
 

DOI: 10.14738/tnc.32.1092 

Publication Date: 25th April, 2015 

URL: http://dx.doi.org/10.14738/tnc.32.1092 

 

VOLUME 3,  ISSUE 2 

 

 

An Enriched Ciphering Method to Evaluate Performance of 

EEA2-algorithm for LTE Security 

Gautam Siwach1, Amir Esmailpour2, and Ahmad Sharifinejad3 
1,2Department of Electrical and Computer Engineering,  

University of New Haven, West Haven, CT, USA 
3IEEE member, Oslo, Norway  

gsiwach@gmail.com, aesmailpour@newhaven.edu, a_sharifinejad@yahoo.no) 

ABSTRACT 

In order to address vulnerabilities in LTE security and the objective to strengthen the 

implementation of encryption and decryption algorithms in LTE, we proposed a method for 

integration of an algorithm with a dynamic matrix generation scheme of 16*16 elements during AES 

implementation. Implementing such algorithm eradicates the vulnerability that causes a hacker to 

access plain text. The vulnerability arises within the implementation of AES.  

This research explores Enriched Ciphering algorithm for number of scenarios based on function calls 

and time metrics that increases 3.9 times when there is a change in size of the plain text. We 

evaluated the proposed algorithm referred to as Enriched Ciphering Algorithm based on various use 

cases, including compression and decompression of cipher text that provides an extra layer of 

complexity to strengthen the security, and provides performance improvements of 13.9 percent 

when executing the Enriched Ciphering algorithm with big data size.  

Keywords- AES, LTE, EEA1, EEA2, PDU. 

1 Introduction 

In this study we introduce a new algorithm to address some security vulnerabilities in the Long-Term 

Evolution (LTE) technology caused by compromised encryption/decryption process. Our new 

proposed algorithm so called “Enriched Ciphering” is optimized for performance evaluation. This 

approach offers a solution to potential vulnerability in original EEA1 and EEA2 algorithms. The 

vulnerability of these algorithms is due to having plain text in the remaining part of cipher text 

within one PDU, which is exposed to intruders.  

Advanced Encryption Standard (AES) can be performed on blocks of 128 bits of data according to the 

National Institute of Standards and Technology (NIST) standards. Once the data is encrypted by AES, 

and a cipher key generated then XOR operator is applied on the plain text part of PDU in order to 

construct a Ciphered Text (CT). In order to apply the described procedure to our payload data, the 

Plain Text (PT) is partitioned into blocks of 128-bit data as shown in equation (1). The final block 

need not be 128 bits. 

PT = PT [1] + PT [2] + ... + PT [n]                                          (1) 

Encryption of payload happens by using AES Counter (AES-CTR), in order to strengthen the security. 

Each PT block is XOR’ed with a block of key stream to generate the (CT). The AES counter encryption 

of each Plain text block results in 128-bits of key stream because it is partitioned into blocks of 128-

mailto:gsiwach@gmail.com
mailto:aesmailpour@newhaven.edu
mailto:a_sharifinejad@yahoo.no


Transact ions on Networks and Communicat ions;  Volume 3,  Issue 2,  Apri l  2015 
 

Copyr ight © Soc iety  for  Science and Educat ion United Kingdom  79 
 

 

bit data. The most significant 64 bits of the counter block PT are initialized as seen before, followed 

by 64 bits that are all 0. The AES function performs AES encryption under the control of the 

confidentiality key. (Confidentiality Key refers to the private key). In order to make sure that even 

final block is partitioned to the appropriate length of 128-bit data, we use the TRUNC function; it 

truncates the last output of the AES encryption operation to the same length as the final PT block, 

returning the most significant bits. 

The decryption operation is similar to the encryption, and the AES-CTR uses the same AES encryption 

operation since AES is a standard algorithm and it does not change. So of course the same AES 

applies both ways for both encryption and decryption, we are not making any modification to AES 

algorithm we are applying AES to LTE stream to make it more secure.  

We execute the new edition EEA2 algorithm that includes a matrix as an enhancement to the 

ciphering process called enriched ciphering. The purpose of this study is to present a secure 

implementation for an existing vulnerability in the LTE encryption technique and to conduct a 

performance evaluation in order to provide a benchmark for further improvements.  

2 Background 

AES algorithm implementation has a potential vulnerability. In [10] “LTE Security Potential 

Vulnerability and Algorithm Enhancements”, we presented the vulnerability and provided the design 

as a solution for it through the enriched ciphering algorithm. The breakdown for explaining the 

vulnerability is let us assume that we have only acquired the entire cipher text by using brute force 

attack, and we don't have any information on either the plain text or the key. Evidently we need 

more information on the original plain text or the key to be able to go any further in deciphering the 

content. Following this let us assume that we now have captured the plain text and cipher text 

within a PDU, so we are missing the key to be able to recover the entire plain text. Finally assume 

that if we have retrieved 128 bits of plain text then we will have the corresponding cipher text of 128 

bits, and as well as the remaining cipher text.  

We have described the complete vulnerability and proposed the design of a solution to address it, 

we implemented the proposed solution including the main encryption mechanism key generation 

and distribution in Matlab simulation software. The main component of the solution are presented 

in the Enriched-ciphering algorithm, the AES algorithm could rebuild the key when we know plain 

text and corresponding cipher text. The input for AES is fixed within one PDU, so that the outputs 

from AES are the same length as input, which will be used to XOR with the plain text. The 

vulnerability was that once we get the output as the cipher text per PDU and complete cipher text, 

then we could retrieve the plain text by simply using XOR operation between the complete cipher 

text and the output. As per our assumption, we get 128 bits of plain text and the corresponding 

cipher text and the remaining of the cipher text. We XOR the plain text and cipher text; we get the 

output from AES. Upon using this output to XOR with the cipher text the remaining plain text could 

be regenerated.  

3 Literature review 

The need for enhancement in authentication services is motivated due to a fact that even Password 

Authentication Protocol (PAP) and Lightweight Extensible Authentication Protocol (LEAP) are 

vulnerable as investigated in [1] by Lianfen Huang, et.al. They experimented on authentication 

protocols in LTE Environments and summarize authentication service as the most important services 

in LTE networks in “Performance of Authentication Protocols in LTE Environments.” 

 



Gautam Siwach, Amir Esmailpour, and Ahmad Sharifinejad; An Enriched Ciphering Method to Evaluate 

Performance of EEA2-algorithm for LTE Security, Transactions on Networks and Communications, Volume 3 No 

2, April (2015); pp: 78-91 
 

URL: http://dx.doi.org/10.14738/tnc.32.1092       80 
 

In [2] Bin Liu et.al investigates the implementation issues in “Parallel AES encryption engines for 

many core processor arrays, by exploring different granularities of data-level and task level 

parallelism, based on the core systems largest with 107 to 137 cores and depicting several AES 

implementations on a fine-grained many-core system. They concluded that design on a fine-grained 

many core system software platforms achieves energy efficiencies approximately 2.9-18.1 times 

higher as compared to other software platforms. By this theory we expect that the designed solution 

of adding a matrix to the AES encryption can be evaluated for performance improvement.  

There are several researches for LTE, AES, and also the integration of several other platforms like 

VLSI, Graphical user interface and many core cross platforms those served as a motivation for this 

research In [3] Naga M. Kosaraju et al illustrates the AES Algorithm architecture during their research 

for “A high- Performance VLSI Architecture for AES Algorithm.” They presented architecture by 

expanding the secret key used to generate subkeys in VLSI implementation of AES algorithm. They 

implemented a prototype chip using 0.35 μ CMOS technology resulting in a throughput of 232Mbps 

for iterative architecture and 1.83Gbps for pipelining architecture. They explore the architecture for 

key scheduling Unit and are yet another instance to prove the integration and the combination logic. 

In addition, AES takes a lot of time for encrypting which has been a major concern of all the 

researchers like [4] Fei Shao et al during “AES Encryption Algorithm based on High Performance 

Computing of GPU.” They have proposed different approaches in order to expedite the encryption 

process. Simultaneously [5] Keisuke Iwai et al in “AES encryption implementation on CUDA GPU and 

its analysis” define granularity and memory allocation as major contributors to effective processing 

in AES encryption on GPU, thereby supporting the former content.  Keeping this as context, we 

provide a real run time graphical illustration in the results section of this paper. We use different 

figures for illustrating the analysis of the performance and for future work. 

There had been several investigations to ensure the privacy in LTE. One of them is by [6] Khodor 

Hamandi et al in “Privacy Enhanced and Computationally Efficient HSK-AKA LTE Scheme,” in which 

they explain the HSK-AKA procedure and the key management system from HSS to UE by using a 

periodic temporary identifier. They gave an illustration of how the process flow occurs between HSS 

and UE and presented a modified LTE Authentication and Key Agreement (AKA) scheme,HSK-AKA. 

As iterated by [7] Mehran Mozzaffari-Kermani et al in “Concurrent structure-Independent Fault 

Detection Schemes for the Advanced Encryption Standard” AES has been lately accepted as the 

symmetric cryptography standard for confidential data transmission. However, we still strive for 

reliable AES architecture. Their investigation concludes with the implementation of a structure 

independent scheme in order to reach the error coverage of approximate 100%. 

The need for analyzing compression techniques along with encryption is an important consideration 

and is also stated in “Securing multimedia content using Joint compression and encryption” 

authored by [8] A. Pandae at al. They state that the algorithmic parameterization and hardware 

architectures are useful to ensure secure transmission of multimedia data in resource-constrained 

environments such as wireless video surveillance networks. The “Enriched Ciphering algorithm” is 

executed along with compression and is analyzed in the context of time complexity as well. 

As explored by [9] Krzysztof Jankowski et.al in “Packed AES-GCM Algorithm suitable for 

AES/PCLMULQDQ instructions” about the performance evaluation of authenticated Encryption 

Algorithms that AES block cipher working in Counter Mode (CTR), characterized with key sizes 128, 

192, and 256 is used to XOR the Encrypted Counter with the plain text. They craft a gateway to 

http://dx.doi.org/10.14738/tnc.32.1092


Transact ions on Networks and Communicat ions;  Volume 3,  Issue 2,  Apri l  2015 
 

Copyr ight © Soc iety  for  Science and Educat ion United Kingdom  81 
 

 

further investigate the approach for parallel encryption and increment. Moreover, we support their 

investigation and plan to advance this research for parallel encryption.  

4 The enriched ciphering method design and implementation 

The design of the Enriched Ciphering algorithm is to ensure security during the process. In [15] we 

also presented a security structure of a ciphering algorithm that will build a matrix on the concept of 

generating random numbers based on permutation; the matrix will be incorporated in the 

encryption process by including it in the final stage of encryption algorithm in order to get the 

enriched cipher text. A matrix block of size 16*16 is used. Within each block of 256 elements, there 

are 8 binary bits, which is equal to 2 hex digits. The 256 elements are different and make the 

enriched cipher text. This process will enhance encryption by providing a more secure cipher text, 

which is not as vulnerable as the original encryption process, hence labeled: “Enriched cipher text”.  

For this Enriched Ciphering algorithm, the block used depends on the cipher text stage1, and the 

cipher text stage1 is the plain text XOR’ed with the key stream that has dynamic elements generated 

by matrix. It requires a significant amount of data to break this Enriched Ciphering algorithm. In 

addition, the key stream will be changed per PDU. Therefore, this process will not disclose enough 

data for the intruder to be able to crack the Enriched Ciphering algorithm easily. However, for the 

same instance, considering 128 bits of plaintext and corresponding cipher text, the derivation of the 

key stream will be far easier. This indicates a classical trade-off scenario between complexity and 

space used, the higher the capacity the larger space is occupied by the data stream as data is divided 

per PDU and the key is generated for every 128 bit of plain text. 

4.1 Key generation mechanism 

In this section we describe the process of generating the key. This is to generate a random number 

of keys for 256 elements of the matrix block. We generate the reverse matrix based on the original 

matrix and a new empty matrix for each block of the original matrix and obtain the value. The first 

digit is the column number for reverse matrix, and the second digit is the row number for the 

reverse matrix. Once we get a block in reverse matrix, we fill it by a combination of the original 

column number and row number, by repeating this process for each block, the reverse matrix will 

completely be rebuilt.  

Key=key (randperm (numel(key)))             (2) 

4.2 Distribution of the key 

The key is 128 times larger than the normal key that has the pain text of 128*128 bits size, so it is 

not easy to share the key with confidentiality. Therefore we just share it before using EEA2 that 

happens before NAS and AS signaling. UE generates the matrix and just encrypts it by AES and sends 

it to the MME before NAS and to the eNodeB before AS signaling. Since both MME and eNodeB can 

calculate the reverse matrix, the UE can use EEA2 between MME and eNodeB. We can choose the 

KASME for AES to MME, and for AES to eNodeB. We can choose the KeNB because these two keys 

were already shared before so they are used for mutual authentication. 

4.3 Implementation 

The implementation is based on the design and the key generation mechanism and the distribution 

of key concepts, combined in the Enriched Ciphering algorithm. The code uses the permutation 

concept to generate random numbers for elements of matrix block, it includes conditional 

statements and logic gates operations as well. Moreover, the matrix is able to provide more secure 

operations in terms of encryption complexity. 



Gautam Siwach, Amir Esmailpour, and Ahmad Sharifinejad; An Enriched Ciphering Method to Evaluate 

Performance of EEA2-algorithm for LTE Security, Transactions on Networks and Communications, Volume 3 No 

2, April (2015); pp: 78-91 
 

URL: http://dx.doi.org/10.14738/tnc.32.1092       82 
 

 

Matrix is dynamically generated and processes 128 bits round of plain text. In an example the plain 

text is passed as arguments through the matrix and is divided into 128 bits of text as one round that 

is transformed as per hexadecimal notion by Enriched Ciphering algorithm as step I.  

The Enriched Ciphering algorithm provides a solution for possible vulnerability within the encryption 

process, which involves adding a matrix block to the encryption process of the cipher text results 

obtained upon executing the Enriched Ciphering algorithm in different scenarios. The encryption 

process uses a dynamic set of numbers in the form of a matrix, which is used with the cipher text to 

obtain an enriched block of ciphered data.   

In step II the plain text is processed to cipher text. This cipher text is encrypted in step III by a matrix. 

‘OutCT’ or Output cipher text of 128 bits shows the text after encryption by the matrix. backCT 

shows the decrypted text and the loop follows till the end and whole plain text is retrieved upon 

reducing it to its normal form. We Evaluate and analyze the procedure, design and algorithm. The 

performance evaluation is based on different performance evaluation metrics such as time, call, self-

time and function call. ‘Call’ refers to calling the predefined function at a particular instance in the 

program. The self-time and time are the sub parts of the total time taken to execute the Enriched 

Ciphering algorithm. One of the sample test run of the Enriched Ciphering algorithm is depicted in 

this paper for performance evaluation. It is an instance run and is utilized to evaluate the 

performance of the Enriched Ciphering algorithm. 

Enhancements occur upon adding compression and decompression functions to the existing 

Ciphering algorithm. These functions are included as a part of Enriched Ciphering algorithm in an 

effort to improve the performance even when the text is larger in size so as to make space for faster, 

efficient ways to build strength. The increase in the execution time of the Enriched Ciphering 

algorithm is associated with the number of calls for functions with increased size of text, including 

total time and self-time of processes.  

Since the key elements of the matrix keep on changing and are dynamic in order to provide a unique 

security level, so the run time can’t be generalized for all Enriched Ciphering algorithm executions. 

We provide the precise time of a particular run based on different scenarios in the cases below.  

Based on the single instance execution and associated outcomes, we comment on the performance 

improvements and analyze the complexities of the Enriched Ciphering algorithm.  

The proposed modifications in the algorithm is presented below as a Pseudo code: 

1: Define a cipher key  

2: Assign number of elements of the matrix  

3: Apply the permutation logic to generate the key elements  

4: Input plain text  

5: Compress the plain text  

6: Disintegrate the input text into 128 bits round of text until the end 

7: Input data type  

8: BITXOR the data  

9: Reshape the matrix  

http://dx.doi.org/10.14738/tnc.32.1092


Transact ions on Networks and Communicat ions;  Volume 3,  Issue 2,  Apri l  2015 
 

Copyr ight © Soc iety  for  Science and Educat ion United Kingdom  83 
 

 

10: Retrieve the Cipher text  

11: Encrypt the data  

12: Use key to decrypt the encrypted data  

13: Convert the cipher text into plain text  

14: Use rotation and BITXOR 

15: Decompress the data 

16: Retrieve the plain text 

5 Results 

In this section we consider several test-cases to evaluate performance of the enriched ciphering 

method. The different cases considered in process of evaluating the performance starts with 

executing a round of plain text that has length of 128-bit. Self-time is the time spent in a function 

excluding the time spent in its child functions. Self-time also includes overhead resulting from the 

process of profiling. Total time is the self-time and time taken to run child functions as well. Call 

refers to the number of times function is called. dec2Hex, hex2dec, iscellstr are the internal 

functions in Enriched Ciphering algorithm the significance of these functions is that they are required 

to change key values when making matrix dynamic. 

Case I: The instance described in Table 1 shows the numbers of function name and call. The call 

decides for the time. The functions are used while executing the Enriched Ciphering algorithm. They 

have a direct effect on run time of the Enriched Ciphering algorithm. In Figure 1, we show the self-

time and real time on the axis and with a scale of .002 seconds. The Enriched Ciphering algorithm 

executes completely in .017s, sufficient time for the execution by the proposed solution. 

Table I: Time slot details upon running the Enriched Ciphering algorithm 

Function 
Name 

Call Total Time 
(Seconds) 

Self-Time 
(Seconds) 

Enriched 
Ciphering 
Algorithm 

1 .017 .011 

dec2hex 1 .004 .004 

hex2dec 1 0.003 .003 

iscellstr 1 0 .000 
 

  

Figure 1: Illustration of total time and self-time in 
unit of seconds for a round of plain text, and different 

functions in the Enriched Ciphering algorithm 

Figure 2: Illustration of number of calls for the 
functions associated to execution of Enriched Ciphering 

Algorithm 



Gautam Siwach, Amir Esmailpour, and Ahmad Sharifinejad; An Enriched Ciphering Method to Evaluate 

Performance of EEA2-algorithm for LTE Security, Transactions on Networks and Communications, Volume 3 No 

2, April (2015); pp: 78-91 
 

URL: http://dx.doi.org/10.14738/tnc.32.1092       84 
 

Case 2: In another case, the size of the string is increased and it is noticed that the changes occur in 

the execution of the Enriched Ciphering algorithm; Figure 3 shows us an increase in the number of 

calls upon increasing the length of the text size, when we notice the changes in terms of time 

complexity. Hence, we observe that there are more associated function and method calls for large 

size of data.  

Figure 4 shows the increase in total execution time as per the increase in length of the string; 

although the changes are not constant; however the execution time is proportional to the length of 

the string which refers to the case when we execute the Enriched Ciphering Algorithm keeping the 

size of the string larger than 128 bits rounds of text as compared to case 1.  

After execution of the Enriched Ciphering Algorithm the results show us an increase in the execution 

time upon increasing the length of the text; hence the execution time of Enriched Ciphering 

algorithm is proportional to the number of rounds per bits of text. Although the number of functions 

and methods called during the execution of Enriched Ciphering Algorithm are almost the same in 

contrast to the number of functions called by case 1.  

The number of calls of the associated functions in Case2 is more than that in case 1 because the size 

of the string is increased from one round of text which has length of 128 bits then to the two round 

of text which is of length 256 bits approximately. The total time of execution of Enriched Ciphering 

Algorithm is more in case 2 as compared to the time of execution of Enriched Algorithm in Case 1. It 

is .084 seconds in this case and .017 seconds in the former. Through these cases we determine and 

evaluate the performance of the Enriched Ciphering Algorithm with different cases and present the 

potential areas for performance improvement. 

 

 

Figure: 3 Illustration of number of calls for the 
functions associated to execution of Enriched 
Ciphering algorithm with a larger string size. 

Figure 4: illustration of total time and self-time in 
unit of seconds for different functions in the 

Enriched Ciphering algorithm for larger size of text 

 

 

 

 

http://dx.doi.org/10.14738/tnc.32.1092


Transact ions on Networks and Communicat ions;  Volume 3,  Issue 2,  Apri l  2015 
 

Copyr ight © Soc iety  for  Science and Educat ion United Kingdom  85 
 

 

Table 2: Time slot details upon running the Enriched Ciphering algorithm and increasing the length of the 
plain text; Size Increase in the length of Plain 

Function 
Name 

Call Total 
Time 

(Seconds) 

Self-Time 
(Seconds) 

Enriched 
Ciphering 
Algorithm 

1 .084 .068 

Dec2hex 3 .016 .016 

Hex2dec 3 0.003 .003 

Iscellstr 3 0 .000 

 

Case 3: A further change of the enhancement in the proposed solution relates to large text files that 

can be processed in a secure and fast manner. In order to address memory issues we suggest the use 

of compression technique in the Enriched Ciphering algorithm and analyze the time domain at the 

runtime execution.  

Figure 5 illustrates the number of calls associated to the functions in Enriched Ciphering algorithm 

per round of text when zip function is used. Create Archive and get archive are the methods and 

functions associated to Enriched Ciphering algorithm use to store and call values while execution of 

Enriched Ciphering algorithm. 

Table 3: Function details upon integration of compression technique with the Enriched Ciphering algorithm, 
and analysis of statistics with path of associated functions a method. 

Function 
Name  

Call Total Time 
(Seconds) 

Self-
Time(Seconds) 

Enriched 
Ciphering 
Algorithm 

1 .147 .081 

Zip 3 .066 .000 

Create 3 .066 .000 

Get 3 .049 .000 

Unique 6 .017 .000 

Fileparts 9 .017 .017 

Add 3 .017 .000 

(Java 
Method) 

15 .017 .017 

Legacy 6 .017 .017 

Fullfile 3 .016 .016 



Gautam Siwach, Amir Esmailpour, and Ahmad Sharifinejad; An Enriched Ciphering Method to Evaluate 

Performance of EEA2-algorithm for LTE Security, Transactions on Networks and Communications, Volume 3 No 

2, April (2015); pp: 78-91 
 

URL: http://dx.doi.org/10.14738/tnc.32.1092       86 
 

 

Figure 5: Illustration of number of calls when Enriched Ciphering algorithm execution involves zip 
function per round of text. 

This case is based on an approach to obtain the overhead involved in executing the zip function at 

the initial level of a round of text. With this we investigate the use of encryption technique in an 

Enriched Ciphering algorithm when the text is small. We notice the increase in execution time and 

number of calls for functions. 

Case 4: Compression technique stands for the memory concerns for the users. Now, finally there is 

an increase in the runtime of an Enriched Ciphering algorithm when using compression technique in 

an effort to address storage and memory issues. Here, in Case 4, our exploration of the Enriched 

Ciphering algorithm begins with increase in length of the string. At Table 4, the functions, and the 

calls appear to be more also illustrated in Figure 7. But there is a decrease in execution time as per 

Figure 8. Hence, we determine that compression technique yields efficient results after runtime 

execution when a larger size of text is involved in the process and it addresses memory concern as 

well. 

 

Figure 6: Illustration of total time and self-time in unit of seconds for different functions in the Enriched 
Ciphering algorithm when compression is involved for an initial round of text. 

http://dx.doi.org/10.14738/tnc.32.1092


Transact ions on Networks and Communicat ions;  Volume 3,  Issue 2,  Apri l  2015 
 

Copyr ight © Soc iety  for  Science and Educat ion United Kingdom  87 
 

 

Table 4: Compressing and increasing the length of the plain text, and evaluating the time statistics with 
path of associated functions and methods 

Function 
Name  

Call Total 
Time 

(Seconds) 

Self- 
Time 

(Seconds) 

Enriched 
Ciphering 
Algorithm 

1 0.127 0.063 

Zip 1 0.048 0 

Create 1 0.048 0 

Get 1 0.032 0.015 

Unique 2 0.016 0.016 

Dec2hex 1 0.016 0.016 

Add 1 0.016 0 

Get 3 0.016 0.016 

Case 5: - In this scenario, we include the decompression step in order to calculate the runtime 

execution of the Enriched Ciphering algorithm. We integrate the unzip function to the scenario 

executed in Case 4 of this section, in the Enriched Ciphering algorithm and execute it.  

Upon execution, we get the runtime details as mentioned in Table 5. This is the case of compression 

and decompression technique on a round of text where new functions also take part upon in the 

processing of Data upon execution of Enriched Ciphering Algorithm. Since there are few new 

processes involved in the Enriched Ciphering algorithm because of the changes done in the length of 

string and also due to the new functions and methods involved in order to evaluate the performance 

of the ECA. 

  

Figure 7: Illustration of number of calls when 
Enriched Ciphering algorithm execution involves zip 

function for a larger size of text 

Figure 8: Illustration of total time and self-time in 
unit of seconds for different functions in the Enriched 

Ciphering algorithm when                                       
compression is involved for a larger size of text 

Figure 9 shows the number of calls for the functions and methods involved in the compression and 

decompression technique upon integration within the Enriched Ciphering Algorithm, and when the 

Enriched Ciphering algorithm is executed then the indicated calls shows the execution statistics of 

the associated child functions as well. These associated functions appear because of their 

association with the decompression stage in the Enriched Ciphering algorithm. 



Gautam Siwach, Amir Esmailpour, and Ahmad Sharifinejad; An Enriched Ciphering Method to Evaluate 

Performance of EEA2-algorithm for LTE Security, Transactions on Networks and Communications, Volume 3 No 

2, April (2015); pp: 78-91 
 

URL: http://dx.doi.org/10.14738/tnc.32.1092       88 
 

Create, Get and add are some of the functions and methods for the Archive entries of the files 

having data, whereas parse, Dec2hex, Num2Str indicates the parsing, processing, and conversion of 

different data types. The input string processing of the file takes place in splits of data carried by File 

parts. Zip and Unzip functions are the direct operation on the specific set of Data in order to save 

memory allocation and fine tune the performance on large set of Data. 

Table 5: Decompressing a round of text and evaluating the time   statistics with path of associated 
functions and methods 

Function 
Name 

Call Total Time 
(Seconds) 

Self-
Time(Seconds) 

Enriched 
Ciphering 
Algorithm 

1 0.155 0.078 

Zip 1 0.047 0.015 

Create 1 0.032 0 

Dec2hex 1 0.016 0.016 

Get 1 0.016 0 

Add 1 0.016 0 

Convert 4 0.016 0.016 

Num2str 1 0.016 0 

Int2str 1 0.016 0.016 

Mode 1 0.016 0 

Get 3 0.016 0 

Parse 1 0.015 0 

Fileparts 4 0.015 0.015 

Unzip 1 0.015 0 

 

  

Figure 9: Illustration of number of calls with zip                                                                       
and unzip functions for a round of text in ECA. 

 

Figure 10: Illustration of total time and self-time in 
unit of seconds for different functions in the Enriched 

Ciphering algorithm when compression and 
decompression techniques are involved for an initial 

round of text. 

Compression and decompression are mostly intended to save memory usage in a digital world. The 

time statistics described in Figure 10 and related to self-time and total time help us to analyze a 

http://dx.doi.org/10.14738/tnc.32.1092


Transact ions on Networks and Communicat ions;  Volume 3,  Issue 2,  Apri l  2015 
 

Copyr ight © Soc iety  for  Science and Educat ion United Kingdom  89 
 

 

slight increase in the curve of time upon including the decompression technique within the Enriched 

Ciphering algorithm. 

Case 6: With larger text, the compression and decompression functions need to be emphasized 

more. We notice that there has been an increase in functions involved. In each function, the 

numbers of calls precede the function calls for smaller size of text. Table 6 gives the information of 

the number of calls, and Figure 12 provides a graphical view of the number of calls associated with 

the functions involved, and those called during runtime execution of the Enriched Ciphering 

algorithm. It is 0.32 seconds of time the Enriched Ciphering algorithm takes for complete execution 

(see Figure 11). 

 

Figure 11: Illustration of total time and self-time in unit of seconds for different functions in the Enriched 
Ciphering algorithm when compression and decompression techniques are involved for larger set of Data 

and an initial round of text. 

Table 6: Details of runtime execution of Enriched Ciphering algorithm upon integrating decompression with 
the larger text in order to evaluate the time statistics with path of associated functions and methods. 

Function 
Name 

Call Total Time 
(Seconds) 

Self-Time 
(Seconds) 

Enriched 
Ciphering 
Algorithm 

1 0.321 0.136 

Unzip 3 0.123 0.03 

Parse 3 0.062 0.016 

Zip 3 0.046 0 

Extract 3 0.031 0 

Create 3 0.03 0 

Check 3 0.03 0.015 

Hex2dec 3 0.016 0.016 

Parse 3 0.016 0.016 

Add 3 0.016 0 

Extract 3 0.016 0 

(Java 
method) 

9 0.016 0.016 

Validate 3 0.016 0.016 

Converte 3 0.016 0.016 

Get 9 0.016 0 

Isdir 3 0.016 0.016 

GetNext 6 0.016 0.016 

GetArc 3 0.015 0.015 

Unique 6 0 0 



Gautam Siwach, Amir Esmailpour, and Ahmad Sharifinejad; An Enriched Ciphering Method to Evaluate 

Performance of EEA2-algorithm for LTE Security, Transactions on Networks and Communications, Volume 3 No 

2, April (2015); pp: 78-91 
 

URL: http://dx.doi.org/10.14738/tnc.32.1092       90 
 

 

Figure 12: Illustration of number of calls when Enriched Ciphering algorithm execution involves zip and 
unzip functions for a larger set and per round of text. 

6 Conclusion 

We investigated and evaluated the Ciphering algorithm to add matrix block in order to strengthen 

LTE security. In this paper we present the results for performance evaluation based on different 

performance vectors. The results presented are real runtime execution and accurate. The simulation 

provides an estimated time increase of .067s being 3.9 times original of .017s execution time of 

Enriched Ciphering Algorithm when text size increases from 128 bits to 256 bits.  

Moreover, we provide a real time listing of function calls during execution in the quest of 

modularizing the complete process to embed security at each phase. We also determine the 

increase in calls, and those are involved and appear into the system. Besides representing several 

other cases, we also provide the decrease of 13.60% upon including compression technique on large 

size of data sets to that of smaller size. We propose including compression and decompression for 

performance improvement to be a part of the process especially when we are dealing with large 

chunk of data sets so as to meet our memory allocation needs. We represent our research on 

integrating new techniques in the implementation and the need of improvement and strengthening 

LTE Security. 

REFERENCES 

[1]. "Lianfen Huang*, Ying Huang, Zhibin GAO, Jianan Lin, Xueyuan Jiang", Performance of 

Authentication Protocols in LTE Environments, 2009 International Conference on 

Computational Intelligence and Security, 293-297,978-0-7695-3931-7/09 © 2009 IEEE DOI 

10.1109/CIS.2009.50. 

[2]. "Bin Liu, IEEE, and Bevan M. Baas.", Parallel AES Encryption Engines for Many-Core 

Processor Arrays,"IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, and NO. 3 MARCH 2013", 

536-547, www.computer.org/publications/dlib. 

http://dx.doi.org/10.14738/tnc.32.1092


Transact ions on Networks and Communicat ions;  Volume 3,  Issue 2,  Apri l  2015 
 

Copyr ight © Soc iety  for  Science and Educat ion United Kingdom  91 
 

 

[3]. "Naga M. Kosaraju, Murali Varanasi, Saraju P. Mohanty", A High-Performance VLSI 

Architecture for Advanced Encryption Standard (AES) Algorithm, Proceedings of the 19th 

International Conference on VLSI Design (VLSID’06) ,1-4,1063-9667/06 © 2006 IEEE. 

[4]. “Fei Shao, Zinan Chang, Yi Zhang", AES Encryption Algorithm Based on the High 

Performance Computing of GPU, 2010 Second International Conference on 

Communication Software and Networks,588-590,978-0-7695-3961-4/10 © 2010 IEEE DOI 

10.1109/ICCSN.2010.124.  

[5]. "Keisuke Iwai and Takakazu Kurokawa, Naoki Nisikawa", AES encryption implementation 

on CUDA GPU and its analysis, 2010 First International Conference on Networking and 

Computing, 209-214,978-0-7695-4277-5/10 © 2010 IEEE DOI 10.1109/IC-NC.2010.49.  

[6]. “Scheme,Khodor Hamandi Imad Sarji Ali Chehab Imad H. Elhajj Ayman Kayssi”, Privacy 

Enhanced and Computationally Efficient HSK-AKA LTE, 2013 27th International Conference 

on Advanced Information Networking and Applications Workshops,929-934,978-0-7695-

4952-1/13 © 2013 IEEE DOI 10.1109/WAINA.2013.133. 

[7]. "Mehran Mozaffari-Kermani, and Arash Reyhani-Masoleh", Concurrent Structure-

Independent Fault Detection Schemes for the Advanced Encryption Standard, "IEEE 

TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 5, MAY 2010",608-622,0018-9340/10/ 

©2010 IEEE. 

[8]. “Amit Pande and Prasant Mohapatra”, Securing Multimedia Content Using Joint 

Compression and Encryption ,2013 Oct- Dec Published by the IEEE Computer Society,50-

61,1070-986X/13/ c 2013 IEEE. 

[9]. “Krzysztof Jankowski and Pierre Laurent”, Packed AES-GCM Algorithm Suitable for 

AES/PCLMULQDQ Instructions, "IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, and NO. 1, 

JANUARY 2011", 135-138, 0018-9340/11/ 2011 IEEE Published by the IEEE Computer 

Society. 

[10]. "Gautam Siwach, Amir Esmailpour ", LTE Security Potential Vulnerability and Algorithm 

Enhancements, 2014 IEEE Canadian Conference on Electrical and Computer Engineering, 1-

7, IEEE CCECE May 2014. 

 

 

 

 

 

 

 

 

 


