.  The aim of using Q-learning is reducing number of handovers for all UEs 

to help them maintain their ongoing communications for longer period of time. Therefore, the value of 

battery consumption should be reduced in scenario two and it is lower compared with that in the other 

two scenarios. 

Higher battery consumption in scenario three than in scenario one is because the more handover 

occurred. Based on the Equation (2), device energy consumption is based on the three different variables 

which are d, β and T. In these three scenarios, values of β are the same separately. The more number of 

handovers, the more time T wasted. From Table 2, the total numbers of handovers are 209, 171 and 257 

in these three scenarios separately. Therefore, in Fig 6, decreased and increased values of energy 

consumption are proportional to scenario one. The more number of handovers generates the more 

battery consumption.   

Table 2. Total Number of Handovers in each scenario 

 Scenario 
One 

Scenario 
Two 

Scenario 
Three 

Total number of 
Handover 

209 172 257 

Number of handover over the course of simulation are demonstrated in Fig 7, 8, and 9. It can be seen that 

average number of handovers in scenario two (Fig 8) is lower than those in scenario one (Fig 7). Reduced 

number of handovers of UEs can decrease values of battery consumption and confirms the results 

presented in Fig 6.  Higher number of handover can be observed in Fig 9 that correspond to the higher 

battery consumption of scenario three in Figure 6.  

 
 

Figure 7. Number of Handovers in Scenario one 
(QoS-based) 

Figure 8. Number of Handovers in Scenario two 
(Learning-based) 
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Figure 9. Number of Handovers in Scenario 3 
(QFM-based) 

Figure 10. QoS Utility based on Equation (3)  

 
Figure 11. Average Jain Index in Vs simulation time steps 

Furthermore, Fig 10 shows the QoS utility value (as Equation (3)). It can be seen that the QoS utility is 

lowest in scenario three and highest in scenario one. That is because, the aim of scenario one is enabling 

UEs to connect with optimal APs which can provide maximum value of QoS. Based on Equation (3), though 

the value of energy consumption are higher in scenario one, weight value of it is much smaller compared 

with throughput which is the main affect factor for QoS level. Therefore, QoS level of scenario two is lower 

than that in scenario one, even though the energy consumption has been reduced to a large extent. In 

scenario three, our proposed QFM mechanism implements fairness traffic mechanism which will reduce 

values of QoS for UEs at the same time. After UEs select APs by considering their selfish requirements, our 

cloud central controller reassign traffic resource to UEs with respect to fairness. 

Finally, Jain’s fairness index is plotted in Fig 11. As expected, scenario three has the highest fairness index 

and scenario one has the lowest fairness index. Based on fairness Equation (5), the value of J(X) is in the 

field of (0,1) and the higher the better. Higher J(X) value will be generated when values of (∑ 𝑥𝑗
𝑈
𝑗=1 )2 and 

(𝑈 ∗ ∑ 𝑥𝑗
2𝑈

𝑗=1 ) are quite similar. In scenario three, fairness problem (P2) has been solved by our proposed 

QFM mechanism. Network resource has been allocated efficiently while minimum requirements of UEs 

have been satisfied as well. In scenario one, each UEs purchases higher throughput and connects with the 

AP which can provide the highest resource at the same time. Therefore, the value of throughput will be 

quite different between each UEs and it will generate lowest fairness index in scenario one.  
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7 Conclusions 

In this paper, we presented a novel approach of traffic management in heterogeneous networks, which 

is QoS and Fairness Maximization (QFM) mechanism. With the rapid increasing number of mobile devices, 

their throughput demand and longer battery lifetime requirements, maximizing their QoS levels will be 

the significant part in the next generation networks. Meanwhile, how to allocate traffic resource in a 

fairness way is another important issue for us to consider. Our proposed QFM mechanism is composed 

by two parts which are fully distributed QoS maximization mechanism at UE side and centralized fairness 

traffic management mechanism at controller side. These two parts are implemented by UEs and cloud 

central controller separately with the whole view of the system. Based on analysis results, we can find 

that our proposed fairness problem have been solved. Resources of the network have been fairly allocated 

and the fairness index has been maximized as well. 
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