
 

DOI: 10.14738/tnc.32.1166 
Publication Date: 30th April, 2015 
URL: http://dx.doi.org/10.14738/tnc.32.1166 

 

VOLUME 3,  ISSUE 2 

 

 

 

Membership Protocols for the iTrust Network 

1Yung-Ting Chuang, 2Peter M. Melliar-Smith, 3Louise E. Moser, 4Isai Michel Lombera 
Department of Electrical and Computer Engineering, University of California, Santa Barbara                                                                                                                     

Santa Barbara, USA 
1ytchuang@ece.ucsb.edu, 2pmms@ece.ucsb.edu, 3moser@ece.ucsb.edu, 4imichel@ece.ucsb.edu 

ABSTRACT   

The iTrust system is a decentralized and distributed system for information publication, search and 

retrieval over the Internet, which is designed to make it difficult to censor or filter information.  In 

this paper, we present four membership protocols for the iTrust network, namely, the non-adaptive, 

retry, adaptive and combined adaptive membership protocols.  We compare the performance of 

these membership protocols, with respect to four performance metrics, namely, membership 

accuracy, match probability, response time and message cost, for various parameter values when 

the membership churn is high and when the membership is stable. 

Keywords: Membership protocol, Membership churn, Information publication, search and retrieval, 

Peer-to-peer network 

1 Introduction  

Our modern society depends on uncensored publication and retrieval of information over the 

Internet.  Currently, for reasons of efficiency and economy of scale, centralized search engines 

dominate Internet search and retrieval.  However, centralized search engines can easily censor, filter 

or bias the information they provide.  An effective decentralized and distributed search system, as 

an alternative to conventional centralized search, can help to ensure the free flow of information 

over the Internet. 

The iTrust system [5, 15, 16] is a decentralized and distributed system for information publication, 

search and retrieval over the Internet, which makes it difficult to censor or filter information.  iTrust 

is based on a peer-to-peer network that is deliberately unstructured to reduce the risk of censorship.  

The communication cost for iTrust is greater than that for centralized search engines or structured 

peer-to-peer systems.  However, if users suspect that information important to them is being 

censored or suppressed, they should be willing to incur that extra cost.  Nevertheless, we try to 

minimize any additional cost.  

In iTrust, a source node with information to share distributes metadata and a URL for that 

information, to a subset of the nodes in the membership of the iTrust network, chosen at random.  A 

requesting node, seeking information, generates and distributes its query to a subset of the nodes in 

the membership, chosen at random. Nodes, that receive metadata and a matching query, send the 

URL for the information to the requesting node, which retrieves the information from the source 

node.  If the metadata and the requests are distributed to enough nodes, the probability of a match 

and the consequent retrieval of information are very high [15]. 

The iTrust system is designed to protect against malicious nodes that attempt to disrupt the search 

for information.  A potential attack might insert, into the membership of the iTrust network, nodes 
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that behave normally except that, for sensitive information, they do not match metadata and 

requests, thus reducing the probability of a match.  To guard against such an attack, each node 

computes, locally and independently, an estimate of the proportion of non-matching nodes in the 

membership.  The node then increases the number of nodes to which it distributes metadata and 

requests, to maintain the desired high probability of a match. 

Another potential attack on iTrust might distribute metadata and URLs for misleading information.  

iTrust itself does not attempt to detect or downrank such information.  If it were to do so, iTrust 

itself would be engaging in a form of censorship.  Rather, as described in [18], a requesting node 

downloads, from the source node, a table of frequencies of terms in the document.  The requesting 

node matches those terms against its query to generate a relevance ranking for the document.  

Whether the document is useful or misleading is determined by the user. 

iTrust does not attempt to provide anonymity for its users.  Anonymity is quite distinct from 

censorship.  Anonymity attempts to hide the identities of users who publish, or search for, 

information.  Censorship attempts to hide the information itself.  iTrust could be coupled with an 

anonymity service [8, 20], so that users could publish or retrieve information without disclosing their 

identities.  We are investigating combining one of those anonymity services with iTrust. 

An extensive literature on membership exists, but most of that work is not relevant to iTrust.  

Previous membership protocols [3] aim to achieve an agreed accurate membership based on a 

consensus algorithm [2].  The membership protocols for iTrust are simpler and less costly than 

previous membership protocols, because iTrust does not need to achieve an agreed accurate 

membership but can operate effectively with an approximate membership for a rapidly changing 

network.  As large-scale peer-to-peer networks become more common, effective approximate 

membership protocols will become more important. 

In iTrust, the membership consists of the nodes that participate in the iTrust network (also referred 

to as the participating nodes).  Each node has a local view of the membership, which the 

membership protocols aim to keep close to the actual membership.  A node can join the 

membership at any time; likewise, a node can leave the membership at any time, either voluntarily 

or because it is faulty or disconnected. 

In [5, 15, 16], we presented an overview of the iTrust system and the principles on which iTrust is 

based.  In [1], we presented a version of iTrust in which nodes maintain a randomized subset of the 

membership, a neighborhood.  In large networks, containing millions of nodes, the cost of 

maintaining the entire membership is excessive.  iTrust can operate effectively with the membership 

protocols presented in this paper using smaller neighborhoods. 

In [4], we described a non-adaptive membership protocol for  iTrust.  In this paper, we present three 

additional membership protocols for iTrust, namely, the retry, adaptive and combined adaptive 

membership protocols.  We compare these membership protocols with respect to four performance 

metrics, namely, membership accuracy, match probability, response time and message cost, for 

various parameter values when the membership churn is high and when the membership is stable. 

The novel contributions of this paper are: 

• Distributed membership protocols for unstructured peer-to-peer networks, such that 

each node locally determines its view of the membership without communicating 

additional messages. 
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• Approximate membership protocols for unstructured peer-to-peer networks, in which 

each node maintains its own local view of the membership, which it tries to keep close 

to the actual membership. 

• Distributed local estimators for the size of the membership and the membership churn. 

• Non-adaptive, retry, adaptive and combined adaptive membership protocols. 

The interested reader can find the source code, the user manuals and additional papers on iTrust at 

http://itrust.ece.ucsb.edu. 

2 Related Work 

Mischke and Stiller [17] have characterized peer-to-peer networks for distributed search and 

retrieval as structured or unstructured.  The iTrust system is based on an unstructured network, like 

√ ike the 

system of Lv et al. [14]. 

Prior work on membership has focused on forming an agreed accurate membership, and is typically 

based on a consensus algorithm.  Chandra et al. [2] have shown that it is impossible to achieve an 

agreed accurate membership in the presence of unreliable processors and unreliable 

communication.  Chockler et al. [3] provide a comprehensive survey of membership protocols and 

group communication systems, and of their formal specifications.  Schiper and Toueg [22] provide an 

elegant formalization of the membership problem that distinguishes between maintaining and 

agreeing on a set of members and determining which processes are working and should be 

members.  The iTrust membership protocols do not aim to achieve an agreed accurate membership 

based on a consensus algorithm.  Rather, they allow each member to have its own local view of the 

membership, and they aim to keep that local view close to the actual membership, with a much 

lower message cost than consensus-based membership protocols. 

Ganesh et al. [9] present a membership service, named SCAMP, for gossip-based protocols that 

operates in a decentralized and self-configured manner, where no peer has global knowledge of the 

membership.  A node that wishes to join (leave) the membership notifies some nodes in the network 

to add (remove) it to (from) their views.  To prevent a node from becoming isolated, a node 

periodically tries to discover new nodes if it does not receive any messages for a given period of 

time.  Compared to SCAMP, the iTrust membership protocols place more emphasis on maintaining a 

node's local view of the membership when the membership churn is high. 

Zage et al. [25] present a network-aware and distributed membership protocol that biases neighbor 

selections towards beneficial nodes, based on multiple system metrics and social network patterns.  

They demonstrate the effectiveness of their protocol for a network with a high churn rate, through 

emulation.  In the iTrust membership protocols, the nodes do not maintain their views of the 

membership through biased neighbor selections, which might allow malicious nodes to subvert the 

membership.  Rather, they discover newly joining nodes and detect leaving nodes through the 

normal course of distributing metadata and requests, which reduces the message cost. 

Liu et al. [13] describe a novel age-based membership protocol with a conservative neighbor 

maintenance scheme under churn, to retain desirable properties such as a low network diameter 

and a low clustering coefficient.  Thus, a bootstrapping node recommends, to a newly joining node, 

only the nodes that have remained in its view for a long period of time.  However, with their 

protocol, a newly joining node might not discover other nodes very quickly, whereas an older node 

might have knowledge of a larger number of other nodes.  In the iTrust membership protocols, a 
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boostrapping node sends its entire membership to a newly joining node, regarding all nodes as 

equals. 

Voulgaris et al. [24] present a membership management protocol, named CYCLON, for unstructured 

peer-to-peer networks, in which each node maintains a small and fixed-size neighbor list.  They 

describe a shuffling protocol for large networks and provide an experimental analysis in which they 

examine the clustering coefficient and the node degree distribution.  The iTrust membership 

protocols differ from CYCLON in that each node tries to discover as many nodes as possible to 

include in its local view.  In other work [1], we have also investigated the use of neighborhoods and 

de-clustering (shuffling) for very large iTrust networks. 

In BubbleStorm [12, 23], when a node joins the network, it finds an existing connection between two 

peers and interposes itself between them.  When a node leaves the network, it re-connects those 

two peers before it leaves.  If a node crashes, a neighboring peer adds a connection to the other 

peer when it discovers the crashed node.  Thus, BubbleStorm aims to maintain a fixed node degree 

at all of the nodes in the network.  The iTrust membership protocols do not try to maintain a fixed 

node degree but, rather, allow each node to maintain its own local view of the membership. 

PlanetP [7] uses a global index that describes all of the peers and their metadata in a Bloom filter, 

which it replicates throughout the network using gossiping.  iTrust does not use gossiping to 

distribute the entire membership but, rather, allows each node to maintain its own local view by 

discovering newly joining nodes and detecting leaving (non-operational) nodes through the normal 

course of operation of the iTrust messaging protocol. 

Richardson and Cox [21] provide an overlay of indices to achieve search and ranking in an 

unstructured peer-to-peer network.  A malicious attack might distort the ranking, by not reporting 

relevant documents (censorship), by increasing the rank of selected documents, or by not reporting 

highly ranked documents.  The authors discuss the distributed local estimation of system-wide 

metrics, such as average document length, which are expected to follow a normal distribution.  

Attempts to distort the metrics introduce skew into the distribution, which they can detect.  Their 

work is somewhat similar to our work [18] on search and ranking in iTrust. 

Reiter et al. [20] and Freedman et al. [8] describe anonymous communication layers, with associated 

membership algorithms.  Freenet [6] maintains a semi-structured network with a small world 

topology for better routing that also provides anonymity.  We plan to investigate whether such 

anonymity schemes are appropriate for iTrust.  However, anonymity by itself is not enough to 

prevent censorship. 

Gramoli et al. [11] and Pruteanu et al. [19] use a strategy for estimating churn similar to the strategy 

we use for iTrust.  To refine their churn estimates, they exchange churn estimates between 

neighbors, which exposes those estimates to malice. In contrast, iTrust does not exchange churn 

estimates and, thus, is more resistant to malice; even so, the churn estimates of iTrust are quite 

accurate. 

3 iTrust Messaging Protocol 

First, we briefly describe the iTrust messaging protocol, because the iTrust membership protocols 

are dependent on it.  Some of the nodes in the membership, referred to as the source nodes, 

produce information, and make that information available to other nodes. Other nodes in the 

membership, referred to as the requesting nodes, make requests (queries) and retrieve information 

from the source nodes. 
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The steps involved in the iTrust messaging protocol are given below and are illustrated in Figure 1. 

1. A source node produces metadata that describes its information, and distributes 

the metadata, along with the URL of the matching document, to a subset of 

nodes randomly chosen from its local view of the membership. 

2. A requesting node generates a request (query) that contains keywords, and 

distributes its request to a subset of nodes randomly chosen from its local view 

of the membership. 

3. When a node receives a request containing keywords that match metadata it 

holds (referred to as an encounter or a match), the node returns, to the 

requesting node, the URL of the matching document at the source node. 

4. The requesting node then uses the URL, provided by the matching  node, to 

retrieve the document from the source node. 

 

Figure 1.  (a) A source node distributes metadata, describing its information, to a subset of nodes randomly 
chosen from its local view of the membership. (b) A requesting node distributes its request to a subset of 
nodes randomly chosen from its local view of the membership.  (c) One of the nodes matches the metadata 
and the keywords in the request, and reports the match to the requesting node, which then retrieves the 
information from the source node 

A match between the keywords in a request received by a node and the metadata held by a node 

might be an exact match or a partial match, or it might correspond to synonyms. 

Distribution of the metadata and the requests to relatively few nodes suffices to achieve a high 

probability of a match.  In an iTrust membership with N nodes, distribution of the metadata to M = 

2√N  nodes and distribution of the requests to R = 2√N  nodes results in a probability of a match 

that exceeds 0.9817, derived in [15] from the hypergeometric formula for the probability of a match.  

Distribution of the metadata and the requests to more nodes would result in a higher message 

overhead, with little improvement in the match probability. 

4 iTrust Menbership Protocols 

The iTrust messaging protocol, described in Section 3, for metadata and request distribution and for 

matching and document retrieval depends on a membership, but iTrust does not require an agreed 

accurate membership, as do some other distributed systems [3].  Rather, iTrust allows each member 

to have its own local view of the membership, but aims to keep that local view close to the actual 

membership.  We present below the basics of the iTrust membership protocols and,  in Sections 6-9,  

we consider four specific membership protocols, namely the non-adaptive, retry, adaptive and 

combined adaptive membership protocols.  The two adaptive membership protocols utilize the 

Exponential Weighted Moving Average (EWMA) method.  We compare the effectiveness of the four 

membership protocols when the membership is subject to churn and when the membership is 

stable.  
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4.1 Joining the Membership 

To join the membership, a node must first obtain the address of a bootstrapping node.  To obtain 

the address of a bootstrapping node, the node uses mechanisms outside the iTrust network, such as 

conventional Web search,    e-mail, Twitter, printed publications, etc.  

The steps involved when a node joins the membership are given below, and are illustrated in Figure 

2(a). 

1. A joining node contacts a bootstrapping node to obtain the bootstrapping 

node's current view of the membership.  A node typically uses a bootstapping 

node that is known to, and trusted by, the user.  Using a malicious bootstrapping 

node can lead to a seriously distorted membership. 

2. The joining node then publishes its joining the membership to a subset of nodes 

randomly chosen from the view of the membership it obtained from the 

bootstrapping node. 

3. The randomly chosen nodes then add the new node to their local views of the 

membership. 

Another node learns about a new node when it receives a response from a node that is aware of the 

new node.  

4.2 Leaving the Membership 

A node may leave the membership either voluntarily, or because it is faulty or disconnected.  The 

steps involved in leaving the membership are simple: 

1. To leave the membership, a node simply leaves, without publishing its leaving. 

Over time, each node individually discovers the departure of nodes when it sends requests to nodes 

that do not respond.  It is not appropriate to allow a node to publish the departure of another node, 

because doing so might enable a malicious node to cause the removal of many nodes from the local 

views of other nodes. 

 

Figure 2. (a) A node joins the membership by first contacting a bootstrapping node to obtain that node's 
current view of the membership, and then publishing its joining to randomly chosen nodes in that local 
view. (b) A requesting node distributes a request to nodes randomly chosen from its view of the 
membership. A node that receives the request returns the identifier(s) of the node(s) that it recently added 
to its view. A matching node also returns the URL of the document to the requesting node. (c) The 
requesting node does not receive a response to its request from a node. The requesting node sees a timeout 
expire or receives an error code from TCP, and then removes that node from its view of the membership. 

4.3 Updating the Membership 

In the iTrust messaging protocol described in Section 3, each requesting node expects to receive 

response messages from only the matching nodes.  Other nodes that don't have a match are not 

required to send a response to the requesting node.  We have modified that messaging protocol to 
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enable a requesting node to detect non-operational (leaving) nodes and to discover newly joining 

nodes, from the responses to its requests. 

Now, the requesting node expects each node to which it sent a request to respond with its recently 

joined member(s), regardless of whether or not that node has a match.  Thus, a matching node 

sends in its response to the requesting node not only the URL of the document at the source node 

but also the identifier(s) of its recently joined member(s).  If it does not have a match, the node 

responds to the requesting node with the identifier(s) of its recently joined member(s).  Thus, the 

requesting node discovers not only the URLs of the documents, but also newly joined nodes, from 

the responses to its requests. 

If the requesting node doesn't receive a response from a node within a timeout or it receives an 

error code from TCP, then the non-responding node is considered to have left the membership 

voluntarily or to be faulty or disconnected, and the requesting node removes that node from its local 

view of the membership. 

The steps involved in updating a requesting node's local view of the membership are given below, 

and are illustrated in Figure 2(b) and 2(c). 

1. A requesting node distributes its request to a subset of nodes randomly chosen from its local 

view of the membership. 

2. A node that receives a request compares the keywords in the request with the metadata it 

holds.  If it finds a match, the node responds to the requesting node with a message that 

contains the URL of the matching document and also the identifier(s) of its recently joined 

member(s).  A node that doesn't find a match responds to the requesting node with a 

message that contains the identifier(s) of its recently joined member(s). 

3. When the requesting node receives the responses, it adds the new members obtained from 

the other nodes to its local view of the membership. 

4. If the requesting node does not receive a response to its request before a timeout occurs, or 

if it receives an error code from TCP, then the non-responding node is considered to have 

left the membership voluntarily or to be faulty or disconnected, and the requesting node 

removes that node from its local view of the membership. 

If the requesting node is also a source node then, after receiving the responses to its request, it 

distributes its metadata with the URL of the corresponding document to additional nodes, according 

to the following steps: 

1. The requesting node (which is also a source node) calculates the number of nodes to which 

to distribute its metadata, based on its current view of the membership. 

2. Next, the requesting node subtracts the number of nodes to which it previously distributed 

metadata from the calculated number. 

3. Finally, the requesting node distributes its metadata to that many additional nodes, 

randomly chosen from its current view, but to which it had not sent the metadata previously. 

For example, suppose that a requesting node currently has N = 1024 nodes in its local view.  It 

distributes its request to R = 2√1024 = 64 randomly chosen nodes.  Suppose further that only 58 

nodes reply to the requesting node.  From these responses, the requesting node detects that there 

are 64-58 = 6 non-operational nodes.  Suppose that, as a result of receiving the responses from the 

58 nodes, the requesting node adds 40 new nodes to its local view.  Consequently, the requesting 

node now has N = 1024-6+40 = 1058 nodes in its view.  If the requesting node is also a source node, 
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then it distributes its metadata to 2√1058 - 2√1024   65-64 =  1 more node randomly chosen from 

its new view of the membership. 

5 Foundations and Experimental Method 

5.1 Environmental Variables 

Membership churn refers to nodes joining and leaving the membership, and is represented by the 

following rates: 

 JR: The Joining Rate, the number of nodes that join the membership per time unit. For 

example, JR = 50 means that 50 nodes join the membership per time unit. 

 LR: The Leaving Rate, the number of nodes that leave the membership per time unit. For 

example, LR = 50 means that 50 nodes leave the membership per time unit. 

When the membership has a lot of churn, both JR and LR are high. When the membership is stable, 

both JR and LR are low.  These rates are an important consideration for the membership protocols.  

A node can't control or alter JR or LR, but it can adjust its requesting rate.  

5.2 Parameters for the Membership Protocols 

The parameters for the membership protocols are: 

 N: The number of nodes in a node's local view of the membership. 

 LastJ: The Last Joined members, the number of recently joined members that a node may 

report to the requesting node. For example, LastJ = 2 allows a node to report its two most 

recently joined members. 

 Try: The number of times that a requesting node sends its request message, in an attempt to 

receive responses from 2√N  nodes.  Because some request messages might be sent to 

non-operational nodes, a requesting node might need to try several times before it receives 

responses from 2√N  nodes. 

 TryMax: The Maximum Try value, i.e., the maximum number of times that a requesting node 

is allowed to try to send its request message. 

 RR: The Requesting Rate, the number of times a node sends a request message to R = 2√N  

nodes per time unit.  For example, RR = 10 means that a node sends 10 distinct request 

messages per time unit, each of which is sent to R = 2√N  nodes. 

 RRMin: The Minimum Requesting Rate, the minimum rate at which a node is allowed to 

make requests. 

 RRMax: The Maximum Requesting Rate, the maximum rate at which a node is allowed to 

make requests. 

 c: The weighting factor of the Exponential Weighted Moving Average algorithm used by the 

adaptive membership protocols. 

When a node joins the membership, it obtains the values of LastJ, TryMax, RRMin, RRMax and c.  

These parameters are tunable for the particular network environment. 

5.3 Performance Metrics 

The performance metrics for the membership protocols are defined in terms of the following 

quantities: 

• L: The number of leaving nodes that a requesting node hasn't detected. 

• J: The number of joining nodes that a requesting node hasn't discovered. 
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• I: The number of nodes in the intersection of the requesting node's current view of the 

membership and the actual membership. 

The requesting node's current view of the membership consists of I+L nodes, whereas the actual 

membership consists of I+J nodes.  Figure 3 illustrates the quantities I, L and J. 

 

Figure 3.  A node's current view of the membership vs. the actual membership 

The performance metrics for the membership protocols are: 

• LND: The Leaves Not Detected, the proportion of leaving (non-operational) nodes in its 

local view that a requesting node has not detected at a particular time, defined by: 

𝐿𝑁𝐷 =
𝐿

𝐼 + 𝐿
 

 JND: The Joins Not Discovered, the proportion of newly joined nodes in the actual 

membership that a requesting node has not discovered at a particular time, defined by: 

𝐽𝑁𝐷 =
𝐽

𝐼 + 𝐽
 

• MA: The Membership Accuracy, the number of nodes in a node's current view that are 

in the actual membership, divided by that number of nodes plus the number of leaving 

nodes not detected plus the number of joining nodes not discovered, defined by: 

𝑀𝐴 =  
𝐼

𝐼 + 𝐿 + 𝐽
 

Note that MA = I/(I+L+J) = 1 - (L+J)/(I+L+J), where L+J is the number of leaving nodes that the 

node hasn't detected plus the number of newly joining nodes that the node hasn't 

discovered and, therefore, (L+J)/(I+L+J) represents the inaccuracy in the node's local view of 

the membership. 

• MP: The Match Probability of one or more responses for a request, averaged over all 

requesting nodes. 

• RT: The Response Time for a request, from the time a node starts sending a request to 

other nodes until it has received all responses, including responses for multiple tries, 

averaged over all requesting nodes. 

• MC: The Message Cost per node per time unit, calculated as an average over all nodes 

over time. 

5.4 Measured Values 

The membership protocols for iTrust use the following measured values: 

• Left: The number of nodes that a requesting node has detected to have left the 

membership since its last request. 

• Joined: The number of nodes that a requesting node has discovered to have joined the 

membership since its last request. 

(1) 

(2) 

(3) 
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• NumNodes: The number of nodes to which the requesting node sent its request. 

Using these measured values, for each of the two adaptive membership protocols, a node calculates 

a Churn Estimator for each request when it finishes receiving the responses to that request, defined 

as follows: 

 CE: The Churn Estimator, an estimate of the leaves and joins (churn) obtained by 

random sampling, given by: 

𝐶𝐸 =  
𝐿𝑒𝑓𝑡 + 𝐽𝑜𝑖𝑛𝑒𝑑

𝑁𝑢𝑚𝑁𝑜𝑑𝑒𝑠
 

The Churn Estimator is used by the adaptive membership protocols to adapt the Requesting Rate RR.  

The values of the Churn Estimator are determined using the Exponential Weighted Moving Average 

algorithm, described below.  

5.5 Exponential Weighted Moving Average Algorithm 

The adaptive membership protocols for iTrust uses the Exponential Weighted Moving Average 

(EWMA) algorithm to process a sequence of estimated values of the Churn Estimator CE, to smooth 

the estimated values and to reduce the noise inherent in the individual samples. 

A requesting node issues requests (queries), collects responses, detects non-operational nodes, and 

discovers newly joined nodes.  It then computes the estimated value CE, using the EWMA algorithm 

defined by: 

 

 

where vt is the measured value at time t and st is the smoothed value at time t.  The constant c is a 

smoothing factor,  0 < c < 1.  Larger values of c place more emphasis on the most recently measured 

values and a faster response to changes.  Smaller values of c provide more smoothing and less 

vulnerability to random fluctuations and noise. 

The pseudocode for the EWMA algorithm is given in Figure 4. 

EWMA(v, c, s) 
1     if (t = 0) then s ← v 
2     else s ← c × v  +  ( 1 – c ) × s 
3     return s 

Figure 4.  Pseudocode for the EWMA algorithm 

In our experiments, we used c = 0.7.  However, iTrust offers the user the option to choose a value of 

c for the user's particular network environment.  Different users, who operate in different network 

environments with different objectives, may choose different values of c, which iTrust allows.  

5.6 Experimental Method 

To evaluate and compare the four membership protocols for iTrust, described in Sections 6-9, we 

performed experiments using an emulation of iTrust.  In the emulation, we can control the Leaving 

Rate LR and the Joining Rate JR, which a real-world deployment would not allow us to do. Moreover, 

in the emulation, we can compare a node's current view of the membership with the actual 

membership. 

The emulation of iTrust is based on our HTTP implementation of iTrust using the Apache Web server, 

running on Debian Linux 6.0 on an Intel Quad Core 3.4 GHz processor with 4 GB memory and 1 TB 

s1  =  v1 

st  =  c x vt  +  (1-c) × st-1    if  t > 1  

(4) 

(5) 
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hard drive.  In the emulation, we have multiple virtual hosts installed on a single Apache Web server, 

where each virtual host represents a node in the iTrust network.  Each node has a separate SQLite 

database that resides on the Apache Web server, where it stores queries and resource information. 

Before we start the emulation program, we set the value of N, the number of nodes in the initial 

membership.  The program clears the node's resources and databases, and then adds all of the 

nodes to each node's view of the membership, so that each node has the complete initial 

membership.  At each time step, nodes might join the membership, leave the membership, and 

make requests.  Different nodes might have different views of the membership, and different nodes 

might make requests at different rates. 

For each source node, iTrust creates metadata for a document that the node wishes to share, and 

distributes the metadata to M randomly chosen nodes in the membership set.  Then, iTrust 

distributes requests to R randomly chosen nodes in the membership set.  Finally, the program 

compares each node’s view of the membership against the actual membership.  The program 

computes the four performance metrics at each time step.  

6 Non-Adaptive Membership Protocol 

The Non-Adaptive Membership Protocol implements the membership protocol, described in Section 

4, which involves requesting nodes updating their local views of the membership, as other nodes 

join and leave the membership.   

The pseudocode for the Non-Adaptive Membership Protocol is given in Figure 5.  The inputs for the 

Non-Adaptive Membership Protocol are N and RR, where N is the number of nodes in the node's 

local view and RR is the node's requesting rate. 

The Non-Adaptive Membership Protocol comprises an infinite loop, at the beginning of which 

nextRequestTime is set to the current time plus timeunit/RR, which is the time when the node sends 

its next request.  As time passes, time is automatically incremented (not shown in the pseudocode); 

timeunit is the length of the time unit.  The protocol waits (line 3) until the current time reaches the 

nextRequestTime. 

NonAdaptive(N, RR) 
1   while true do 
2         nextRequestTime ← time + (timeunit/RR) 
3         wait until (time = nextRequestTime) 

4         R ← 2×√N   
5         responses ← makeRequests(view, R) 
6         responded ← 0 
7         for ( j ← 0 to R) do 
8               if (responses[j].noResponse) then 
9                     removeNode(view, responses[j].node) 
10                   N ← N – 1 
11             else 
12                   responded ← responded + 1 
13                   for (k ← 0 to LastJ) do 
14                         if (responses[j].recent[k]) then 
15                               isNew ← addNode(view, responses[j].recentNode[k]) 
16                               if (isNew) then 
17                                     N ← N + 1 

Figure 5:  Non-Adaptive Membership Protocol 
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The protocol then sets the number R of nodes to which the node sends its request message to 

2√N , where N is the number of nodes in the node's current local view.  The node then sends its 

request to R nodes, and waits for responses from those nodes (line 5). 

Next, the protocol iterates through the responses array (line 7).  The protocol checks whether the 

node received a response from node j.  If not, it removes the non-responsive node from the node's 

local view and then decrements the number N of nodes in that view.  Otherwise the protocol 

increments responded. 

The protocol then iterates (line 13) through the responses[j].recent array and the 

responses[j].recentNode array, which provides the identifiers of up to the LastJ recently joined nodes.  

It checks whether responses[j].recent[k] is true.  If so, it invokes addNode() to add the recent node 

responses[j].recentNode[k] to its local view.  The procedure addNode() returns a boolean isNew to 

indicate whether or not the recent node is already present in the node's local view.  If the recent 

node is indeed new, the protocol increments the number N of nodes in the node's local view. 

Control then returns to continue the iteration through the recentNode array (line 13) or the 

responses array (line 7).  When the protocol finishes iterating through the responses array, it goes 

back to the beginning, and repeats these steps indefinitely. 

6.1 Investigation of the Non-Adaptive Membership Protocol 

We investigate the Non-Adaptive Membership Protocol, in particular, the number LastJ of newly 

joined nodes that a responding node may report to a requesting node, and its effect on LND (the 

proportion of leaving nodes that the requesting node has not detected) and JND (the proportion of 

newly joined nodes that the requesting node has not discovered). 

In the Non-Adaptive Membership Protocol, a requesting node distributes its request to R = 2√N 

nodes chosen at random from its local view.  Initially, we required those R nodes to return their 

entire views to the requesting node, and the requesting node to update its local view accordingly.  

The problem with that approach is that the requesting node adds to its view non-operational nodes 

obtained from other nodes that haven't yet detected that those nodes are non-operational.  Thus, 

the requesting node adds to its local view non-operational nodes, including nodes that it recently 

removed. 

Several possible solutions to this problem exist.  One solution is that, once a requesting node has 

obtained the views of the other nodes, it sends a “verify” message to confirm that those nodes are 

indeed operational.  Such a solution consumes too much network bandwidth.  An alternative, less 

costly solution is to require the 2√N nodes to return, to the requesting node, their “most recently 

joined members,” rather than their entire views.  We adopt the latter solution and investigate how 

LastJ affects LND and JND. 

Consider a scenario where N = 1024 nodes with a high leaving rate (LR = 300), a high joining rate      

(JR = 300) and a low requesting rate (RR = 10).  Figure 6 shows the graphs for LND and JND over time 

for this scenario.  Increasing LastJ from LastJ = 1 in the left graph to LastJ = 2 in the middle graph 

results in a decrease in JND but an increase in LND. Increasing LastJ from LastJ = 2 in the middle 

graph to LastJ = 3 in the right graph results in a slight decrease in JND and little change in LND. 
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Figure 6:  Graphs for the Non-Adaptive Membership Protocol, showing LND and JND over time for LastJ = 
1, LastJ = 2 and LastJ = 3, where N = 1024 initially, LR = 300, JR = 300 and RR = 10 

Thus, increasing LastJ definitely helps the requesting node to discover more joining nodes as it issues 

more requests.  However, increasing LastJ also causes the requesting node to add back into its local 

view too many non-operational (leaving) nodes.  Setting LastJ = 2 or LastJ = 3 increases LND with 

worse results than setting LastJ = 1.  We conclude that LastJ = 1 is an appropriate value to use in our 

further experiments. 

7 Retry R Membership Protocol 

As we have seen, increasing LastJ does not help to detect leaving (non-operational) nodes.  Thus, we 

investigate other methods to reduce the proportion LND of leaving nodes that a requesting node has 

not detected. 

When a node distributes a request message to 2√N nodes, it might not receive 2√N  responses 

for its request, because non-operational (leaving) nodes do not respond.  Thus, we investigate a 

retry method that allows the requesting node to distribute its request to more than 2√N nodes 

until it receives 2√N responses.  We call this protocol the Retry R Membership Protocol.   

The pseudocode for the Retry R Membership Protocol is given in Figure 7.  The inputs for this 

protocol are N, TryMax and RR, where N is the number of nodes in the node's current local view, 

TryMax is the number of times a node is allowed to try to obtain 2√N responses and RR is the 

node's requesting rate. 

The Retry R Membership Protocol comprises an infinite loop, at the beginning of which 

nextRequestTime is set to the current time plus the time timeunit/RR until the next request.  The 

protocol waits (line 3) until the current time reaches the nextRequestTime. 

The protocol then sets the number R of nodes to which the node sends its request message to 

2√N .  It sets the number resRec of responses received to 0 and the number Try of tries to 1, and 

then starts the while loop (line 7).  The node sends its request message to R - resRec nodes, and 

waits for responses from those nodes (line 8). 

Next, the protocol iterates through the responses array (line 10).  It checks whether the node 

received a response from node j.  If not, it removes the non-responsive node from the node's local 

view and then decrements the number N of nodes in that view.  Otherwise, it increments responded. 

The protocol then checks whether j's response contains a recent node. If so, it invokes addNode() to 

add the recent node to the node's local view.  The protocol then checks whether the recent node is 

indeed new and, if so, it increments the number N of nodes in the node's view.  Control then returns 

to continue the iteration through the responses array (line 10). 
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Figure 7:  Retry R Membership Protocol 

After it has finished iterating through the responses array, the protocol increases resRec by 

responded, the number of responses in the responses array and then increments Try.   Control then 

returns to the while loop (line 7) to determine whether Try is less than or equal to TryMax and 

resRec is less than R.  If both of these conditions are satisfied, the protocol goes through the while 

loop again.  Otherwise, the protocol goes back to the beginning, and repeats these steps indefinitely. 

7.1 Investigation of the Retry R Membership Protocol 

We investigate the Retry R Membership Protocol, in particular, the number Try of times that a 

requesting node tries to send its request message, in order to receive 2√N responses.  For example, 

Try = 1 means that a requesting node sends its request message to 2√N  nodes regardless of the 

number of responses that it receives to its request.  Try = 2 means that a requesting node tries a 

second time and sends its request to Left nodes, where Left nodes didn't respond on the first Try and, 

similarly, for Try = 3.  Try = ∞ means that a requesting node sends its request repeatedly until it 

receives responses from 2√N nodes for that particular request.  

Table 1 shows the membership accuracy, match probability, response time and message cost for Try 

= 1, 2, 3, ∞, where N = 1024 initially, LastJ = 1, LR = 300, JR = 300 and RR = 10 for the Retry R 

Membership Protocol. 

Table 1:  Retry R Membership Protocol with Try = 1, 2, 3, ∞ 

Try 1 2 3 ∞ 

Membership Accuracy 0.5966 0.6821 0.6986 0.7048 
Match Probability 0.9345 0.9817 0.9865 0.9864 

Response Time 6.0 11.9274 17.6573 24.1682 
Message Cost 3.8552 5.1538 5.4527 5.5598 

In Table 1, we see that, as Try is increased from Try = 1 to Try = 2, both the membership accuracy 

and the match probability are greatly increased but, when Try is further increased to Try = 3, there is 

not much increase in either the membership accuracy or the match probability.  We also see that 

both the response time and the message cost increase as Try is increased.  To obtain a substantial 

increase in the membership accuracy and the match probability with a reasonable increase in the 

response time and the message cost, we use Try = 2 in our further experiments. 
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8 Adaptive RR Membership Protocol 

The next membership protocol we consider uses the Churn Estimator CE to control the Requesting 

Rate RR.  The Churn Estimator CE provides an estimate of the churn (leaves and joins) in the network; 

it is initialized to 0, and the CE values are averaged using the Exponential Weighted Moving Average 

(EWMA) algorithm as time progresses.  We call this protocol the Adaptive RR Membership Protocol.   

The pseudocode for the Adaptive RR Membership Protocol is given in Figure 8.  The inputs for the 

Adaptive RR Membership Protocol are N, RR, RRMin, RRMax and c. Here N is the number of nodes in 

the node's current local view, and RR is the node's initial requesting rate. 

AdaptiveRR(N, RR, RRMin, RRMax, c) 
1   CE ← 0 
2   while true do 
3         nextRequestTime ← time + (timeunit/RR) 
4         wait until (time = nextRequestTime) 
5         Left ← 0 
6         Joined ← 0 

7         R ← 2×√N 
8         responses ← makeRequests(view, R) 
9         for (j ← 0 to R) do 
10             if (responses[j].noResponse) then 
11                   removeNode(view, responses[j].node) 
12                   N ← N - 1 
13                   Left ← Left + 1 
14             else 
15                   if (responses[j].recent) then 
16                         isNew ← addNode(view, responses[j].recentNode) 
17                         if (isNew) then 
18                               N ← N + 1 
19                               Joined ← Joined + 1 
20       currentCE ← (Left + Joined) / R 
21       CE ← EWMA(CE, currentCE, c) 
22       if  CE  >  RRMin / RRMax then 
23             RR ← RRMax × CE 
24       else 
25             RR ← RRMin 

Figure 8:  Adaptive RR Membership Protocol 

The Adaptive RR Membership Protocol comprises an infinite loop, at the beginning of which 

nextRequestTime is set to the current time plus timeunit/RR, until the next request.  The protocol 

waits (line 4) until the current time reaches the nextRequestTime. 

The protocol initializes the variables Left and Joined (which count the changes in the node's view) to 

0, and sets the number R of nodes to which the node sends its request message to 2√N.  The node 

then sends its request to R nodes, and waits for their responses (line 8). 

Next, the protocol iterates through the responses array (line 9).  It checks whether the node received 

a response from node j.  If not, it removes the non-responsive node from the node's local view and 

then decrements the number N of nodes in that view and increments Left, the number of nodes that 

have left.  Otherwise, the protocol checks whether j's response contains a recent node. If so, the 

protocol invokes addNode() to add the recent node to the node's local view.  The protocol then 

checks whether the recent node is indeed new and, if so, it increments the number N of nodes in the 
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node's local view and Joined, the number of nodes that have recently joined.  Control then returns to 

continue the iteration through the responses array (line 9). 

After processing the responses array, the protocol calculates currentCE (line 20) and then applies the 

EWMA algorithm to obtain the smoothed value of the Churn Estimator CE (line 21).  The protocol 

then calculates the value of the Requesting Rate RR for the next time unit, corresponding to the 

smoothed value of the Churn Estimator CE.  It then goes back to the beginning of the loop and 

repeats these steps indefinitely. 

8.1 Investigation of the Retry R Membership Protocol 

Figure 9 shows the graphs for the Leaves Not Detected (LND) and the Joins Not Discovered (JND) 

over time for the Non-Adaptive (left graph), the Retry R (middle graph) and the Adaptive RR (right 

graph) Membership Protocols.  Here N = 1024 initially, LastJ = 1, LR = 300, JR = 300 and c = 0.7.  For 

the Non-Adaptive and the Retry R Membership Protocols, RR = 10.  For the Adaptive RR Membership 

Protocol, RRMin = 1, RRMax = 100 and RR = 10 initially. 

In the middle graph of Figure 9, we see that, for the Retry R Membership Protocol, LND decreases to 

about 0.26 and JND decreases to about 0.12.  In the right graph, we see that for the Adaptive RR 

Membership Protocol, LND greatly decreases to about 0.14 and JND decreases to almost 0.  Thus, 

from these graphs, we see that increasing RR is more effective than increasing the number of tries, 

in decreasing both LND and JND. 

 

Figure 9:    Graphs for the Non-Adaptive,  the Retry R  and the Adaptive RR Membership Protocols,  showing 
Leaves Not Detected (LND)  and  Joins Not Discovered (JND), over time, where N = 1024 initially,  LastJ  = 1,  
LR = 300 and  JR = 300 

Table 2 presents the membership accuracy, match probability, response time and message cost for 

the Non-Adaptive, the Retry R and the Adaptive RR Membership Protocols. 

In Table 2, we see that the Adaptive RR Membership Protocol has the highest membership accuracy, 

whereas the Non-Adaptive  and the Retry R Membership Protocols  have a much lower membership 

accuracy. We also 

Table 2:  Non-Adaptive vs. Retry R with Try = 2  vs. Adaptive RR with Try = 1 and  RRMax = 100 

 Non-Adaptive Retry R Adaptive 

Membership Accuracy 0.5966 0.6821 0.8581 
Match Probability 0.9345 0.9817 0.9728 

Response Time       6.0 11.9274  6.0 
Message Cost 3.8552 5.1538 12.5690 

notice that the Retry R Membership Protocol achieves the highest match probability, whereas the 

Non-Adaptive Membership Protocol has the lowest match probability.  Both the Non-Adaptive and 

the Adaptive RR Membership Protocols have a low response time, whereas the Retry R Membership 

Protocol has a much higher response time.  The Adaptive RR Membership Protocol has a message 

cost that is about 3 times that of the Non-Adaptive Membership Protocol and about 2.5 times that 

of the Retry R Membership Protocol. 
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Thus, the Adaptive RR Membership Protocol has the highest membership accuracy, which is 

achieved by increasing the Requesting Rate RR, resulting in a high message cost.  In contrast, the 

Retry R Membership Protocol has the highest match probability with a lower message cost but it 

also has a lower membership accuracy and a higher response time. 

Therefore, we continue our investigations into an adaptive membership protocol that is 

intermediate between the Retry R Membership Protocol and the Adaptive RR Membership Protocol, 

in order to reduce the Requesting Rate RR and thus the message cost. 

9 Combined Adaptive Membership Protocol 

Now, we consider a membership protocol that not only adapts a node's Requesting Rate RR based 

on the Churn Estimator CE but also tries a second time (Try = 2) to obtain 2√N responses to a 

node's request.  We call this protocol the Combined Adaptive Membership Protocol.   

The pseudocode for the Combined Adaptive Membership Protocol is given in Figure 9.  The inputs 

for the Combined Adaptive Membership Protocol are N, RR, RRMin, RRMax and c. Again, N is the 

number of nodes in the node's current view, and RR is the node's current requesting rate. 

The Combined Adaptive Membership Protocol comprises an infinite loop, in which nextRequestTime 

is first set to the current time plus timeunit/RR, until the next request.  The protocol waits (line 4) 

until the current time reaches the nextRequestTime. 

The protocol initializes the variables Left and Joined to 0, and sets the number R of nodes to which 

the node sends its request message to 2√N.  It also initializes the number resRec of nodes from 

which it received responses to 0, and initializes the variable Try to 1. 

The loop commencing at line 10 is potentially executed twice, but only once if the number of 

responses received (resRec) in the first try is equal to the number R of nodes to which the node sent 

its request message.  Within the loop, the node sends its request message to R - resRec nodes, and 

waits for responses from those nodes (line 11). 

The protocol then iterates through the responses array (line 13). It checks whether the node 

received a response from node j.  If not, the protocol removes the non-responsive node from the 

node's view and then decrements the number N of nodes in its view and increments Left, the 

number of nodes that have left. Otherwise, the protocol increments responded.  Then, it checks 

whether j's response contains a recent node. If so, the protocol invokes addNode() to add the recent 

node to the node's view.  The protocol then checks whether the recent node is indeed new and, if 

so, it increments the number N of nodes in the node's view and Joined, the number of newly joined 

nodes in that view. The protocol increases resRec by responded, the number of nodes that 

responded in this try, and then increments Try. Control then returns to the while loop (line 10) to 

determine whether Try is less than or equal to 2 and resRec is less than R.  If both of these conditions 

are satisfied, the protocol goes through the while loop again. 

After the protocol has completed the while loop, it calculates currentCE (line 27) using the values of 

Left, Joined and resRec it obtained in the loop, and then invokes the EWMA algorithm to calculate 

the smoothed value of the Churn Estimator CE (line 28).  The protocol then calculates the value of 

the Requesting Rate RR for the next time unit, corresponding to the smoothed value of the Churn 

Estimator CE.  The protocol then goes back to the beginning of the loop and repeats these steps 

indefinitely. 
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CombinedAdaptive(N, RR, RRMin, RRMax, c) 
1   CE ← 0 
2   while true do 
3         nextRequestTime ← time + (timeunit/RR) 
4         wait until (time = nextRequestTime) 
5         Left ← 0 
6         Joined ← 0 

7         R ← 2×√N  
8         resRec ← 0 
9         Try ← 1 
10       while ((Try  ≤  2) and (resRec  <  R)) do         
11             responses ← makeRequests(view, R-resRec) 
12             responded ← 0 
13             for (j ← 0 to (R – resRec)) do 
14                   if (responses[j].noResponse) then 
15                         removeNode(view, responses[j].node) 
16                         N ← N – 1 
17                         Left ← Left + 1 
18                   else 
19                         responded ← responded + 1   
20                         if (responses[j].recent) then   
21                               isNew ← addNode(view,responses[j].recentNode) 
22                               if (isNew) then 
23                                     N ← N + 1 
24                                     Joined ← Joined + 1 
25             resRec ← resRec + Responded 
26             Try ← Try + 1 
27       currentCE ← (Left + Joined) / (R + R – resRec) 
28       CE ← EWMA(CE, currentCE, c) 
29       if CE  >  RRMin / RRMax  then 
30             RR ← RRMax × CE 
31       else 
32             RR ← RRMin 

Figure 10:   Pseudocode for the Combined Adaptive Membership Protocol 

Note that, with Try = 2, a requesting node sends its request to more nodes to try to obtain 2√N  

responses to its request.  Thus, the Combined Adaptive Membership Protocol does not need to 

increase the Requesting Rate RR as much as does the Adaptive RR Membership Protocol.  

Consequently, the Combined Adaptive Membership Protocol realizes some savings in the message 

cost, compared to the Adaptive RR Membership Protocol. 

9.1 Investigation of the Combined Adaptive Membership Protocol 

We investigate the Combined Adaptive Membership Protocol, in particular the values of the 

Maximum Requesting Rate RRMax.   

Table 3 shows the values of the membership accuracy, match probability, response time and 

message cost for the Combined Adaptive Membership Protocol for RRMax = 100, 50 and 30. 

Table 3:   Combined Adaptive Membership Protocol with RRMax = 100, 50 and 30 

RRMax 100 50 30 

Membership Accuracy 0.8663 0.8198 0.7579 
Match Probability 0.9843 0.9836 0.9822 

Response Time 11.9874 11.9883 11.9885 
Message Cost 13.4939 9.3156 6.9104 
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We see that, as RRMax is decreased from RRMax = 100 to RRMax = 50, the membership accuracy 

decreases and the match probability slightly decreases.  When RRMax is further decreased to RRMax 

= 30, again the membership accuracy decreases and the match probability slightly decreases, but still 

remains quite good. 

We also see that, as RRMax is decreased, the response time remains the same and the message cost 

decreases substantially.  The message cost for RRMax = 100 is nearly twice that for RRMax = 30.  To 

keep the message cost lower while obtaining good membership accuracy, we chose RRMax = 50 for 

our further experiments. 

9.2 Comparison of the Retry R, the Adaptive RR and the Combined Adaptive 

Membership Protocols 

Table 4 shows the membership accuracy, match probability, response time and message cost for the 

Retry R, the Adaptive RR and the Combined Adaptive Membership Protocols.  Here, N = 1024 initially, 

LastJ = 1, LR = 300, JR = 300 and c = 0.7.  For the Retry R Membership Protocol, Try = 2 and RR = 10.  

For the Adaptive RR Membership Protocol, Try = 1, RRMin = 1, RRMax = 100 and RR = 10 initially.  

For the Combined Adaptive Membership Protocol, Try = 2, RRMin = 1, RRMax = 50 and RR = 10 

initially. 

Table 4:  Retry R with Try = 2 vs.  
Adaptive RR with Try = 1 and RRMax = 100 vs.  

Combined Adaptive with Try = 2 and RRMax = 50 

 Retry R Adaptive RR Combined Adaptive 

Membership Accuracy 0.6821 0.8581 0.8198 
Match Probability 0.9817 0.9728 0.9836 

Response Time 11.9274 6.0 11.9883 
Message Cost 5.1538 12.5690 9.3156 

From Table 4, we see that the membership accuracy of the Combined Adaptive Membership 

Protocol is 0.8198, which is much better than that of the Retry R Membership Protocol, but worse 

than that of the Adaptive RR Membership Protocol.  We also see that the match probability of the 

Combined Adaptive Membership Protocol is 0.9836, which is good and better than that of the 

Adaptive RR Membership Protocol and slightly better than that of the Retry R Membership Protocol.  

We see further that the response time of the Combined Adaptive Membership Protocol is about the 

same as that of the Retry R Membership Protocol, which is about double that of the Adaptive RR 

Membership Protocol.  We also see that the message cost of the Combined Adaptive Membership 

Protocol lies between that of the Retry R Membership Protocol and that of the Adaptive RR 

Membership Protocol, and is about three-fourths that of the Adaptive RR Membership Protocol. 

In summary, the Combined Adaptive Membership Protocol balances the message cost against the 

membership accuracy.  The message cost of the Combined Adaptive Membership Protocol is less 

than that of the Adaptive RR Membership Protocol and also the membership accuracy of the 

Combined Adaptive Membership Protocol is greater than that of the Retry R Membership Protocol. 

10 Extended Scenario 

Now we investigate the effectiveness of the Combined Adaptive Membership Protocol to see how 

well it handles various combinations of low and high Leaving Rate LR and low and high Joining Rate 

JR.  In particular, we consider an extended scenario that comprises the following five scenarios: 

• Scenario 1: LR = 10, JR = 10 for time 0 to 3000 

• Scenario 2: LR = 300, JR = 300 for time 3000 to 6000 
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• Scenario 3: LR = 0, JR = 300 for time 6000 to 9000 

• Scenario 4: LR = 300, JR = 0 for time 9000 to 12000 

• Scenario 5: LR = 0, JR = 0 for time 12000 to 15000. 

For all five scenarios, we set LastJ = 1 and c = 0.7. Initially, there are N = 1024 nodes in the 

membership, and each node's view is the entire membership.  As time progresses, each member 

changes its local view.  The number M of nodes to which the metadata are distributed and the 

number R of nodes to which the requests are distributed are both set to 2√N, where N is the 

number of nodes in the node's current view at a given time step. 

We compare the effectiveness of the Combined Adaptive Membership Protocol and the Non-

Adaptive Membership Protocol by considering the extended scenario that comprises these five 

scenarios. 

10.1 Non-Adaptive Membership Protocol 

Figure 11 shows the graphs of the Leaves Not Detected LND, Joins Not Discovered JND, Membership 

Accuracy MA and Match Probability MP for the Non-Adaptive Membership Protocol.  Here, LastJ = 1 

and the Requesting Rate RR = 10 for all five scenarios. 

In the first scenario of Figure 11, the Leaving Rate LR, Joining Rate JR and Requesting Rate RR are low 

and the same (LR = JR = RR = 10).  The values of LND and JND remain low, because a node detects 

non-operational (leaving) nodes and discovers newly joining nodes within a short time interval.  The 

Membership Accuracy MA remains high at about 0.9873 throughout the first scenario.  The Match 

Probability MP is generally higher than the value 0.9817 obtained from the hypergeometric formula 

[15]. 

In the second scenario, the values of the Leaving Rate LR and the Joining Rate JR are much higher 

than the value of the Requesting Rate RR (LR = JR = 300 and RR = 10).  The values of LND and JND 

increase, because a node can't detect enough non-operational (leaving) nodes and can't discover 

enough newly joined nodes within a short time interval.  The Membership Accuracy MA dramatically 

decreases to about 0.5852.  Moreover, the Match Probability MP is quite variable, decreasing to 

about 0.85 and then increasing to about 0.9350. 

 

Figure 11:   Graphs of LND, JND, MA and MP for the Non-Adaptive Membership Protocol                          
where LastJ = 1 and c = 0.7 

In the third scenario, the value of the Leaving Rate LR is low, the value of the Joining Rate JR is high, 

and the value of the Requesting Rate RR is low (LR = 0, JR = 300 and RR = 10).  The values of LND 

decrease because LR drops to LR = 0.  The values of JND remain high because JR remains high.  The 
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Membership Accuracy MA is higher than that in the second scenario (because LR = 0), and slowly 

increases to about 0.9331 at the end of the third scenario. Similarly, the Match Probability MP slowly 

increases from about 0.9350 to about 0.9850. 

In the fourth scenario, the value of the Leaving Rate LR is high, the value of the Joining Rate JR is low, 

and the value of the Requesting Rate RR is low (LR = 300, JR = 0 and RR = 10).  The values of LND 

increase to about 0.4384.  In addition, the Membership Accuracy MA steadily decreases to about 

0.5610.  The reason is that most of the nodes haven't yet discovered all of the newly joined nodes 

from the third scenario, but now more nodes are leaving the membership. The Match Probability MP 

fluctuates considerably, decreasing to about 0.9. 

Lastly, in the fifth scenario, the values of both the Leaving Rate LR and the Joining Rate JR are low 

and the value of the Requesting Rate RR is also low (LR = JR = 0 and RR = 10).  Thus, the Membership 

Accuracy MA slowly increases to about 0.9426.  In addition, the Match Probability MP increases and 

remains high, hovering around the analytic expectation 0.9817. 

10.2 Combined Adaptive Membership Protocol 

Figure 12 shows the Leaves Not Detected LND, Joins Not Discovered JND, Requesting Rate RR, 

Membership Accuracy MA and Match Probability MP  for the Combined Adaptive Membership 

Protocol.    Here, LastJ = 1, c = 0.7, Try = 2, RRMax = 50 and RR = 10 initially. 

In the first scenario, the values of the Leaving Rate LR and the Joining Rate JR are low (LR = JR = 10).  

Thus, the values of both LND and JND are low, because there are not many non-operational (leaving) 

nodes or newly joined nodes.  The value of the Requesting Rate RR quickly decreases to 3.6764, in 

order to reduce the message cost.  The Membership Accuracy MA remains high throughout the first 

scenario, and the Match Probability MP hovers around the analytic expectation 0.9817. 

In the second scenario, the values of the Leaving Rate LR and the Joining Rate JR are high (LR = JR = 

300), much higher than the values of the Requesting Rate RR  (RRMax = 50).    The values of JND and 

LND shown in 

 

Figure 12:   Graphs of LND, JND, RR, MA and MP for the Combined Adaptive Membership Protocol,       
where RR = 10, LastJ = 1, c = 0.7, RRMax = 50 and Try = 2 

Figure 12 are much less than the corresponding values for the Non-Adaptive Membership Protocol 

shown in Figure 11.  For the Combined Adaptive Membership Protocol, the value of the Requesting 
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Rate RR is increased to about 18.5161, which results in a Membership Accuracy MA of about 0.8251 

compared to about 0.5852 for the Non-Adaptive Membership Protocol.  Lastly, the Match 

Probability MP remains high throughout the second scenario, hovering around the analytic 

expectation 0.9817, whereas for the Non-Adaptive Membership Protocol it decreases to about 0.85. 

In the third scenario, the value of the Leaving Rate LR is low and the value of the Joining Rate JR is 

high (LR = 0, JR = 300).  Because  LR is low, the values of LND remain close to 0.  The values of JND 

also remain close to 0.  The Combined Adaptive Membership Protocol adjusts the value of the 

Requesting Rate RR to about 12.6922. Joining nodes are discovered relatively quickly, and there are 

no new leaving nodes to detect because LR = 0.  Thus, the Membership Accuracy MA increases from 

about 0.8251 to about 0.9739.  The Match Probability MP still remains high, and hovers around the 

analytic expectation 0.9817. 

In the fourth scenario, the value of the Leaving Rate LR is high and the value of the Joining Rate JR is 

low (LR = 300, JR = 0).  Because the value of LR is high, the values of LND increase to about 0.2669.  

The values of JND remain low, because JR = 0.  The Combined Adaptive Membership Protocol 

increases the Requesting Rate RR to about 16.5080, in order to detect leaving nodes more quickly.  

However, leaving nodes are still not detected quickly enough, so LND increases and the Membership 

Accuracy MA decreases to about 0.7307 at the end of the fourth scenario.  Finally, the Match 

Probability MP remains high, and hovers around the analytic expectation 0.9817, in contrast to the 

Non-Adaptive Membership Protocol where the Match Probability MP fluctuates and decreases to 

about 0.9. 

Lastly, the fifth scenario has a low value of the Leaving Rate LR and a low value of the Joining Rate JR            

(LR = JR = 0).  The Combined Adaptive Membership Protocol decreases the value of the Requesting 

Rate RR to about 5.6349, in order to reduce the message cost.  The Membership Accuracy MA 

increases to, and remains at, about 0.9375 during most of the fifth scenario.  Moreover, the Match 

Probability MP remains high, and hovers around the analytic expectation 0.9817.  Note that, with 

the Combined Adaptive Membership Protocol, the Match Probability MP remains high in all five 

scenarios despite substantial membership churn and substantial changes in the Leaving Rate LR and 

the Joining Rate JR. 

Finally, we find the averages for each of the membership accuracy, match probability, response time 

and message cost over all five scenarios.  Table 5 shows the overall values of these metrics for the 

Non-Adaptive, the Retry R, the Adaptive RR and the Combined Adaptive Membership Protocols, 

averaged over all five scenarios.  As we see from the table, the Combined Adaptive Membership 

Protocol achieves a membership accuracy of 0.8982, which is quite good.  Moreover, the Combined 

Adaptive Membership Protocol achieves the best match probability 0.9858 of all four protocols.  The 

response time of the Combined Adaptive Membership Protocol is slightly more than that of the 

Retry R Membership Protocol, and is much more than that of the Non-Adaptive and  Adaptive RR 

Membership Protocols.   The message cost of the  Combined Adaptive Membership 

Table 5:   Non-Adaptive vs. Retry R with Try = 2 vs. 
Adaptive RR with Try = 1 and RRMax = 100 vs. 

Combined Adaptive with Try = 2 and RRMax = 50 

 Non-Adaptive Retry R Adaptive RR Combined Adaptive 

Membership Accuracy 0.8149 0.8542 0.9217 0.8982 
Match Probability 0.9704 0.9841 0.9801 0.9858 

Response Time       6.0 10.8262      6.0 11.0339 
Message Cost 5.0490 5.7335 8.8284 6.3305 
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Protocol is less than that of the Adaptive RR Membership Protocol, and is slightly more than that of 

the Non-Adaptive and Retry R Membership Protocols, as Table 5 shows. 

Overall, these experiments demonstrate that the Combined Adaptive Membership Protocol is 

effective in discovering newly joining nodes and in detecting non-operational (leaving) nodes.  When 

the Joining Rate JR and the Leaving Rate LR are high, the Combined Adaptive Membership Protocol 

quickly increases the Requesting Rate RR to obtain a high membership accuracy.  Moreover, when 

the Joining Rate JR and the Leaving Rate LR are low, the Combined Adaptive Membership Protocol 

decreases the Requesting Rate RR, in order to maintain a reasonable response time and a 

reasonable message cost, while still maintaining a reasonable membership accuracy and a high 

match probability.  As a result, the Combined Adaptive Membership Protocol works well not only 

when the membership is subject to a lot of churn, but also when the membership is stable. 

11 Conclusion 

We have presented four membership protocols for the iTrust network, the Non-Adaptive, Retry, 

Adaptive and Combined Adaptive Membership Protocols.  These membership protocols allow each 

member to maintain its own local view of the membership, and aim to keep that local view close to 

the actual membership.  A node that receives a request sends a response, to the requesting node, 

that contains newly joined member(s) in its local view.  If the keywords in the query match metadata 

that it holds, the node also sends the URL of the document. 

A requesting node discovers newly joining nodes from the responses it receives to its requests. 

Likewise, a requesting node detects leaving (non-operational) nodes when it does not receive 

responses from those nodes before a timeout occurs, or when it receives an error code from TCP.  

Thus, the iTrust membership protocols exploit messages already required by the iTrust messaging 

protocol for distributing metadata and requests. 

As our experiments show, for appropriate values of the parameters, the membership accuracy, the 

response time and the message cost are reasonable, and the match probability is high, particularly 

for the Combined Adaptive Membership Protocol.  The Combined Adaptive Membership Protocol 

works well not only when the membership experiences a lot of churn but also when the membership 

is stable. 
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