

Volume 3 Issue 4, August 2015

TABLE OF CONTENTS

EDITORIAL ADVISORY BOARD

DISCLAIMER

I

II

Optimal Design of Continuous Reinforced Concrete Beams Using Neural Networks

Jiin-Po Yeh

Ren-Pei Yang

1

Application of Hybrid Machine Learning to Detect and Remove Malware

Richard R. Yang

Victor Kang

Sami Albouq

Mohamed A. Zohdy

16

Bio-Inspired Temporal-Decoding Network Topologies for the Accurate Recognition

of Spike Patterns

Gianluca Susi

27

Phishing Websites Detection Using Data Mining Classification Model

Riad Jabri

Boran Ibrahim

42

EDITORIAL ADVISORY BOARD

Professor Er Meng Joo

Nanyang Technological University
Singapore

Professor Djamel Bouchaffra

Grambling State University, Louisiana
United States

Prof Bhavani Thuraisingham

The University of Texas at Dallas
United States

Professor Dong-Hee Shin,

Sungkyunkwan University, Seoul
Republic of Korea

Professor Filippo Neri,

Faculty of Information & Communication Technology,
University of Malta,

Malta

Prof Mohamed A Zohdy,

Department of Electrical and Computer Engineering,
Oakland University,

United States

Dr Kyriakos G Vamvoudakis,

Dept of Electrical and Computer Engineering, University
of California Santa Barbara

United States

Dr M. M. Fraz

Kingston University London
United Kingdom

Dr Luis Rodolfo Garcia

College of Science and Engineering, Texas A&M
University, Corpus Christi

United States

Dr Hafiz M. R. Khan

Department of Biostatistics, Florida International
University

United States

Professor Wee SER

Nanyang Technological University
Singapore

Dr Xiaocong Fan

The Pennsylvania State University
United States

Dr Julia Johnson

Dept. of Mathematics & Computer Science, Laurentian
University, Ontario,

Canada

Dr Chen Yanover

Machine Learning for Healthcare and Life Sciences
IBM Haifa Research Lab, Israel

Dr Vandana Janeja

University of Maryland, Baltimore
United States

Dr Nikolaos Georgantas

Senior Research Scientist at INRIA, Paris-Rocquencourt
France

Dr Zeyad Al-Zhour

College of Engineering, The University of Dammam
Saudi Arabia

Dr Zdenek Zdrahal

 Knowledge Media Institute, The Open University, Milton
Keynes

United Kingdom

Dr Farouk Yalaoui

Institut Charles Dalaunay, University of Technology of
Troyes
France

Dr Jai N Singh

Barry University, Miami Shores, Florida
United States

DISCLAIMER

All the contributions are published in good faith and intentions to promote and

encourage research activities around the globe. The contributions are property

of their respective authors/owners and the journal is not responsible for any

content that hurts someone’s views or feelings etc.

DOI: 10.14738/tmlai.34.1303
Publication Date: 10th August, 2015
URL: http://dx.doi.org/10.14738/tmlai.34.1303

Optimal Design of Continuous Reinforced Concrete Beams
Using Neural Networks

1Jiin-Po Yeh and 2Ren-Pei Yang
Department of Civil and Ecological Engineering, I-Shou University, Taiwan

1jpyeh@isu.edu.tw, 2yunglnpei@gmail.com

ABSTRACT

This paper aims to build a neural network model to optimally design two-span continuous reinforced

concrete beams. The training and checking data of the neural network are obtained by genetic algorithms,

whose constraints are built according to the ACI Building Code and objective function is to find the

minimum cost of longitudinal reinforcement, stirrups and concrete. The neural network adopted in this

paper is the feed forward back propagation network, whose input vector consists of the span, width and

effective depth of the beam, dead load, compressive strength of concrete as well as yield strength of steel

and the output vector the positive and negative steel ratios and minimum total cost. The correlation

coefficients between the target and network output of the testing data can reach as high as 0.9992, 0.9980

and 0.9999, respectively for the positive and negative steel ratios and minimum cost. Compared with the

adaptive neuro-fuzzy inference system, the neural network shows almost the same accuracy but is much

easier implemented.

Keywords: Continuous reinforced concrete beams, Genetic algorithms, Feedforward backpropagation

networks, Correlation coefficients.

1 Introduction

Genetic algorithms are search procedures which mimic biological evolution. They can solve the

optimization problems by the evolution theory of “survival of the fittest,” whose constraints can be in the

form of linear equality or inequality with bounds on the optimization variables. In 1970s, Professor John

Holland first formally introduced its basic concept [1]. In 1989, Goldberg described in more detail the

theory, terminology and its applications on machine learning and optimization [2]. From then on, the

genetic algorithms became more attractive and widely used. Genetic algorithms have a variety of

applications in fields like engineering, chemistry, economics, manufacturing and so on. Take civil

engineering as an example. Many publications have been seen, such as multiobjective optimization of

trusses [3], reliability analysis of structures [4], global optimization of grillages [5], global optimization of

trusses with a modified genetic algorithm [6], optimization of pile groups using hybrid genetic algorithms

[7], locating the critical slip surface in slope stability analyses [8-10], optimal design of reinforced concrete

beams [11], etc.

Neural networks, as used in artificial intelligence, have traditionally been viewed as simplified models of

neural processing in the brain. They are a computational tool based on the properties of biological neural

systems, which are simplified models of neural processing in the brain and could capture and represent

complex input/output relationships. The motivation for the development of neural network technology

mailto:jpyeh@isu.edu.tw

Jiin-Po Yeh and Ren-Pei Yang; Optimal Design of Continuous Reinforced Concrete Beams Using Neural Networks.

Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 1-15

URL:http://dx.doi.org/10.14738/tmlai.34.1303 2

arose from the desire to have an artificial system to perform intelligent tasks similar to those done by

humans. The artificial neural network was originated by McCulloch and Pitts in 1943 [12], which paved

the way for neural network research. Rosenblatt [13] created the perceptron, an algorithm for pattern

recognition based on a two-layer learning computer network using simple addition and subtraction. Also

key later advance was the backpropagation algorithm by Werbos in 1975 [14]. In 1986, Rumelhart et al.

[15] proposed the theory of parallel distributed processing that computed through the parallel

cooperative and competitive interactions of a large number of simple neuron-like processing units in

contrast to conventional programs that computed through the sequential application of stored

commands. They developed the most famous learning algorithm to modify the weights on connections

between these units so that the global error minimum could be achieved, which marked a milestone in

the current artificial neural networks. Since then, a huge proliferation in the ANN methodologies and

applications have been published, such as control of chaotic pendulum [16], flood forecasting [17],

structural optimization [18-20], facilitating the accurate estimation of probabilistic constraints in

optimization problem [21], frame optimization [22], traffic sign classification [23], modeling the financial

market with multiple prices [24], etc.

2 Genetic Algorithms and Neural Networks

Because genetic algorithms could deal with high nonlinear constraints and neural networks could build

complicated nonlinear relationships between inputs and outputs, this paper combines these two

techniques to optimally design two-span continuous reinforced concrete beams and compares the results

with the previous work [11], which uses the adaptive neuro-fuzzy inference system [25].

2.1 Genetic Algorithms

The genetic algorithm belongs to the field of artificial intelligence, which is a heuristic and multi-point

search that imitates the course of natural selection. Without the need to find the derivatives of the

objective function, it can solve optimization problems by the skills similar to natural evolution. To start

the algorithm, the initial population of candidate solutions is generated at random across the search

space, and then a sequence of new populations is produced. First, evaluate the fitness value of each

member; Secondly, select members called parents according to their fitness, where fitter members are

more likely to be chosen; Thirdly, retain a specified number of individuals, called elites, which have fittest

values. They will pass to the next population unchanged; Fourthly, produce children by combining the

vector entries of a pair of parents, i.e., crossover, where offspring under “crossover” will combine parental

traits and will not be identical to its parents; Fifthly, make random changes to a single parent, i.e.,

mutation, which is more like walking randomly in the vicinity of a candidate solution; Finally, replace the

current population with the crossover and mutation children and elites to form the next generation. The

above steps are repeated until a terminating condition is met.

 The optimization problem for two-span continuous reinforced concrete beams discussed in this paper

can be formulated as follows:

Minimize f(x)

to find x

subject to

http://dx.doi.org/10.14738/tmlai.34.1303

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 3

Ci(x) 0, i=1,…, m

Cj(x) =0, j=1,…, n

LB  x  UB

(1)

where x is the vector of design variables, Ci(x) and Cj(x) represents the nonlinear inequality and equality

constraints, respectively, f(x) is the fitness function, which is the total cost of concrete, longitudinal

reinforcement and stirrups, and LB and UB are the vectors of lower and upper bounds of design variables,

respectively.

2.2 Artificial Neural Networks

The neural network used in this paper is the two-layer feedforward backpropagation network, whose

structure is shown in Figure 1. The transfer function of the single hidden layer is the tan-sigmoid function

k,...,,,i,
e

)net(fa
inetii 3211

1

2
2







 (2)

where k is the number of the neurons in the hidden layer, neti=wi1P1+ wi2P2+…+wiRPR+ bi, P1, P2,…PR are

the inputs, R is the number of elements in the input veator, wi1 , wi2 ,…, wiR are the weights connecting the

input vector and the ith neuron, and bi is the bias of the ith neuron in the hidden layer. The output layer

uses the linear transfer function

q,...,,i,Net)Net(fO iii 21
(3)

where Neti=Wi1a1+ Wi2a2+……+Wikak+ Bi, Wi1,Wi2,…,Wik are the weights connecting the neurons in the

hidden layer and the ith neuron of the output layer, Bi is the bias of the ith output neuron and q is the

number of the network outputs. The square error between the network outputs and the targets can be

expressed as

2

1

)(jj

q

j

P atE 


 (4)

Figure 1 The structure of two-layer feed forward back propagation neural networks

where tj and aj are the jth target and network output, respectively, and p is a particular input-output pair.

For the whole training set, the mean square error is given by

Jiin-Po Yeh and Ren-Pei Yang; Optimal Design of Continuous Reinforced Concrete Beams Using Neural Networks.

Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 1-15

URL:http://dx.doi.org/10.14738/tmlai.34.1303 4





m

P

PE
m

MSE
1

1
 (5)

where m is the total number of training pairs. The Levenberg-Marquardt algorithm [26-28] is chosen as

the training function to minimize the mean square error (i.e., the network performance function). If a

tentative step increases the performance function, this algorithm will act like the gradient descent

method, while it shifts toward Newton’s method if the reduction of the performance function is

successful. It interpolates between the quasi-Newton’s algorithm and the gradient descent method;

therefore, the mean square error in Eq. (5) will always be reduced at each iteration.

 In order to generalize the network, the validation set is also presented to the network during the training

process. When the network begins to overfit the training data, the error on the validation set typically

begins to rise. Once the validation error increases for a specified number of iterations, e.g., 6 iterations,

the training terminates and the weights and biases corresponding to the minimum of validation error are

returned.

3 Design of Two-Span Beams and the Constraints

Based on the provisions of the ACI Building Code Requirements for Structural Concrete and Commentary

[29], the constraints for the two-span continuous beam are formulated, taking into account the strength

requirements of the maximum positive and negative moments, shear, the service requirement of

deflection as well as the development length of flexural reinforcement. Design variables are the width b,

-span continuous reinforced

concrete beams. The beams considered in this paper are subjected to a uniformly distributed load wu

=1.2 wD+1.6 wL , as shown in Figure 2, where wD and wL are dead load and live load. The beams with

span length L are singly reinforced and vertical stirrups are used. Top reinforcement in the negative

moment region will be cut off, while there are no cutoffs for the bottom reinforcement to simplify the

design, as shown in Figure 3. Force and length are measured in the units of kgf (=9.81N) and cm,

respectively, for the following formulas.

3.1 Shear

Suppose that Vc is the shear capacity of the plain web concrete and Vu is the factored shear force. The

shear diagram of the two-span continuous beam is shown in Figure 2, where VA=0.375wu L=VE and


CV

=0.625wu L=
_

CV . First, consider the segment AB in Figure 2. The design of web steel for shear may be

considered by dividing the shear diagram into four regions: (1) Region I: If cu VV  5.0 , where =0.75 is

the strength reduction factor, there is no need for shear reinforcement; (2) Region II: If cuc VVV  5.0

, a minimum web steel area

)
5.3

,2.0(
yy

cv
f

bs

f

bs
fMaxA 

(6)

is the yield strength of steel. According to the ACI code, the spacing s must not be larger than Min (d/2,

60) cm. Because the size of stirrups is usually fixed along the span of the beam, the spacing

http://dx.doi.org/10.14738/tmlai.34.1303

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 5

s  Min)
5.3

,
2.0

,60,
2

(
b

fA

bf

fAd yv

c

yv


 (7)

must be satisfied by combining Eq. (6) and the requirement of Min (d/2, 60) cm; (3) Region III: If

cuc VVV 3 , web reinforcement

c
uyv

s V
V

s

dfA
V 


 (8)

has to be provided to carry the difference and the spacing

cu

yv

VV

dfA
s




 (9)

Figure 2 Two-span continuous reinforced concrete beam

Figure 3 The top and bottom reinforcement in the left span

must not be larger than Min (d/2, 60,
bf

fA

c

yv

2.0
,

b

fA yv

5.3
) cm; (4) Region IV: If cuc VVV  35 , the web

reinforcement in Eq. (8) similarly has to be provided to carry the difference, but the spacing s in Eq. (9)

must not be larger than Min (d/4, 30,
bf

fA

c

yv

2.0
, b

fA yv

5.3) cm.

Web reinforcement for segments BC, CD and DE shown in Figure 2 will be arranged in the same way as

the segment AB. Because the reaction in the direction of applied shear introduces compression into the

Jiin-Po Yeh and Ren-Pei Yang; Optimal Design of Continuous Reinforced Concrete Beams Using Neural Networks.

Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 1-15

URL:http://dx.doi.org/10.14738/tmlai.34.1303 6

end regions of a member, the critical section is taken at a distance d from the face of support. If the

factored shear force Vud at a distance d from the face of the support is larger than 5Vc, the beam section

has to be enlarged. Therefore, another constraint is given by

cdu VV  5
(10)

After the spacing for each region is found, the total number of vertical stirrups can be computed right

away.

3.2 Bending Moment

The moment diagram can be seen in Figure 2. The maximum positive moment is MB = 9wuL2/128 located

at 0.375L from A (or E) and the negative moment at the support C is Mc=0.125wuL2. For simplicity, the

strain t in the tension reinforcement is assumed to be equal to 0.005; therefore, the section is tension-

controlled and the strength reduction factor for moment is fixed at 0.9, not a function of strain in the

tension reinforcement any more. The constraint for both positive and negative moment then takes the

form

005.0,nu M0.9M  (11)

where Mu is the factored negative moment MC or the factored maximum positive moment MB, and















bf

fA
dfAM

c

ys

ysn
85.02

1
005.0,

 (12)

where the area of reinforcement

8

385.0 1 db

f

f
A

y

c
s 


 (13)

due to the net tensile strain of 0.005 in the extreme tensile reinforcement, and 1 is the stress block depth

factor. To prevent sudden failure with little or no warning when the beam cracks or fails in a brittle

manner, the ACI code limits the reinforcement ratio to be between

)(
f

f.

y

c
max

7

3850 1 (14)

and

)
f

,
f

f.
(max

yy

c

min

1480 
 (15)

where max in Eq. (14) is to make sure that the tensile strain must be greater than or equal to 0.004.

Therefore, the constraint for reinforcement ratio is given by

maxmin  (16)

http://dx.doi.org/10.14738/tmlai.34.1303

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 7

where  is the steel ratio 1 for positive moment MB or the steel ratio 2 for negative moment Mc .

3.3 Development of Reinforcement

The ACI Code stipulates that at least one-third of the total tension reinforcement provided for negative

bending moment at the support should extend beyond the inflection point (P.I) not less than the effective

depth d of the member, 12db, or 1/16 of the clear span, as shown in Figure 3. The inflection point P.I. is

located 0.25L from the support. For practical purposes, let span length L  clear spam. Therefore, the

length of top reinforcement in Figure 3

dbpitop)
L

,d,d(MaxL.L.  
16

12250250 (17)

where d is development length of tension reinforcement and db is the nominal diameter of the

horizontal longitudinal bar.

3.4 Immediate and Long-Term Deflections

Because the deflection of the beam can be magnified by creep and shrinkage, both immediate and long-

term deflection must be considered according to the ACI code. The creep and shrinkage deflection under

sustained load can be evaluated using a multiplying factor






501
 (18)

where  is the compression reinforcement ratio at midspan for simple and continuous beams and  is a

time factor that is taken as 1.0 for loading time duration of 3 months, 1.2 for 6 months, 1.4 for 12months

and 2.0 for 5 years or more, respectively. Suppose that the beam considered in this paper will support

partitions and other construction likely to be damaged by large deflections. Hence, the long-term

deflection

480

L
DiLiLT  (19)

where iL is immediate live-load deflection and iD is immediate dead-load deflection under service

loading.

4 Numerical Results

Given the span length, uniformly distributed dead and live loads, compressive strength of concrete and

yield strength of steel of the two-span continuous singly reinforced concrete beams with rectangular

cross-section, the optimal design is accomplished by using the genetic algorithm, whose design variables

are the width b, effective depth d, positive steel ratio 1 and negative steel ratio 2, and the objective

function is to find the minimum cost of concrete, longitudinal reinforcement and stirrups in New Taiwan

Dollars. The unit prices are 1800 NT$/m3 and 19.5 NT$/kgf for concrete and steel, respectively, in Taiwan.

The concrete cover for the reinforcement is 4 cm and No. 3 vertical stirrups are used. On the basis of

materials often used in Taiwan, this paper uses three kinds of yield strength fy of the tension

reinforcement: 2800 kgf/cm2 (40 ksi), 3500 kgf/cm2 (50 ksi) and 4200 kgf/cm2 (60 ksi) as well as three

kinds of compressive strength fc of the concrete: 210 kgf/cm2 (3000 psi), 280 kgf/cm2 (4000 psi) and 350

Jiin-Po Yeh and Ren-Pei Yang; Optimal Design of Continuous Reinforced Concrete Beams Using Neural Networks.

Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 1-15

URL:http://dx.doi.org/10.14738/tmlai.34.1303 8

kgf/cm2 (5000 psi). Besides, three kinds of span length: 6 m, 8 m and 10 m and four kinds of uniformly

distributed dead load: 2100 kgf/ cm, 2300 kgf/cm, 2500 kgf/cm and 2700kgf/cm are adopted; uniformly

distributed live load is fixed at 1800 kgf/cm. Hence, there are totally 108 cases to be designed, which will

be used as training, validation and testing data for the neural networks.

4.1 Genetic Algorithms

The Global Optimization Toolbox based on MATLAB [30] is employed to execute the genetic algorithm,

where some parameters are specified as follows: the population size 20, crossover rate 0.8, and elite

number 2. In addition, all the individuals are real-number codes; “Rank” is taken as the scaling function to

scale the fitness values; “Roulette” is the selection function to choose parents for crossover; “Two-point

crossover” is the strategy to produce offspring; The mutation function “Adaptive Feasible Function” is

applied to avoid being trapped into the local minimum. The genetic algorithm is executed 30 times for

each case, from which the minimum cost is singled out. Then, the total 108 optimal sets of data are

randomly divided into 3 groups: 64 training sets (60 %), 22 validation sets (20 %) and 22 testing sets (20

%).

4.2 Feedforward Backpropagation Neural Networks

This paper applies the Neural Network Toolbox based on MATLAB [31] to build the neural network, whose

inputs of the neural network consist of six elements: fy, fc, wD, L, b as well as d, and targets have three

components: the minimum cost, the steel ratios 1 and 2. Because the input vector has six elements, the

number of neurons in the hidden layer is first set to be six by the past experience. The Levenberg-

Marquardt algorithm is chosen to train the neural networks. The training process is shown in Figure 4. The

weights and biases at epoch 64 are returned to the trained network. After the training of the network is

completed, the testing set is then used to examine the network performance. The graphs of the network

outputs and targets are plotted in Figs. 5-7. The inputs, targets and network outputs of the 22 sets of the

testing data are listed Table 1. To further evaluate the performance of the trained network, this paper

makes use of a linear regression analysis between the network outputs and the corresponding targets.

The scatter plots are shown in Figs. 8-10. The regression results of the steel ratios 1 and 2 and the

minimum cost (103 NT$) are shown in Table 2, where the symbols m, b and r stand for the slope, the y-

intercept and correlation coefficient, respectively. The correlation coefficients between the network

output and target are 0.9992, 0.9980 and 0.9999, respectively for the positive and negative steel ratios

and minimum cost. Besides, the slope m is close to 1 and y-intercept b approximately equals 0. Based on

Figs. 5-10 and Table 2, the performance of the feedforward backpropagation networks can be considered

excellent, which is as good as the adaptive neuro-fuzzy inference system. The networks with 12, 18 and

24 neurons in the hidden layer are also explored for comparison with 6 neurons. Their linear regression

results can be seen in Table 2, which indicates that even the number of neurons used in the hidden layer

increases, the network output accuracy doesn’t improve significantly.

http://dx.doi.org/10.14738/tmlai.34.1303

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 9

Figure 4 The training process for the neural network with 6 neurons in the hidden layer

Figure 5 The network outputs and targets of the steel ratio of the positive moment for the testing sets with 6
neurons in the hidden layer

Figure 6 The network outputs and targets of the steel ratio of the negative moment for the testing sets with
6 neurons in the hidden layer

Jiin-Po Yeh and Ren-Pei Yang; Optimal Design of Continuous Reinforced Concrete Beams Using Neural Networks.

Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 1-15

URL:http://dx.doi.org/10.14738/tmlai.34.1303 10

Figure 7 The network outputs and targets of the minimum cost for the testing sets with 6 neurons in the
hidden layer

Figure 8 The scatter plot of the steel ratio of positive moment for the testing set with 6 neurons in the
hidden layer

http://dx.doi.org/10.14738/tmlai.34.1303

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 11

Figure 9 The scatter plot of the steel ratio of negative moment for the testing set with 6 neurons in the
hidden layer

Figure 10 The scatter plot of the minimum cost (103 NT$) for the testing set with 6 neurons in the hidden
layer

Table 1 Optimal results and outputs of the 22 sets of testing data for the neural network with 6 neurons in the
hidden layer

Jiin-Po Yeh and Ren-Pei Yang; Optimal Design of Continuous Reinforced Concrete Beams Using Neural Networks.

Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 1-15

URL:http://dx.doi.org/10.14738/tmlai.34.1303 12

Table 2 The regression analysis of the targets with network outputs of the testing data for different number of
neurons in the hidden layer

No. of neurons in
the hidden layer

Targets vs. network
outputs

m b r

6

1 0.9910 0.0001 0.9992

2 1.0071 -0.0001 0.9980

Cost 1.0004 0.0079 0.9999

12

1 1.0036 0.0000 0.9993

2 1.0023 0.0000 0.9982

Cost 0.9986 0.0351 0.9998

18

1 1.0185 -0.0001 0.9952

2 1.0119 -0.0002 0.9977

Cost 0.9709 0.2512 0.9972

24

1 1.0241 -0.0002 0.9981

2 1.0341 -0.0005 0.9959

Cost 0.9962 0.0046 0.9995

5 Conclusions

This paper uses the feedforward backpropagation neural network to form a design model for two-span

continuous reinforced concrete beams with rectangular cross-section and compares the results with the

adaptive neuro-fuzzy inference system. The training, validation and testing data are obtained from the

optimal results of the genetic algorithm. The inputs of these models are the yield strength of steel,

compressive strength of concrete, dead load (live load is fixed) and span length, width and effective depth

of the beam, while the targets are the minimum cost, the steel ratios for the positive and negative

moment. The reason for the inputs of the neural networks to be a little bit different from the given

conditions of the genetic algorithm is to make the design model more practical. Numerical results show

that the performance of the feedforward backpropagation neural network is excellent with all correlation

coefficients being greater than 0.998, the slope and y-intercept of the regression line close to 1 and 0,

respectively, which is as good as the adaptive neuro-fuzzy inference system. Furthermore, if more neurons

in the hidden layer are used, the effectiveness of the neural network doesn’t improve significantly. In

addition to having the same accuracy, the feedforward backpropagation neural network is much easier to

be implemented than the adaptive neuro-fuzzy inference system.

REFERENCES

[1] Holland, J. H. 1975. Adaptation in natural and artificial systems. The University of Michigan Press,

Ann Arbor, MI, USA.

[2] Goldberg, D. E. 1989. Genetic algorithms in search, optimization and machine learning, Addison

Wesley, Reading, MA, USA.

http://dx.doi.org/10.14738/tmlai.34.1303

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 13

[3] Coello, C. A. and Christiansen, A. D. 2000. Multiobjective optimization of trusses using genetic

algorithms, Computers and Structures. Vol. 75, pp. 647-660.

[4] Cheng, J and Li, Q. S. 2008. Reliability analysis of structures using artificial neural network based

genetic algorithms. Computer Methods in Applied Mechanics and Engineering, Vol. 197, No. 45.

pp. 3742-3750.

[5] Belevičius, R. and Šešok, D. 2008. Global optimization of grillages using genetic algorithms,

Mechanika. Nr., Vol. 6, No. 74, pp. 38-44.

[6] Šešok, D. and Belevičius, R. 2008. Global optimization of trusses with a modified genetic

algorithm, Journal of Civil Engineering Management. Vol. 14, No. 3, pp. 147-154.

[7] Chan, C. M., Zhang, L. M. and Jenny, T. N. 2009. Optimization of pile groups using hybrid genetic

algorithms, Journal of Geotechnical and Geoenvironmental Engineering. Vol. 135, Issue 4, pp.

497-505.

[8] Goh, A. T. C. 2000. Search for critical slip circle using genetic algorithms. Civil Engineering and

Environmental Systems, Vol. 17, No. 3, pp. 181–211.

[9] Zolfaghari, A.R., Heath, A.C., McCombie, P.F. 2005. Simple genetic algorithm search for critical

non-circular failure surface in slope stability analysis. Computer and Geotechnics, Vol. 32, No.

3, pp. 139-152.

[10] Li, Y.-C., Chen, Y.-M., Zhan, T. L. T., Ling, D.-S. and Cleall, P. J. 2010. An efficient approach for

locating the critical slip surface in slope stability analyses using a real-coded genetic algorithm.

Canadian Geotechnical Journal, Vol. 47, No. 7, pp. 806–820.

[11] Yeh, J-P and Yang R-P, 2014, “Application of the Adaptive Neuro-Fuzzy Inference System for

Optimal Design of Reinforced Beams,” Journal of Intelligent Learning Systems and Applications,

Vo. 6, pp. 162-175.

[12] McCulloch, W.S. and Pitts, W. 1943. A logical calculus of ideas immanent in nervous activity.

Bulletin of Mathematical Biophysics, Vol. 5, pp. 115-133.

[13] Rosenblatt, F. 1958. The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain. Psychological Review, Vol. 65, No.6, pp. 386–408.

[14] Werbos, P. J. 1975. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences. Ph.D. Dissertation, Harvard University, Boston, MA, USA.

[15] Rumelhart, D. E., McClelland, J. L. and the PDP Research Group. 1986. Parallel distributed

processing: explorations in the microstructure of cognition. volume 1: foundations, MIT Press,

Cambridge, MA, USA.

Jiin-Po Yeh and Ren-Pei Yang; Optimal Design of Continuous Reinforced Concrete Beams Using Neural Networks.

Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 1-15

URL:http://dx.doi.org/10.14738/tmlai.34.1303 14

[16] Bakker, R., Schouten, J. C., Takens, F. and van den Bleek, C. M. 1996. Neural network model to

control an experimental chaotic pendulum. Physical Review E, 54A, pp. 3545-3552.

[17] Mukerji, A., Chatterjee, C., and Raghuwanshi, N. S. 2009. Flood forecasting using ANN, Neuro-

Fuzzy and Neuro-GA models. Journal of Hydrologic Engineering, Vol. 14, No. 6, pp. 647-652.

[18] Cheng, J. and Li, Q. S. 2009. A hybrid artificial neural network method with uniform design for

structural optimization. Computational Mechanics, Vol. 44, No. 1, pp. 61-71.

[19] Möller, O., Foschi, R. O., Quiroz, L. M., and Rubinstein, M. 2009. Structural optimization for

performance-based design in earthquake engineering: applications of neural networks.

Structural Safety, Vol. 31, No. 6, pp. 490–499.

[20] Gholizadeh, S. and Salajegheh, E. 2010. Optimal design of structures for earthquake loading by

self organizing radial basis function neural networks. Advances in Structural Engineering, Vol.

13, No. 2, pp. 339-356.

[21] Patel, J. and Choi, S. K. 2012. Classification approach for reliability-based topology optimization

using probabilistic neural networks. Structural and Multidisciplinary Optimization, Vol.45, Issue

4, pp. 529–543.

[22] Meon, M. S., Anuar, M. A., Ramli, M. H. M., Kuntjoro, W., and Muhammad, Z. 2012. Frame

optimization using neural network. International Journal Advanced Science Engineering

Information Technology, Vol. 2, No. 1, pp. 28-33.

[23] Ciresan, D. C., Meier, U., Masci, J. and Schmidhuber, J. 2012. Multi-column deep neural network

for traffic sign classification. Neural Networks, Vol. 32, pp. 333-338.

[24] Danting, Z., Tingfeng, T., Zhongwei, J., Huichao, X., Xian, L. and Qing-Guo, W., 2014. Modeling

the financial market with multiple prices. Transactions on Machine Learning and Artificial

Intelligence, Vol. 2, No. 5, pp. 41-51.

[25] Jang, J.-S. R. 1993. “ANFIS: Adaptive-Network-Based Fuzzy Inference System”, IEEE Transactions

on Systems, Man and Cybernetics, Vol. 23, No.3, pp.665-685.

[26] Hagan, M. T. and Menhaj, M. 1994. Training feedforward networks with the Marquardt

algorithm. IEEE Transactions on Neural Networks, Vol.5, No.6, pp.989-993.

[27] Hagan, M. T., Demuth, H. B. and Beale, M. H. 1996. Neural network design. PWS Publishing,

Boston, MA, USA.

[28] Pujol, J. 2007. The solution of nonlinear inverse problems and the Levenberg-Marquardt

method. Geophysics, Vol. 72, No. 4, W1–W16.

http://dx.doi.org/10.14738/tmlai.34.1303

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 15

[29] ACI 2008. Building code requirements for structural concrete (ACI 318-08) and commentary (ACI

318R-08). American Concrete Institute, Farminton Hills, MI, USA.

[30] The MathWorks. 2012. Global optimization toolbox: user's guide. The MathWorks, Inc., Natick,

MA, USA.

[31] Demuth, H., Beale, M., and Hagan, M. 2010. Neural network toolbox user’s guide. The

MathWorks Inc., Natick, Massachusetts, USA.

DOI: 10.14738/tmlai.34.1436
Publication Date: 26th August, 2015
URL: http://dx.doi.org/10.14738/tmlai.34.1436

Application of Hybrid Machine Learning to Detect and Remove

Malware

1Richard R. Yang, 2Victor Kang, 3Sami Albouq and 3Mohamed A. Zohdy
1College of Engineering and Applied Sciences, University of Wyoming, United States;

2College of Literature, Science and the Arts, University of Michigan Ann Arbor, United States;
3School of Engineering and Computer Science, Oakland University, United States;

ryang3@uwyo.edu; vkang@umich.edu; salbouq@oakland.edu; zohdyma@oakland.edu

ABSTRACT

Anti-malware software traditionally employ methods of signature-based and heuristic-based detection.

These detection systems need to be manually updated with new behaviors to detect new, unknown, or

adapted malware. Our goal is to create a new malware detection solution that will serve three purposes:

to automatically identify and classify unknown files on a spectrum of malware severity; to introduce a

hybrid machine learning approach to detect modified malware traces; and to increase the accuracy of

detection results.

Our solution is accomplished through the use of data mining and machine learning concepts and

algorithms. We perform two types of data mining on samples, extracting n-grams and PE features that are

used for our machine learning environment. We also introduce a new hybrid learning approach that

utilizes both supervised and unsupervised machine learning in a two-layer protocol. A supervised

algorithm is applied to classify if a file is considered malware or benign. The files classified as malware will

then be categorized and then assigned on a severity spectrum using the SOFM unsupervised algorithm.

Keywords: machine learning, data mining, self-organizing feature map algorithm, malware detection.

1 Introduction

Due to the advancements and increased use in technology, malware is becoming more prevalent in

today’s society. Malware are widely categorized, but the main types we investigate are: Adware, Trojans,

Keyloggers, and Rootkits. The purpose of Adware is to obtain users internet behavior for commercial

purposes such as targeted ads. A Trojan disguises itself as legitimate or useful software but actually

infiltrates a user’s system. Keyloggers record keystrokes and other user input to a system. Finally, a Rootkit

attempts to gain elevated control of a user’s system while hiding itself and other system components.

Each category of malware seeks to accomplish a different purpose, but their overarching goal is to cause

malicious intent and to steal information from users without their consent.

Currently, anti-malware solutions are able to fight back new malware through two approaches: signature-

based detection and heuristic-based detection. In signature-based detection, a suspicious file is obtained

by the anti-malware firm and analyzed. If the file is deemed to be malware, a unique signature is

generated for the file and that signature is added to an online database. The anti-malware solution is able

to quarantine files that match malicious signatures on clients systems. Although this method has been

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 17

reliable and commonly used, the downside is that anti-malware firms must readily obtain samples and

manually update the database each time new or modified malware surface. Compared to signature-based

detection, heuristic-based detection generalizes malware by using a single signature for any of the

malware’s variations or mutations. However, systems that use heuristic-based detection often has a high

number of false positives [3]. Though these methods have been seen to be effective, we choose to

investigate a machine learning alternative to these current detection methods.

The two primary categories of machine learning are supervised learning and unsupervised learning. In

supervised learning, the system is given a set of training data and how that data is classified. The algorithm

is able to classify new input by learning from the training set that it was provided. The results from

supervised learning are more specific than its counterpart. In unsupervised learning, the system is

provided only with data and no classification keys. The idea of unsupervised learning is to classify relatively

similar inputs together without any prior classification knowledge about the data set.

In our research, we expand the application of data mining and machine learning concepts for malware

detection and introduce a new hybrid machine learning approach that incorporates both supervised and

unsupervised learning in a two-step classification process.

2 Related Work

Alternatives to signature-based detection and heuristic-based detection in security software have been

proposed and examined in the past [2] [5] [6] [7] [10].

In [7], the authors use data mining and natural language processing on End-User License Agreements

(EULA) during software installation. The authors’ objective were to detect spyware that may have been

installed with the user’s consent through the EULA, where the EULA may have been written in a way that

is hard to comprehend for users. The study compared 17 learning algorithms with a baseline algorithm on

a bag-of-words and meta-data model of representing the EULA.

Another method of detection was introduced by [10], where a Support Vector Machine is used in

conjunction with static and dynamic analysis of file samples. Static analysis of samples were performed

by dumping the program’s import table from the Portable Executable structure, and recording all of the

DLLs used and API function calls. For dynamic analysis, the authors ran each sample in a VMWare sandbox

environment and monitored changes in registry, system folders/files, and network states. The results of

each type of analysis were used as features in the Support Vector Machine, and information gain was

calculated to observe the influence of feature selection.

A system known as Early Detection, Alert and Response (eDare) was designed to detect malicious code in

network traffic in [6]. The eDare system uses network traffic scanners and machine learning algorithms to

“pinpoint unknown malicious code exhibiting suspicious morphological patterns.” [6] In this investigation,

static code analysis is performed using decision trees, neural networks, and Bayesian networks.

Unsupervised learning was introduced to detecting malware in wireless devices by [2]. In [2], k-Means

Clustering, γ-Algorithm, Divisive Hierarchical Clustering, Agglomerative Hierarchical Clustering, and

Quartersphere Support Vector Machine unsupervised learning algorithms were applied to features data

mined from Android applications.

The approach of using data mining and supervised machine learning was investigated in [5]. The authors

extract n-grams from file samples and apply supervised learning algorithms to classify files as purely

Richard R. Yang, Victor Kang, Sami Albouq and Mohamed A. Zohdy; Application of Hybrid Machine Learning to

Detect and Remove Malware. Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August

(2015); pp: 16-26

URL:http://dx.doi.org/10.14738/tmlai.34.1436 18

spyware or benign. N-grams of various sizes (centered on n = 5) and several supervised learning algorithms

were compared to create a better performing solution than existing anti-virus software.

3 Experimental Procedure

Our experimental procedure begins with collecting benign and malware samples from several trusted

websites. Next, we data mine and extract features from the samples. A feature is an identifying

characteristic of the file used in machine learning algorithms. In our research, we use two general types

of features: N-grams and Portable Executable structure. After data mining and obtaining features from

our samples, we proceed with our hybrid machine learning approach. First, the features are organized in

a database and we run it through supervised learning algorithms that will strictly classify if a file is malware

or benign. From there, we use all of the files that were identified as malware and use them as input to an

unsupervised learning algorithm to classify the malware on a severity spectrum. Finally, we evaluate our

approach by computing the true positive rate, false positive rate, overall accuracy, and area under the

receiver operating characteristics curve for each trial.

Figure 1: A graphical representation of our experimental procedure

3.1 Sample Collection

Initially, we collected 300 benign files and 120 files containing malware. The benign files were downloaded

from two web sources, Download.com and Softpedia.com. These websites both certify that their files are

malware free. The benign files we downloaded contain a wide variety of software, including business

applications, games, web browsers, and developer tools. The overall size of our benign sample collection

is 5.05 GB.

The malicious files were downloaded through collections from VXHeaven and KernelMode.info, both are

online communities focusing on malware reversal, development, and research. The malware in the

collections are categorized by their behaviors. We primarily downloaded malware that were categorized

under Backdoor, Rootkit, Trojan, and Worm. The overall size of our malicious sample collection is 1.28 GB.

3.2 Data Mining/Feature Extraction

With the samples we collected, we now data mine all of the files for features. A feature is an identifying

characteristic of the file, and we extract two general types of features from each file: N-grams and

Portable Executable structure.

3.2.1 N-grams

N-grams are sequences of n bytes extracted from a sample’s machine code. N-grams are the most naive

form of features from a data mining perspective, and can be viewed as DNA strands for virtual files. We

http://dx.doi.org/10.14738/tmlai.34.1436

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 19

first generate a hexadecimal dump - the raw computer data as seen in memory - from each sample. After

the hexadecimal dumps are obtained, we select a size of n to sequence the dump into n-grams. Past

research from [5] [8] has shown that n-grams of size 5 (each sequence is exactly 5 bytes) produced the

most overall accurate results. The dumping and sequencing is performed using a Linux utility called "xxd"

and can be used on any Linux distribution.

3.2.2 Portable Executable Features

The Portable Executable structure contains information about how the operating system manages a

resources allocated to a program [4]. Features from the PE Header, MZ Header, and Data-Directory were

extracted and compared from each sample’s structure. In the results section, we compare the

performance of our algorithms using selected features from each section of the PE structure. In addition,

we extracted the DLL imports and API function calls of each file from the Import Address Table [9]. The PE

feature mining was done by through a package from Ruby called “pedump”.

3.3 Supervised Machine Learning

The goal of the supervised machine learning implementation is to categorize file inputs as strictly benign

or malware. We use the Waikato Environment for Knowledge Analysis (WEKA) as our platform for running

supervised algorithms and analyzing performance evaluations. WEKA uses a unique file format as input,

an Attribute-Relation File Format (ARFF) database. The format allows us to list all of our features and their

type (numeric, nominal, string, etc.), an example can be seen in figure 1. ARFF files for n-grams consist of

two attribute fields: the n-gram sequence (numeric) and a "present" field, which indicates if an n-gram is

found in malware traces or not (nominal). ARFF files for PE features also contain a present attribute field

(nominal), all of the PE fields (numeric), and API function calls (nominal). The ARFF file generation is done

through a parser that we created in C++.

Figure 2: An example ARFF database generated for a sample’s PE features

For n-grams, we first dump all benign and malware files into separate databases. The two databases are

then merged into a new database with duplicate n-grams removed, which we will call the common

database. N-grams from the common database is compared with the n-grams in the malware database,

and if the n-gram is present in the malware database, we indicate so by assigning the n-gram's present

field in the ARFF file with a "1."

All of the PE features are numeric, so their values and directly saved into the ARFF database. Due to the

large quantity of API function calls, we selected the top 100 most frequent calls among malware and used

them as nominal fields in the ARFF database. If a sample performs the specified function call, we assign a

"1" to that field and a "0" otherwise.

Richard R. Yang, Victor Kang, Sami Albouq and Mohamed A. Zohdy; Application of Hybrid Machine Learning to

Detect and Remove Malware. Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August

(2015); pp: 16-26

URL:http://dx.doi.org/10.14738/tmlai.34.1436 20

After the ARFF files have been prepared, we use them as input to our WEKA simulator. WEKA uses a

method known as k-fold cross validation to test the supervised algorithms, where the entire data set is

partitioned into k sections and one section is used as testing data while the rest are used as the training

data. Through this process WEKA is able to compute the true positive rate, false positive rate, and other

statistic quantifiers of the algorithm. The three supervised algorithms that we investigated are:

3.3.1 J48 Algorithm

An implementation of the C4.5 decision tree algorithm in Java. This algorithm calculates the normalized

information gain ratio from splitting on a feature for all features. The decision tree will create a node that

splits on the feature with the highest information gain.

3.3.2 Random Forest

The Random Forest algorithm is an ensemble learning method. It creates several decision trees from the

random parts of the data with replacement. The combination of these trees, which contain an

approximate of the underlying data, creates a "forest" which gives a much more accurate approximation

of the data.

3.3.3 Naïve Bayes Classifier

The Naïve Bayes classifier assumes that all features are independent of each other, and then applies

Bayes’ Theorem to calculate which node the decision tree will split on.

Figure 3. Output information from WEKA after running a supervised machine learning algorithm on an input
sample

3.4 Unsupervised Machine Learning

After the supervised learning algorithms label the samples as malware and benign, the samples classified

as malware are then used as input for the unsupervised machine learning. The goals of using unsupervised

learning after the supervised algorithm are to classify malware on a severity spectrum and to act as a

second buffer to catch any additional false positives. The primary algorithm that was used for

unsupervised machine learning was the Self Organizing Feature Map (SOFM).

The SOFM is an artificial neural network that uses neurons that respond to input [1]. The algorithm takes

in a data file that is organized similarly to the ARFF format used by WEKA, and outputs a grid of colors

where each circle is a neuron.

http://dx.doi.org/10.14738/tmlai.34.1436

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 21

In order to classify the malware based on their behavior, the features used as input into the SOFM needed

to be representative of the functionality of a program. As a result, API function calls, which are found in

the DLL imports of the PE structure were used, as they provided the best insight into the behavior of a

sample. Our malware samples contained a total of 172,641 different API calls.

Each class of malware has different API function calls which are needed to perform their malicious activity.

In our collection of malicious files, there were 4 different classes of malware, including: Backdoor, Rootkit,

Trojan, and Worm. In each class, we recorded the top 100 most frequent API calls, ending up with a

database of the top identifying API calls of each type of malware.

Using our database of the most frequent API calls of each class, we created a feature vector of 1's and 0's

(1 if a certain API call was present, 0 if it was not) for each sample that was labeled "malware" by the

supervised learning.

The SOFM we were working with used colors to represent different clusters. The colors are represented

numerically with 3 inputs, Red, Green and Blue. To reduce our feature vector to just 3 numbers, we split

the vector into groups of 3, and converted the binary sequence into a decimal number. The purpose of

this was to give us a one-to-one mapping of the different binary sequences to a unique decimal value. We

then took the decimal values and normalized them into a value between 0 and 1, which was finally used

as input for the SOFM.

4 Results and Analysis

4.1 Performance Metrics

The performance of each algorithm was compared through the following evaluation metrics:

True Positives (TP): The number of malware correctly identified as malware

False Positives (FP): The number of malware incorrectly identified as benign

True Negatives (TN): The number of benign correctly identified as benign

False Negatives (FN): The number of benign incorrectly identified as malware

True Positive Rate (TPR): Also known as sensitivity,

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

True Negative Rate (TNR): Also known as specificity,

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Overall Accuracy (ACC):

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

In addition to these metrics, we also use a Receiver Operating Characteristics (ROC) curve, which is used

in many applications outside of Computer Science to evaluate detection performance. The ROC is a

comparison graph of the False Positive Rate (1 - specificity) vs. True Positive Rate (sensitivity). In addition

to the curve itself, the area under the ROC curve (AUC) can also be used as an evaluation metric in

Richard R. Yang, Victor Kang, Sami Albouq and Mohamed A. Zohdy; Application of Hybrid Machine Learning to

Detect and Remove Malware. Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August

(2015); pp: 16-26

URL:http://dx.doi.org/10.14738/tmlai.34.1436 22

comparison to the overall accuracy. An ideal ROC curve is a unit-step function, where 100% TPR

corresponds to 0% FPR and the AUC is exactly 1.0.

4.2 Parameters

For the supervised learning algorithms, we compared the results of each algorithm under different

parameters. These included: malicious file percentage (MFP), combinations of different features, feature

extraction methods.

It was found that changing the malicious file percentage (MFP) in the training data had a moderate impact

on our results. As we increased the number of either benign or malicious files significantly over the other,

a negative impact was seen on the performance of our solution. This was due to the fact that with huge

imbalances in our sample, the algorithm would generalize files more often, as it was trained with more of

one type the other. However, we also found that an exact split in the number of files did not work as well

as a slightly skewed split.

Another parameter we changed were the different combinations of features used as input for WEKA.

Within the Portable Executable structure, there are many sections of data that can be interpreted. These

include the MZ header, PE File Header, Data Directory, and DLL imports (contain API function calls) for a

total of 42 unique features. The top 100 most frequent API calls were also recorded, for a total of 142

features. Individually, these sections performed worse than when used in combination with each other.

It is interesting to note that when using the MZ header features by themselves, the result was entirely

meaningless as it provided an AUC of 0.5.

For feature extraction, we used both information gain and information gain ratio to select our attributes.

These extraction methods reduce the amount of "noise" created by useless features that do not tell us

anything regarding whether the program is malicious or benign. As a result, all features contained within

the MZ header were removed. The number of features were reduced from 142 to 73. In most cases,

applying information gain was the most ideal, as it lowered the FPR while the TPR remained relatively the

same. On the other hand, using information gain ratio lowered the FPR approximately 2-3 percent,

however the TPR suffered a significant reduction. As a result, we determined that information gain was

the better feature selection as it maximized the distance between the TPR and the FPR, as well as having

a slightly higher AUC.

A comparison of the algorithms reveals that the Random Forest algorithm is the best on average in every

metric. It consistently outperformed both the J48 algorithm and the NBTree algorithm, most noticeably

in regards to the AUC. The average AUC of Random Forest was 0.9467, while both J48 and NBTree AUC's

falling under 0.9. With higher AUC values, the Random Forest algorithm maximized the difference

between the TPR and FPR, thus producing the best results.

4.3 Comparison and Optimal Results

As mentioned earlier, the PE structure contains several categories of features in different locations of the

structure. The three categories we looked at were the PE header (PE), Data-Directory (DD), and MZ header

(MZ). In addition, we extracted the top 100 API function calls for a given set of samples and used them as

features. Table 1 is a comparison of our top performing solutions. We found that the Random Forest

algorithm almost always produced better results when run under the same conditions as the other

http://dx.doi.org/10.14738/tmlai.34.1436

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 23

algorithms. Also, it was observed that when only the MZ header features are used, all supervised learning

algorithms returned inconclusive results.

Table 1. Performance Comparison of Varying Parameters

Features Algorithm ACC TPR FPR AUC

PE + DD + API Random Forest 93.5% 90% 5% 0.960

PE + DD + MZ + API Random Forest 93% 90% 5.7% 0.959

DD + API Random Forest 91% 86.7% 7.1% 0.963

PE + API J48 90.5% 85% 7.1% 0.875

PE + DD + MZ + API J48 90% 81.7% 6.4% 0.895

MZ + PE + API Naïve Bayes 91% 88.3% 7.9% 0.912

API Naïve Bayes 89% 88.3% 10.7% 0.918

Figure 4. Comparison of algorithms’ overall accuracy using the same parameters

In figure 4, we compare the overall accuracy of each algorithm using the same parameters. The features

used were PE headers, DD headers, and API function calls. We saw the highest performing algorithm was

RandomForest, which we use to further test the effectiveness of feature selection.

Figure 5. A comparison of area under the ROC curve using different features with the Random Forest
algorithm

Richard R. Yang, Victor Kang, Sami Albouq and Mohamed A. Zohdy; Application of Hybrid Machine Learning to

Detect and Remove Malware. Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August

(2015); pp: 16-26

URL:http://dx.doi.org/10.14738/tmlai.34.1436 24

After running multiple trials, using different combinations of each parameter, we achieved our best result.

This was done with the following parameters: 70% benign files to 30% malicious files, done under the

Random Forest Algorithm, using the PE Header in conjunction with the Data Directory and top 100 most

frequent API calls, all applied with information gain. The result was a feature vector containing 73

identifying features for malware. This gave us an overall accuracy of 94%, a TPR of 91.7%, an FPR of 5%

and an AUC of 0.962. While we did achieve higher TPR and lower FPR, we defined the "best" result as the

trial that maximized the difference between the TPR and the FPR.

Figure 6. The ROC curve comparison for the top performing parameters of each supervised algorithm. Our
overall best solution is shown in blue.

4.4 Self-Organizing Feature Map Classification

The SOFM algorithm we implemented represents neurons as colors by having three fields for RGB values

ranging between 0 and 1. Our input data, the API function calls, need to be reduced to three fields and

then normalized. The normalized value of each input is calculated by:

𝑋𝑖,𝑛𝑜𝑟𝑚 =
𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

In addition, we calculated the 6-norm distance from each input to the neuron rather than the Euclidean

distance used in general SOFMs. The equation to calculate the p-norm distance from input to neuron is

as shown below. Using the 6-norm provided a clearer output spectrum and each category of malware can

be easily seen.

𝐿𝑝 = (∑|𝑞𝑖 − 𝑝𝑖|𝑝

𝑛

𝑖=1

)

1/𝑝

http://dx.doi.org/10.14738/tmlai.34.1436

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 25

Figure 7. Snapshot of the SOFM in the process of clustering related malware into a severity spectrum

For an epoch of 3000 iterations and an initial learning rate of 0.3, were able to generate the severity

spectrums shown in Figure 4 and 5. For the sake of clarity on the color clusters, we used a total of 22,500

(150x15) neurons in the network.

Figure 8. A completed SOFM output severity spectrum after 3000 iterations, each category of malware can
be distinguished from the different colors of neurons

5 Conclusion and Future Work

In our investigation, we introduced a new method of hybrid machine learning to detect spyware and

classify spyware on a severity spectrum. We explored the variations of parameters and their effect on the

accuracy of detection. It was discovered that the best performing solution uses features mined from the

PE structure and API function calls selected through information gain applied with the Random Forest

algorithm. We achieved a 94% overall accuracy with 91.7% TPR and 5% FPR.

For future work, we suggest the use of more features in conjunction with each other. Our research

combined the use of PE features with API function calls, using information gain to reduce our features.

Additional features that could be examined are: opcode n-grams, and string analysis to find keywords

representing maliciousness. The combination of these features used with the correct feature extraction

would minimize the counts of false positives.

For the unsupervised machine learning, more algorithms in clustering and neural networks can be

explored. Algorithms such as K-means clustering and hierarchical clustering could provide more accurate

groupings of malware. In addition, a non-color based representation of the SOFM can be used.

Disregarding color will give additional depth and dimensions to the SOFM, allowing it to cluster samples

in more than just a two dimensional grid.

Richard R. Yang, Victor Kang, Sami Albouq and Mohamed A. Zohdy; Application of Hybrid Machine Learning to

Detect and Remove Malware. Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August

(2015); pp: 16-26

URL:http://dx.doi.org/10.14738/tmlai.34.1436 26

6 ACKNOWLEDGEMENTS

This research work was conducted at Oakland University in the UnCoRe program - REU site supported by

the National Science Foundation under Grant No. CNS-1460897. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the authors and do not necessarily reflect the

views of the National Science Foundation.

The authors would like to thank Dr. Huirong Fu, PI and Program Coordinator of the UnCoRe REU program

at Oakland University, for her support and guidance.

REFERENCES

(1) Abdel-Aty-Zohdy, H. S., & Zohdy, M. A. (2001). Self-organizing feature maps. Wiley encyclopedia of

electrical and electronics engineering () John Wiley & Sons, Inc. doi:10.1002/047134608X.W5114

(2) Akpojaro, J., Aigbe, P., Onwudebelu,U. (2014). Unsupervised machine learning techniques for

detecting malware applications in wireless devices. Transactions on Machine Learning and Artificial

Intelligence, 2(3)

(3) Bahraminikoo, P., Samiei yeganeh, M., & Babu, G. P. (2012). Utilization data mining to detect spyware.

IOSR Journal of Computer Engineering, 4(3)

(4) Baldangombo, U., Jambaljav, N., & Horng, S. (2013). A static malware detection system using data

mining methods. Corr, abs/1308.2831

(5) Chavan, M. k., & Zende, D. A. (2013). Spyware solution: Detection of spyware by data mining and

machine learning technique. International Conference on Advanced Research in Engineering and

Technology, Vijayawada, India.

(6) Elovici, Y., Shabtai, A., Moskovitch, R., Tahan, G., & Glezer, C. (2007). Applying machine learning

techniques for detection of malicious code in network traffic.4667, 44-50. doi:10.1007/978-3-540-

74565-5_5

(7) Lavesson, N., Boldt, M., Davidsson, P., & Jacobsson, A. (2011). Learning to detect spyware using end

user license agreements. Knowledge and Information Systems, 26(2), 285-307.

(8) Shahzad, R. K., Haider, S. I., & Lavesson, N. (2010). Detection of spyware by mining executable files.

Availability, Reliability, and Security, 2010. ARES '10 International Conference on, Krakow. 295-302.

(9) Singhal, P., & Raul, N.Malware detection module using machine learning algorithms to assistin

centralized security in enterprise networks.

(10) Wang, T., Horng, S., Su, M., Wu, C., Wang, P., & Su, W. (2006). A surveillance spyware detection system

based on data mining methods. IEEE Congress on Evolutionary Computation, Sheraton Vancouver Wall

Centre Hotel, Vancouver, BC, Canada. 3236-3241.

http://dx.doi.org/10.14738/tmlai.34.1436

DOI: 10.14738/tmlai.34.1438
Publication Date: 29th August, 2015
URL: http://dx.doi.org/10.14738/tmlai.34.1438

Bio-Inspired Temporal-Decoding Network Topologies for the

Accurate Recognition of Spike Patterns

Gianluca Susi1,2
1Department of Electronic Engineering,

 2Department of Civil Engineering and Computer Science
University of Rome "Tor Vergata", Italy.

gianluca.susi@uniroma2.it

ABSTRACT

In this paper will be presented simple and effective temporal-decoding network topologies, based on a

neuron model similar to the classic Leaky Integrate-and-Fire, but including the spike latency effect, a

neuron property able to take into account that the firing of a given neuron is not instantaneous, but it

occurs after a continuous-time delay depending on the inner state. These structures are able to detect

spike sequences composed of pulses belonging to neuron ensembles, exploiting basic biological neuron

mechanisms. According to the biological counterpart, with these structures is possible to achieve a high

temporal accuracy, but also deal with the natural variability present in spike trains. In addition, the

connection of these neural structures at a higher level make possible to afford some pattern recognition

problems, operating a distributed and parallel input data processing.

Keywords: Temporal coding; Neuronal modelling; Spiking Neural Network (SNN); Latency; Pattern

recognition; Classification; Coincidence detection.

1 Introduction

In sensory systems the recognition of relevant stimuli is made possible by the detection of spike patterns

during the processing of peripheral inputs. However, specific neural mechanisms that enable recognition

of such sequences are currently unknown [1].

‘Decoding’ refers to the problem of how to ‘read out’ the information contained in a set of neural spike

trains and has both theoretical and practical implications for the study of neural coding [2, 3]. Some works

highlight that neurons represent information through their mean rates of action potential firing [4], on

the other hand data suggest that the temporal structure of spike trains take advantage of reliable and

precise latencies [5, 6]. In [7] is shown how time coding and rate coding tend to become confounded, at

very short time scales (10 ms or less), and any form of temporal code can be described in terms of very

rapid changes in firing rate [8].

Temporal spike coding, together with temporal spike learning, has been revealed in the auditory- and

visual information processing in the brain as well as in motor control [9], and its use in neuro-prosthetics

is essential along with applications for a fast, real-time recognition and control of sequence of related

processes [10]. In [7] is highlighted the relevance of considering the timing of spikes across a population

of afferent neurons.

Gianluca Susi; Bio-Inspired Temporal-Decoding Network Topologies for the Accurate Recognition of Spike Patterns.

Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 27-41

URL:http://dx.doi.org/10.14738/tmlai.34.1438 28

In this paper, very simple and effective temporal-decoding network topologies will be presented, based

on the spike latency effect, an intrinsically continuous neuron property able to take into account that the

firing of a given neuron is not instantaneous, but occurs after a continuous-time delay [11], depending on

the inner state. With these structures is possible to process spike trains arisen by neuron ensembles. Also

considering other bio-plausible phenomena, in the next sections a method for the tuning of such

structures will be presented.

2 Neuron and network model

The structures presented in this paper are based on the Leaky Integrate and Fire with Latency neuron

model [12, 13]. This kind of neuron is characterized by a real non-negative inner state (S), and is able to

work in two modes of operation, depending on whether S is above or below a certain value; this value,

called firing threshold (Sth), is equal to 1 + d , where d is a positive value called threshold constant.

Passive mode is the operating mode of the neuron when its inner state is less than Sth (S < Sth); otherwise,

the neuron is said to be in active mode (S>Sth). In the passive mode the neuron is a simple integrator,

characterized by a linear subthreshold decay with constant Ld, such that in a time interval between two

consecutive input spikes, ∆t , the inner state decreases of a quantity Tl = Ld∆t . Conversely, in the active

mode the neuron is ready to generate a spike. However, the output spike is not produced immediately,

but after the latency time, called in the model time-to-fire (tf). The inner state and the time-to-fire are

related through the following bijective relation, called firing equation

𝑡𝑓 =
1

𝑆−1
 . (1)

As time passes, the time to fire decreases, and inner state grows up, but it remains sensitive to possible

excitatory or inhibitory input spikes. For S = Sth (i.e., the mimimum inner state possible in active mode) the

time-to-fire is equal to tf,max = 1/d (i.e., the maximum time-to-fire).

Once the tf = 0, the neuron definitively generates a spike. The amplitude of each spike generated by the

network is characterized by the product Pj = Pr · Pw(x,j) = P(x,j) . The quantity Pw(x,j) (or equivalently Pwj if

the target neuron is implicitly indicated) is the postsynaptic weight, that characterizes the connection

strength from the neuron j to a certain neuron x. The quantity Pr , is the presynaptic weight, that

represents the value of the spike amplitude as it has been generated by the firing neuron.

Once the neuron generates a spike, its state is reset to its resting potential (conventionally, S = 0) for a

time defined as the absolute refractory period (tarp).

The inner state evolution of a neuron in response to a spike sequence is illustrated in Fig. 1, where two

incoming spikes modify the initial inner state Sp0 (i.e., previous-state-0) of a target neuron.

For the purpose of emulating a continuous-time behavior, an event-driven approach is required, as

described in [13], where the network model is characterized by the following global parameters: Pr , Ld, d

(and then, Sth); in the present work the same global parameters are considered.

For the sake of simplicity, in the structures presented in this paper zero-delays axonal connections are

considered, and synaptic plasticity phenomena are not taken in account. However, the relations that will

be obtained below remain compatible with such cases.

http://dx.doi.org/10.14738/tmlai.34.1438

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 29

Figure 1. An example of the inner state behavior of a neuron in both passive and active modes is illustrated.
An incoming excitatory pulse at t1 causes an instantaneous increase of the state from Sp0 to Sp0 +PrPw1. When, at

t2 , a second excitatory pulse is applied, the state increase his value from Sp2 to Sp2 + PrPw2. The firing is not
instantaneous but occurs after tf. Finally, after the firing, the neuron is reset to its resting potential for a time

equal to tarp [13].

3 Dynamic summation in bio-plausible neuronal structures

A spike sequence can be quite exhaustively defined by amplitudes and arrival times of its components.

Many attempts described in scientific literature are pointed to perform the recognition of specific spike

sequences through bio-plausible neural structures (e.g., [14-16]). Typically, the recognition process is

signaled by the activation of an indicator unit (e.g., a single neuron, a particular combination of neurons,

or a whole network); with the aim of simplifying the analysis, in this paper a single neuron (called target

neuron, TN) is used as indicator unit, so that its firing identifies that the recognition of the sought input

spike sequence has occurred.

The purpose of this section is to introduce a key-mechanism of the neuron, here indicated as dynamic

summation. Such mechanism can be exploited for the realization of many simple structures whose

operation takes in account precise spike times of the input sequence. In particular, basic aspects of such

mechanism will be explained in the next subsection.

3.1 Target neuron and working mode activity level

The task of a TN is to generate an output spike when a number of contributions is received in a certain

time interval (Fig. 2). Actually, the target neuron becomes active when the following two conditions

are simultaneously satisfied:

 the sum of the incoming spike amplitudes is greater than Sth;

 the input spikes are properly synchronised.

For an exhaustive explanation of the subthreshold decay effect and the interplay between pulse

amplitudes and arrival times characterizing the spike sequence, the reader may consult [17].

With reference to Fig. 2, in order for the TN to generate a spike, the following relation has to be satisfied:

𝑃𝑟 (𝑃𝑤𝑎 + 𝑃𝑤𝑏 + 𝑃𝑤𝑐) – 𝐿𝑑 (∆𝑡1 + ∆𝑡2) > 𝑆𝑡ℎ (2)

where Pr is the pre-synaptic weight, Pwa , Pwb and Pwc are the post-synaptic weights of the branches afferent

to TN and ∆t1 , ∆t2 are the interspike intervals (ISIs) characterizing the specific spike sequence.

Gianluca Susi; Bio-Inspired Temporal-Decoding Network Topologies for the Accurate Recognition of Spike Patterns.

Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 27-41

URL:http://dx.doi.org/10.14738/tmlai.34.1438 30

Figure 2. A spike sequence composed of three pulses coming from different neurons is sent to a TN, which
operates the dynamic summation. The crossing of Sth by the inner state of TN let the neuron produce a spike; the

intervals ∆t1 and ∆t2 represent the ISIs [18] of the sequence. The role played by the subthreshold decay
phenomenon on the need of synchronisation of the input pulses is clearly notable [17].

The working mode activity level (WMAL) is a parameter that explicates the number of input spikes,

simultaneous and of equal amplitude, necessary to lead the inner state of TN over the threshold, starting

from the resting potential (Fig. 3). Of course, the concept is related to a condition upon the weights of the

afferent branches; it is particularly useful to consider the WMAL for the synthesis of structures oriented

to the recognition of spike sequences.

In the design phase, hypothesizing the same value for the weights of the afferent branches, the WMAL is

obtained taking into account the weight Pj = PrPwj (identical for the neurons afferent to the TN) and the

threshold value Sth:

to obtain WMAL = 2, it must be imposed

𝑆0

2
< 𝑃𝑗 < 𝑆0 , (3)

to obtain WMAL = 3, it must be imposed

S0

3
< 𝑃𝑗 <

S0

2
 , (4)

to obtain WMAL = n, it must be imposed

𝑆0

n
< 𝑃𝑗 <

𝑆0

𝑛−1
 . (5)

http://dx.doi.org/10.14738/tmlai.34.1438

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 31

Fig. 3. Case of WMAL = 3. In reference to the architecture shown in Fig. 2, three identical and simultaneous
pulses (Pwa = Pwb = Pwc ; ta = tb = tc) are necessary to let TN spike. A smaller amplitude or number of input spikes,

or a smaller synchronism among them, could make the TN not able to generate the output spike.

3.2 Time-amplitude uncertainty

The inner state of a neuron at a time t0 does not provide information on the previous neuron activity:

even though the initial state of the neuron is known, after a certain interval of activity it can reach a given

inner state in infinite manners.

In this paper will be presented bio-inspired structures for the recognition of spike patterns. In the tuning

phase it must be considered that the components of the input spike-sequences can present timing errors,

or amplitudes not equal to the expected ones. With the aim of analyzing in detail this issue, in this

paragraph will be shown the time-amplitude uncertainty phenomenon.

Useful relations for the design phase of detector structures will be given considering the internal state of

the neuron as a function of its previous state, both for passive and active modes (i.e., respectively,

subthreshold and overthreshold), hypothesyzing a temporal neighbourhood in which the neuron does not

switch operation mode (i.e., no threshold crossing).

3.2.1 Subthreshold uncertainty

Considering a neuron in passive mode is straightforward to express the inner state as a function of its

previous state. Said

𝑆1 = 𝑆(𝑡1) (6)

and

𝑆2 = 𝑆(𝑡2) (7)

it can be written

𝑆2 = 𝑆1 – 𝐾d (𝑡2 − 𝑡1) (8)

Gianluca Susi; Bio-Inspired Temporal-Decoding Network Topologies for the Accurate Recognition of Spike Patterns.

Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 27-41

URL:http://dx.doi.org/10.14738/tmlai.34.1438 32

Figure 4: Subthreshold uncertainty phenomenon: assuming that at time t2 the internal state of the neuron is
S2, there is uncertainty on the activity that has lead the system on this state. With the aim of highlighting such

uncertainty, a compatible subthreshold curve is plotted (in red).

3.2.2 Overthreshold uncertainty

Also considering a neuron in active mode it is possible to express its inner state as a function of its previous

state. Said

𝑆1 = 𝑆(𝑡1) (9)

𝑆2 = 𝑆(𝑡2) (10)

we obtain

𝑡𝑓1
 =

1

𝑆1− 1
 (11)

𝑡𝑓2
 =

1

𝑆2− 1
 (12)

where

𝑡𝑓2
= 𝑡𝑓1

– (𝑡2 − 𝑡1) = 𝑡𝑓1 – 𝑡2 + 𝑡1 =
1

𝑆1−1
 – 𝑡2 + 𝑡1 (13)

therefore

𝑆2 = 1 +
1

𝑡𝑓2

= 1 +
1

1

𝑆1−1
 – 𝑡2 + 𝑡1

 (14)

Figure 5: Overthreshold uncertainty phenomenon: assuming that at time t2 the internal state of the neuron
is S2, there is uncertainty on the activity that has generated such a situation. With the aim of highlighting such

uncertainty, a compatible overthreshold curve is plotted (in red).

During the design of the structures proposed in the following sections, it will not be always needed to

specify both all the amplitudes of the input pulses, and all the ISIs of the spike sequence. Nevertheless,

with the aim of unambiguously identify a sequence, it may be useful to refer to the relations obtained

above.

http://dx.doi.org/10.14738/tmlai.34.1438

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 33

4 Spike-timing sequence detectors

Spike-timing sequence detectors (STSD), are classes of structures able to reveal specific ISIs present in

input sequences. These structures provide also the opportunity to set the tolerance of the detection in

respect to the spike timings of the sequences to recognize.

Different kinds of realization are possible for these structures: they may differ in the number of spike

trains (i.e., input lines) covered, number and type of neurons involved, or other aspects, like the number

of neuronal phenomena exploited in the computation. In the course of this discussion, an order of

presentation based on their complexity of operation will be followed.

In the structures presented in this paper, spike sequences composed of pulses belonging to different

neurons will be considered, as parallel spike trains coming from a neural ensemble [19, 20, 16]. By

operating on some of the parameters presented above it is possible to tune the structures on particular

intervals, in order to detect specific sequences.

The relations between the times of the input spikes arrival and the effective firing of the target neuron

will be shown by specifying the activation domain, and the operation of the presented structures will be

shown by means of temporal diagrams.

4.1 Activation domains

In the following sections are presented different classes of structures able to detect specific ISIs between

couples of pulses of an input sequence. Brain regions involved in object recognition in general must deal

with the natural variability present in spike trains [1]. To take account of this necessity of flexibility, with

the aim of maintain a bio-plausible behaviour, in the class of structures presented in this paper, a certain

tolerance upon the arrival times of the input pulses can be set. Fig. 6 illustrate different kind of activation

domains, namely the variation ranges of the input spikes, for which the structure is still able to detect the

input sequence and to activate the TN.

Figure 6: Different activation domain classes: single (a,b) and multiple (c). Green lines represent the
tolerance ranges on the timings of the input spikes (orange and blue).

Note that, with the aim of facilitating the approach, in this paper the arrival time of the pulse from EI1 will

always considered preceding that of EI2 (i.e., t2> t1), as shown schematically in Fig. 6.

4.2 Direct STSD

Direct STSD is the simplest class of structures able to reveal specific ISIs present in input sequences.

The properties of these structures strictly depend on the global parameters (Pr , Ld, d), and on the value

of Pt , defined as the common post-synaptic weight of the synapses afferent to the TN.

Gianluca Susi; Bio-Inspired Temporal-Decoding Network Topologies for the Accurate Recognition of Spike Patterns.

Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 27-41

URL:http://dx.doi.org/10.14738/tmlai.34.1438 34

Although a greater number of branches permits the detection of spike sequences of higher cardinality, as

a basic example it will be analyzed the Simple direct STSD, that consists of two branches connected to the

external inputs (EI1 , EI2) and afferent to a TN. This structure is able to operate with spike sequences of

cardinality 2. For the sake of simplicity, for this structure unitary amplitudes will be considered for the

input spikes for a better understanding of the operation principle.

The topology of this particular architecture is shown in Fig. 7

Figure 7: Topology of the Simple direct STSD structure. The detection is positive when the neuron TN
produces a spike; otherwise the detection is negative.

In Fig. 7, P(TN, EI1) represents the product between pre- and post-synaptic weights concerning the synapse

EI1-TN, and P(TN, EI2) represents the same kind of product concerning the synapse EI2-TN. With a proper

choice of the parameters, the system is able to work with WMAL = 2. This means that TN could become

active in presence of two input pulses from EI1 ed EI2. For example, if P(TN, EI1) = P(TN, EI2) = 0.8, and the

spikes from EI1 and EI2 arrive in a very close succession, TN becomes active with state equals to:

𝑆 (𝑇𝑁) ≈ 1.6 (> 𝑆𝑡ℎ) (15)

such that an output spike is produced, after a latency interval tf defined by the firing equation (1).

In this case, the output spike generated by TN reveals that the structure has received in its input a

sequence composed of two spikes close enough. On the other hand, if the arrival times of EI1 and EI2

(respectively t1 and t2) are far, only the value S (TN) = 0.8 is present at t1. In facts, for the subthreshold

decay phenomenon, the inner state of TN at time t2 falls to

𝑆 (𝑇𝑁) = 0.8 − (𝑡2 − 𝑡1) 𝐿𝑑 (16)

and the new incoming spike from EI2 is not able to make TN active; in this case, the detection is negative.

Whereas, the detection can be positive if the difference (t2 - t1) is smaller.

Figure 8: A two-input direct STSD (i.e. Simple direct STSD); external inputs are affected sequentially by the
spikes of the proposed sequence.

http://dx.doi.org/10.14738/tmlai.34.1438

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 35

Temporal diagram (Fig. 9, a and b) and activation domain (fig. 10) of the Simple direct STSD are plotted

below, considering Pr = 1, and Pw (TN, EI1) = Pw (TN, EI2) = 0.8 .

Figure 9: Temporal diagram of the Simple direct STSD. As depicted in a), if the second spike arrives in the
temporal range between the first spike and the value ta, the inner state of TN exceeds the threshold, then an

output spike is generated. If the time of the second spike exceeds ta, as depicted in Fig. 9b, the detection
becomes negative due to the subthreshold decay phenomenon.

Figure 10: Activation domain of the Simple direct STSD: for sequences characterized by interspike intervals
comprised between 0 and a certain value ta, the detection is positive; otherwise the detection is negative.

It is possible to tune the structure with the aim of detecting a particular ISI range. The following two

relations represent a possibility to properly set the structure parameters to make it sensitive to a

particular interval (t2 - t1), modifying the values P (TN, EI1) and P (TN, EI2) .

The first condition allow the TN to exceed the threshold

𝑃𝑟𝑃𝑡 − (𝑡2 − 𝑡1)𝐿𝑑 > 1 + 𝑑 (17)

and the second condition imposes a WMAL = 2

1

2

1+𝑑

𝑃𝑟
< 𝑃𝑡 <

1+𝑑

𝑃𝑟
 . (18)

Of course it is possible to modify the structure in order to recognize sequences of cardinality greater than

2. For this end, in the following sections some considerations will be presented.

4.3 Delayed STSD

This class of structures is characterized by the presence of one or more delay neurons (DNs), i.e. simple

excitatory neurons in the middle of a branch, able to create a transmission delay on the connection they

are inserted, and capable of obtain useful effects for the computation.

The operation is based on the fact that the pulses coming from the two branches are able to generate a

spike in TN only if they are properly distant in time; in this scenario, the delay neuron provides to slow

down the first spike so that it can converge to the TN temporally closer to the second input.

Gianluca Susi; Bio-Inspired Temporal-Decoding Network Topologies for the Accurate Recognition of Spike Patterns.

Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 27-41

URL:http://dx.doi.org/10.14738/tmlai.34.1438 36

The properties of these structures strictly depend on the value of Pwt (i.e. the common post-synaptic

weight of the synapses afferent to the TN) and on the values of Pwd (i.e. the post-synaptic weights of the

synapses afferent to the DNs), in addition to the global parameters.

4.3.1 Simple delayed STSD

The previous discussion on the Simple direct STSD, oriented to spike sequences of cardinality 2, can be

easily extended to define structures that support more complex activation domains. If the topology is

modified as in fig. 11, that is, characterized by the presence of one DN, the activation domain may be

shifted of a time equal to dt (i.e. the latency time provided by DN) with respect to the arrival time of the

first spike. In this section, the upper branch will be indicated as the delay branch.

Figure 11: Topology of the Simple delayed STSD.

The value of dt can be modified by varying the values of the weights. Of course, this neuron must have a

WMAL = 1.

Temporal diagram and activation domain of the Simple delayed STSD are reported in Fig. 12 and Fig. 13.

By analyzing Fig. 11, it is easy to deduce the requirements for the correct operation of the structure: the

activation of DN requires WMAL = 1, whereas WMAL = 2 is needed for the activation of TN.

Figure 12: Temporal diagram of the Simple delayed STSD. The structure is able to exhibit an output spike
only for a certain range of ISI, characterizing the cardinality-2 sequence.

http://dx.doi.org/10.14738/tmlai.34.1438

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 37

Figure 13: Activation domain of the Simple delayed STSD.

In addition, with the aim of guaranteeing the activation of the neurons of the input layer, the following

relations have to be satisfied

𝐸𝐼1 & 𝐸𝐼2 > 1 + 𝑑 . (19)

For DN we have

 𝑃(𝐷𝑁, 𝐸𝐼1) > 1 + 𝑑 (20)

namely

𝑃𝑟 𝑃𝑤(𝐷𝑁, 𝐸𝐼1) > 1 + 𝑑 (21)

that is to say

 𝑃𝑤(𝐷𝑁, 𝐸𝐼1) >
1+𝑑

𝑃𝑟
 . (22)

On the other hand, to guarantee the output spike, assuming the favorable simultaneity condition on the

target, the following relation have to be satisfied

𝑃𝑟 [𝑃𝑤(𝑇𝑁, 𝐷𝑁) + 𝑃𝑤(𝑇𝑁, 𝐸𝐼2)] > 1 + 𝑑 (23)

then

𝑃𝑤(𝑇𝑁, 𝐷𝑁) + 𝑃𝑤(𝑇𝑁, 𝐸𝐼2) >
1+ 𝑑

𝑃𝑟
 . (24)

Indicating with ∆tin the time difference between input pulses and ∆tout the time difference between the

pulses afferent to the target, it is possible to merge the previous conditions, as follows:

𝑃𝑟[𝑃𝑤(𝑇𝑁, 𝐸𝐼2) + 𝑃𝑤(𝑇𝑁, 𝐷𝑁)] − 𝐿𝑑 |
1

(𝐼𝑒𝑥𝑡2−1)
–

1

𝐼𝑒𝑥𝑡1–1
 –

1

[𝑃𝑟 𝑃𝑤(𝐷𝑁,𝐸𝐼1)−1]
+ ∆𝑡𝑖𝑛| > (1 + 𝑑) . (25)

This inequality permits to identify relations that allow the design of such structures for specific purposes.

However, this form is incompatible with an univocal design of the structure because an excessive number

of degrees of freedom is present. In order to achieve the simultaneity condition of the two contributes on

TN, the following equality must be verified:

𝑡𝑓(𝐸𝐼1) + 𝑡𝑓(DN) = ∆𝑡𝑖𝑛 + ∆𝑡𝑜𝑢𝑡 + 𝑡𝑓(𝐸𝐼2) (26)

with ∆t out = 0. Then

𝑡𝑓(𝐸𝐼1) + 𝑡𝑓(𝐸𝐼2) = ∆t𝑖𝑛 + 𝑡𝑓(𝐸𝐼2) . (27)

It can be noted that for spike sequences in which pulses are far away, such a structure would be useless.

In that case is necessary to use more than one DN in cascade, in order to satisfy the following relation:

𝑡𝑓(𝐸𝐼1) + 𝑡𝑓(𝐷𝑁1) + 𝑡𝑓(𝐷𝑁2) + ⋯ + 𝑡𝑓(𝐷𝑁𝑛) = ∆𝑡𝑖𝑛 + 𝑡𝑓(𝐸𝐼2) . (28)

t

t
a
 t

[t
a
±Δ]

Gianluca Susi; Bio-Inspired Temporal-Decoding Network Topologies for the Accurate Recognition of Spike Patterns.

Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 27-41

URL:http://dx.doi.org/10.14738/tmlai.34.1438 38

In addition, in order to recognize sequences of greater cardinality, it is necessary to increase the number

of delay branches, such that the contributions can arrive simultaneously to the target neuron, which must

be of type WMAL n.

In relation to the Simple delayed STSD, let us analyze the tuning procedure.

Indicating Tol the permissible error on the arrival time of the second pulse still capable to let the TN spike,

and MaxTol the maximum value of Tol that can be used, the tuning of the structure can begin with the

computation of the maximum tolerance (MaxTol) supported by the Ld considered; under proper

considerations, it can be written

𝐿𝑑 =
(2𝑃𝑟 𝑃𝑇 − 1 − 𝑑)

𝑇𝑜𝑙
 . (29)

Placing Pt to the upper end, we obtain

𝐿𝑑 =
{2𝑃𝑟

1+𝑑

𝑃𝑟
−1−𝑑}

𝑀𝑎𝑥𝑇𝑜𝑙
 (30)

where

𝑀𝑎𝑥𝑇𝑜𝑙 =
[2 (1+𝑑)−1− 𝑑]

𝐿𝑑
=

(1+𝑑)

𝐿𝑑
 . (31)

At this point, the requirements necessary for the operation of the structure imposes the relations (19)

and (20). With the aim of confining the degrees of freedom of the structure it is possible to proceed as

follows. The WMAL of TN can be subdivided evenly with respect to the number of afferences (i.e., make

equal the post-weight of the neurons afferent to TN)

𝑃𝑟 𝑃𝑤(𝑇𝑁, 𝐸𝐼2) = 𝑃𝑟 𝑃𝑤(𝑇𝑁, 𝐷𝑁) = 𝑃𝑟 𝑃𝑡 . (32)

In order to assure the output spike, from (4) we obtain

2𝑃𝑟 𝑃𝑡 > (1 + 𝑑) (33)

whereas, in order to guarantee that the target does not work in WMAL = 1, must be

𝑃𝑟 𝑃𝑡 < (1 + 𝑑) . (34)

Merging the last two conditions, for a two-input Simple delayed STSD we obtain

1/2 [(1+d)/Pr] < Pt < [(1+d)/Pr] (35)

In this way, imposing the simultaneity condition on TN, an output spike will be certainly produced and the

target will work at a WMAL = 2.

In reference to the interpulse interval between the two input spikes, the more Pt tends to [(1+d)/Pr] , the

more the structure is tolerant to temporal errors of the second input pulse; conversely, the more Pt tends

to [(1+d)/2Pr] , the less the structure is tolerant to temporal errors of the second input pulse.

5 STSD-based temporal coding classifiers

Using the elementary structures presented in the previous sections, some pattern recognition problems

can be easily afforded.

In an-dimensional space, a single object can be represented as a set of n-reference features. Each axis is referred

to a time interval that permits to quantify a reference feature, so that objects belonging to different classes will

http://dx.doi.org/10.14738/tmlai.34.1438

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 39

be mapped in a n-dimensional "timing space" [17]. An operation scheme using Simple delayed STSD is depicted

in Fig. 14.

6 Conclusion

In this work have been presented some bio-inspired temporal-decoding network topologies based on a

bio-plausible neuron model, for the accurate recognition of spike patterns. These structures are able to

detect specific input spike sequences in a continuous time domain. The connection of these neural

structures at a higher level, make possible to process the information operating a distributed and parallel

input data processing.

Future developments will include the application of the spike-timing dependent plasticity (STDP)

algorithm with the purpose of auto-setting tuning parameters as the postsynaptic weights.

Figure 14. Scheme of a STSD-based temporal coding classifier. Case of three features, each one characterized
by means of three classes: a) class 1 recognizer set; b) class 2 recognizer set; c) class 3 recognizer set;

d) single class domains, in the three dimensional feature space [17].

REFERENCES

(1) Larson E, Perrone BP, Sen K, Billimoria CP, A robust and biologically plausible spike pattern recognition

network. The Journal of Neuroscience, 2010. 30(46): p.15566 –15572.

(2) Paninski L , Pillow J , Lewi J, Statistical models for neural encoding, decoding, and optimal stimulus

design. Progress in Brain Research 2007;165:493-507.

(3) Donoghue J, Connecting cortex to machines: recent advances in brain interfaces. Nature Neuroscience

5, pp. 1085–1088.

(4) Gütig, R, Sompolinsky H, The tempotron: a neuron that learns spike timing-based decisons.

Neuroscience (Nature), 2006.

(5) Panzeri S, Ince RAA, Diamond ME, Kayser C, Reading spike timing without a clock: intrinsic decoding

of spike trains. Phylosophical transactions B, , The royal society publishing, 2014.

http://www.jneurosci.org/cgi/pmidlookup?view=long&pmid=21084611
http://www.jneurosci.org/cgi/pmidlookup?view=long&pmid=21084611
http://www.sciencedirect.com/science/article/pii/S0079612306650310
http://www.sciencedirect.com/science/article/pii/S0079612306650310
http://www.nature.com/neuro/journal/v5/n11s/full/nn947.html
http://www.nature.com/neuro/journal/v9/n3/full/nn1643.html
http://rstb.royalsocietypublishing.org/content/369/1637/20120467
http://rstb.royalsocietypublishing.org/content/369/1637/20120467

Gianluca Susi; Bio-Inspired Temporal-Decoding Network Topologies for the Accurate Recognition of Spike Patterns.

Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 27-41

URL:http://dx.doi.org/10.14738/tmlai.34.1438 40

(6) Dhoble K, Nuntalid N, Indiveri G and Kasabov N. Online Spatio-Temporal Pattern Recognition with

Evolving Spiking Neural Networks utilising Address Event Representation, Rank Order, and Temporal

Spike Learning. Neural Networks (IJCNN), International Joint Conference on. IEEE, 2012.

(7) Gautrais J, Thorpe S. Rate coding versus temporal order coding: a theoretical approach. Biosystems,

Vol 48, Nov 1998, Pages 57–65.

(8) Rieke F, Warland D, van Steveninck RdR. Spikes: Exploring the neural code. MIT Press Cambridge,

1999.

(9) Morrison A, Diesmann M, Gerstner W, Phenomenological models of synaptic plasticity based on spike

timing. Biological Cybernetics, vol. 98, no. 6, pp. 459–478, 2008.

(10) Brader J, Senn W, Fusi S, Learning real-world stimuli in a neural network with spike-driven synaptic

dynamics. Neural computation, vol. 19, no. 11, pp. 2881–2912, 2007.

(11) Salerno M, Susi G, Cristini A, Accurate latency characterization for very large asynchronous spiking

neural networks. 4th Int. Conf. on Bioinformatics Models, Methods and Algorithms, 2011.

(12) Cardarilli GC, Cristini A, Di Nunzio L, Re M, Salerno M, Susi G, Spiking Neural Networks based on LIF

with Latency: Simulation and Synchronization Effects. 2013 IEEE Asilomar Conference on Signals,

Systems, and Computers, 3-6 Nov 2013, Pacific Grove, CA, USA, pp. 1838-1842.

(13) Cristini A, Salerno M, Susi G, A Continuous-time Spiking Neural Network Paradigm. Advances in Neural

Networks: Computational and Theoretical Issues - Smart Innovation, Systems and Technologies, vol.

37, pp. 49-60. Springer, 2015.

(14) Sutskever I, Vinyals O, VL Quoc, Sequence to Sequence Learning with Neural Networks. NIPS

conference, 2014.

(15) Panchev C, Wermter S, Temporal sequence detection with spiking neurons: towards recognizing robot

language instructions. Connection science. Taylor Francis, 2006.

(16) Gansel KS, Singer W, Detecting multineuronal temporal patterns in parallel spike trains. Frontiers in

Neuroinformatics (2012); 6: 18.

(17) Salerno M, Susi G, Cristini A, Sanfelice Y, D’Annessa A, Spiking neural networks as continuous-time

dynamical systems: fundamentals, elementary structures and simple applications. ACEEE Int. J. on

Information Technology, Vol. 3, No. 1, Mar 2013, pp. 80-89.

(18) Gerstner W and Kistler WM, Spiking Neuron Models - Single Neurons, Populations, Plasticity.

Cambridge University Press, 2002.

(19) Ventura, V, Spike Train Decoding without Spike Sorting. Neural Computation , Vol 20,4. MIT press,

2008.

http://dx.doi.org/10.14738/tmlai.34.1438
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6252439
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6252439
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6252439
http://www.sciencedirect.com/science/article/pii/S0303264798000501
http://www.sciencedirect.com/science/journal/03032647
https://mitpress.mit.edu/books/spikes
http://link.springer.com/article/10.1007%2Fs00422-008-0233-1
http://link.springer.com/article/10.1007%2Fs00422-008-0233-1
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2007.19.11.2881
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2007.19.11.2881
http://www.scitepress.org/Portal/PublicationsDetail.aspx?ID=h6l/IvJAHbY=&t=1
http://www.scitepress.org/Portal/PublicationsDetail.aspx?ID=h6l/IvJAHbY=&t=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6810620
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6810620
http://link.springer.com/chapter/10.1007%2F978-3-319-18164-6_6
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://www.tandfonline.com/doi/abs/10.1080/09540090500132385#.Vc9qiPntmko
http://www.tandfonline.com/doi/abs/10.1080/09540090500132385#.Vc9qiPntmko
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357495/
http://doi.searchdl.org/01.IJIT.3.1.1129
http://doi.searchdl.org/01.IJIT.3.1.1129
http://www.cambridge.org/us/academic/subjects/computer-science/computational-biology-and-bioinformatics/spiking-neuron-models-single-neurons-populations-plasticity
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2008.02-07-478#.Vc9rfvntmko

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 41

(20) Gerstner W, Kistler WM, Naud R Paninski L, Neuronal Dynamics, From single neurons to networks and

models of cognition. Cambridge University Press, 2014.

http://www.cambridge.org/us/academic/subjects/computer-science/computational-biology-and-bioinformatics/neuronal-dynamics-single-neurons-networks-and-models-cognition?format=PB
http://www.cambridge.org/us/academic/subjects/computer-science/computational-biology-and-bioinformatics/neuronal-dynamics-single-neurons-networks-and-models-cognition?format=PB

DOI: 10.14738/tmlai.34.1381
Publication Date: 3th September, 2015
URL: http://dx.doi.org/10.14738/tmlai.34.1381

Phishing Websites Detection Using Data Mining Classification

Model

1Riad Jabri and 2Boran Ibrahim
Computer Science Department, University of Jordan, Amman, Jordan

jabri@ju.eu.jo; boranabed@yahoo.com

ABSTRACT

Phishing is a significant security threat to the Internet; it is an electronic online identity theft in which the

attackers use spoofing techniques like fake websites that mimic legal websites to trick users into revealing

their private information. Many of successful phishing attacks do exist and subsequently a considerable

number of anti-phishing methods have been proposed. However, they vary in terms of their accuracy and

error rate. This paper proposes an algorithm for phishing websites detection using data mining

classification model. It is implemented and experimented using a dataset composed of 20 different

webpage features and 1,000 instances. The experimental results showed that the proposed algorithm

outperforms the original one in terms of the number of classification rules, accuracy (87%) and less error

rate (0.1 %).

Keywords: Phishing detection; PRISM; Machine learning; Classification; Data mining.

1 Introduction

Recently, online services are widely deployed. For example, online banking over the web has become

essential for customers as well as for banks. For more than a decade, the naive users have been targeted

by phishing attacks to acquire their sensitive information such as username, passwords, and pass code

through the fraudulent websites which is under the control of the attackers. Phishing attacks are

increasing rapidly. According to the Anti-Phishing Working Group (APWG) [1], the phishing problem has

grown significantly over the last years that affect economics, and the financial losses from phishing attacks

have risen considerably. Although the most phishing targets are financial institutions like banks, the APWG

reports that an increasing number of attacks against other organizations like government agencies and

automotive associations [1]. The increasing number of scams (phishing) sites demands new methods to

classify the websites with a high degree of confidence. Hence, in this paper, we will use data mining

techniques and exploit the websites features to establish a large labeled training data, and then yield a

classifier integrating these features in such a way that new coming websites could be classified correctly.

We propose an algorithm for phishing websites detection using data mining classification model. The

proposed algorithm is an enhanced version of a well-known data mining algorithm, called PRISM [2].

PRISM algorithm has been selected to learn the relationships between the selected phishing features. We

have chosen this algorithm since the learnt classifiers are easily understood and used by a human. In

addition, the learnt can easily be expanded to include features of newly emerging phishing web sites.

mailto:boranabed@yahoo.com

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 43

This paper is organized as follows: in section 2 related works of Phishing Detection are presented, section

3 describes the classification model and the proposed algorithm, section 4 shows experimental evaluation.

A discussion and conclusion are given in section 5 section 6 respectively.

2 Related Works

Although phishing is not new and well-known by Internet users, many people are still tricked into

providing their confidential information. To counter the phishing threat, a number of anti-phishing

solutions have been proposed. Representative ones are as follows:

o A class of anti-phishing approaches aims to solve the phishing problem at the email level; the

main idea is that when phishing emails reach its victims, they could fall for the scam. This line

of research is closely related to anti-spam research. One reason for the abundance of spam and

phishing emails is that the Simple Mail Transport Protocol (SMTP) does not contain any

authentication mechanisms. The sender information in an email message can easily be spoofed

[3]. In this context, in [4] a novel approach is proposed to detect phishing attacks by

implementing a prototype web browser to processes the arriving email for phishing attacks,

they integrate this method with the approach of using link based features. Such as a hyperlink

to get personal details about users, such as usernames, passwords, account numbers, etc. Thus,

this approach considers features, which have numerical values but with different ranges, these

features will be extracted from the email body and according to a certain values, the user gets

notified of phishing attacks to avoid opening the suspicious websites.

o To capture the patterns in phishing URLs, Afroz and Greenstadt [5] proposed a real time

approach for web phishing detection, called PhishZoo. This approach uses profiles of trusted

website’s appearances and content, to detect targeted phishing attacks. They make use of

computer vision techniques such as matching images, scene analysis (segmenting images into

objects) and the URLs and (HTML) contents of a website to identify imitations.

o There exists a number of anti-phishing toolbars based on different techniques, many of which

exploit blacklists to achieve close-to-zero false positive rate [6]. The most popular and widely-

deployed anti-phishing techniques are based on the use of blacklists. These blacklists store a

set of phishing domains that the browser blocks their visit [3]. On the other hand, other

approaches exploit whitelists [5]. These approaches seek to detect known good sites. Some

whitelisting approaches use server side validation to add additional authentication metrics to

client browsers as a proof of its benign nature, for examples, dynamic security skins [7]; trust

bar [8] and SRD (“Synchronized Random Dynamic Boundaries”) [9].

o In an attempt to exploit visual similarity, Wenyin [10] proposed an approach to detect the

phishing web pages based on visual similarity, if the visual similarity of these pages is higher

than a predetermined threshold, this website is recorded as a suspicious and the owner is

alerted.

o A content-based approach, called CANTINA, is proposed in [11] to detect phishing websites.

CANTINA examines the content of a web page to determine whether it is legitimate based on

the term frequency/inverse document frequency.

Riad Jabri and Boran Ibrahim; Phishing Websites Detection Using Data Mining Classification Model. Transactions

on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 42-51

URL:http://dx.doi.org/10.14738/tmlai.34.1381 44

o In [12] authors proposed a server-side detection model; an automatic, and proactive identity

theft detection model in online games utilizing rich features. The proposed model classifies a

hacker’s login from a genuine user's login using well-balanced features from connection

information, user behavior, and economic variables.

o An interesting solution has been proposed in [13] to detect e-banking phishing websites using

an artificial intelligent technique, authors propose a model based on using association and

classification data mining algorithms and tools, which were used to classify the fishing websites

and the relationship that correlate them with each other, six classification algorithm were

implemented to extract the phishing training datasets criteria to classify their legitimacy.

Although there are many solutions available and act as a model for automatic phishing detection, the

promising ones are based on machine learning and data mining techniques. Recently, an associative

classification expert system was proposed in [14]. It has been shown that the rule induction and decision

tree methods outperformed other ones [12, 14]. Hence, this paper constitutes an improvement of such

techniques.

3 Classification Model

The Using machine learning techniques, a data mining classification model based on modified version of

PRISM algorithm is proposed to categorize websites as phishing versus non-phishing. Such categorization

is achieved by applying induction rules on selected websites features. The construction of such a model

proceeds as follows:

o A website is represented as a set of features and their respective values. For example,

{<subjreply {0, 1}>,…, <urlnoLinks{0,1,..}}

o A dataset is then constructed as a set of tuples of the values of the selected features of phishing

and non-phishing websites. Hence, the dataset describes two classes (phishing versus non-

phishing) and subsequently each tuple is assumed to belong to a predefined class, as determined

by the class label. For example, the rows of Table 1 represent such tuples, where the first row

represents site 1 that is classified as a phishing one. On the other hand, Site n is classified as non-

phishing. The complete dataset is given in Table 2.

 Table 1: Dataset example

 subjreply …………. attachedfile class

site

1 0 0 1

n 1 1 0

o Using distribution probabilities, the dataset is then divided into training and testing one. A

classification model is then constructed as a set of induction rules. For example, {If invisiblelinks=1

and If subjforward=1 Then yes,…, If urlnoLinks=6 Then yes}. Such a set is obtained by applying the

proposed algorithm on the training dataset. It is then tested and evaluated using the test set to

achieve a high accuracy rate as well as less error rate, where the accuracy rate is percentage of

test set samples that are correctly classified by the model, while the error rate is the opposite.

http://dx.doi.org/10.14738/tmlai.34.1381

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 45

3.1 The Proposed Algorithm

PRISM is attribute-value-oriented; it measures the attribute-value pair in determination of the

classification and selects the attribute that contributes the maximum information gain. If this attribute is

perfect (the attribute accuracy is equal 1), the corresponding rule will be generated and added to the rule

set to represent the classification model for the prediction purposes. PRISM generates one rule at a time,

in a particular iteration if more than one attribute is perfect this algorithm chooses the attribute with the

highest coverage to generate a rule, otherwise a random attribute will be chosen to generate a specific

rule. In contrast to PRISM algorithm, the proposed one derives all the perfect rules at the same time

instead of learning one rule at a time. As a result, the number of derived rules and their coverage rate

were increased. Hence, the accuracy and the expressiveness of the proposed model and subsequently

the prediction process were improved. The pseudo code of the proposed algorithm is given below as

Algorithm 1.

Algorrithm1

 Input: labeled training dataset D (%)

 Output: rule set R that covers all instances in D

 Method:

 Initialize R as the empty set

 for each class C {

 while D is nonempty {

 Construct all perfect rules r that correctly classifies some

 instances in D that belong to class C and do not incorrectly

 classify any non-C instances;

 Add rules r to rule set R

 Remove from D all instances which are correctly classified by

 all r

 }

 return R

4 Experimental Evaluation

 In this section, we present the experiments designed to build and evaluate the proposed model. This

includes a description of the constructed dataset, metrics to evaluate the effectiveness of our approach.

The experiments were conducted over 1000 different websites (70% are phishing ones and 30% are non-

phishing) were used in the conducted experiments.

4.1 Dataset

For the purpose of this research, a large number of phishing pages with their respective features were

explored. As a result, 20 feature- value pairs were selected based on the frequency analysis as suggested

in [15] and as shown by the following set

{The set of features and it their possible values:

Riad Jabri and Boran Ibrahim; Phishing Websites Detection Using Data Mining Classification Model. Transactions

on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 42-51

URL:http://dx.doi.org/10.14738/tmlai.34.1381 46

Attribute subjreply {0, 1},

Attribute subjforward {0, 1},

Attribute subjnoWords {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},

Attribute subjverify {0, 1},

Attribute subjbank {0, 1},

Attribute bodyhtml {0, 1},

Attribute bodyFunctionWords {0, 1},

Attribute bodysuspension {0, 1},

Attribute bodyconfirm/verifyYourAccount {0, 1},

Attribute urlnoIpAddresses {0, 1},

Attribute urlatSymbol {0, 1},

Attributeur lnoLinks {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,..},

Attribute urlnoDomains {0,1,2,3,4,5,6,7,9,11,12,14,15,17,29,73},

Attribute urlmaxNoPeriods {0,1,2,3,4,5,6,7,8,10,11,12,13,16},

Attribute urllinkText {0, 1, 2},

Attribute OnClickEvents {0, 1, 10},

Attribute Invisiblelinks {0, 1},

Attribute Unmatchingurl {0, 1},

Attribute Longurladdresses {0, 1},

Attribute attachedfile {0, 1}}

The dataset is then constructed by extracting feature – values pairs of phishing cases from one source,

and non-phishing web pages from another source. We chose PhishTank [15] as a source of phishing

websites. The information from this site is freely available and the amount of reported phishing sites is

very large (approximately five hundred new phishing reports every day). The attributes of the non-

phishing web sites were collected by a web data extractor. Such extractor is a user defined software that

is plugged with a browser to automatically extract features from a user connection [16]. Thus, the

constructed dataset contains a total of 700 phishing websites and 300 legitimate ones, as shown in table

2.

Preparatory experiments were conducted on this dataset using the well-known data mining software

WEKA to show the classification effectiveness of the machine learning algorithms and to justify the

proposed algorithm. The performance of three algorithms (JRip, J48, Naïve Bayes (NB)) has been

compared to the one of PRISM, as shown Table 3. Such comparison has been performed using 70% of the

dataset for training and the remainder for testing. In addition, the following evaluation metrics have

been applied:

o Accuracy and error rate

o Number of derived rules

http://dx.doi.org/10.14738/tmlai.34.1381

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 47

It is clear that the J48 algorithm is the best one, because it has the highest accuracy in the websites

dataset, while NB algorithm is a weak algorithm since it has the lowest accuracy with the higher error rate,

and it doesn’t produce rules at all. PRISM algorithm has a minimum accuracy with some unclassified

instances in both datasets.

Table 2: The constructed dataset

Hence, we set an objective to improve this algorithm PRISM algorithm in terms of discovered knowledge,

accuracy, error rate and other criteria which appear useful for phishing detection. PRISM is “weak”

algorithm; the aim is to change it into an accurate “strong” typical algorithm for our detecting purposes.

We selected the PRISM classifier for the following reasons. First, we believe that a PRISM provides intuitive

insight into which features are important in classifying a dataset. Second, the PRISM algorithm is known

to work well for a wide range of classification problems.

Table 3: Results of WEKAs' algorithms

No. of

Instances

WEKA

Algorithms

No. of
Rules

Accuracy
Rate

%

Error
Rate

%

Unclassified
Rate

%

Websites

Data

1000

JRip 7 91 9 -

J48 26 94 5 -

NB - 88 11 -

PRISM 189 86 5 8

4.2 Experimental results

Experiments were conducted to evaluate the performance of PRISM and the proposed algorithm. Figure

1 and Figure 2 show samples of their run using the collected dataset.

Riad Jabri and Boran Ibrahim; Phishing Websites Detection Using Data Mining Classification Model. Transactions

on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 42-51

URL:http://dx.doi.org/10.14738/tmlai.34.1381 48

Figure 1: A sample run of PRISM

l

Figure 2: A sample run of the proposed algorithm

Several runs of PRISM and the proposed algorithm have performed using different ratios between

training, and testing datasets show the results of these runs as follows

o Table 4 shows the achieved accuracy and error rate by both algorithms

o Table 5 shows the phishing and legitimate rules generated by both algorithms.

o Table 6 shows the number of iterations performed during the run of both algorithms

Table 4: Accuracy and error rates for the considered models

 PRISM Modified PRISM

Training Data %
%

40 60 70 80 40 60 70 80

No. of Phishing
Instances

267 407 481 555 267 407 481 555

No. of
Legitimate
Instances

133 193 219 245 133 193 219 245

Accuracy Rate % 84 84 85 88 84 85 87 86

Error Rate 12 9 8 6 15 13 11 12

http://dx.doi.org/10.14738/tmlai.34.1381

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 49

Table 5: Total number of rules genrated by the considered models

 PRISM Modified PRISM

Training data % 40 60 70 80 40 60 70 80

No of phishing
instances

267 407 481 555 267 407 481 555

No of legitimate
instances

133 193 219 245 133 193 219 245

No. of Rules 67 117 138 150 121 270 341 373

no. of phishing
rules

25 49 53 51 45 123 156 161

no. of legitimate
rules

42 68 85 99 76 147 185 212

The obtained results demonstrate that the constructed classifiers have 341 rules, with accuracy of (87%).

Thus, the proposed algorithm achieves higher accuracy and generates more rules. Furthermore, it is more

efficient, as demonstrated by the number of iterations performed during its run.

Table 6: Total number of iterations performed by the considered models

 PRISM Modified PRISM

Training data
Percentage %

40 60 70 80 40 60 70 80

No of
instances

400 600 700 800 400 600 700 800

No of
phishing
instances

133 407 481 555 267 407 481 555

No of
legitimate
instances

267 193 219 245 133 193 219 245

No of
Iterations

513 652 692 713 444 515 546 563

5 Discussion

Considering the results achieved by the proposed algorithm, we can conclude that this approach is quite

successful in protecting users, especially when predicting the phishing websites. The proposed algorithm

has correctly recognized almost 87% of the malicious websites. It appears that this algorithm outperforms

the original PRISM and has a comparable performance to the one of several algorithms (CBA, PART,

C4.5, MCAC, JRip, and MCAR) as published in recent research [14], where the accuracy of these

algorithms ranges from 92% to 94.5% , while and the number of rules ranges from 10 to 180. Hence, the

results the proposed algorithm is encouraging. Although the results for the larger datasets are rich, it

takes more time to compute. It is worth mentioning that the proposed phishing detection system

represents a good indicator for the phishing websites since this model produced a large number of

significant rules. In addition, it is flexible and capable of capturing new emerging features of the phishing

web sites.

Riad Jabri and Boran Ibrahim; Phishing Websites Detection Using Data Mining Classification Model. Transactions

on Machine Learning and Artificial Intelligence, Volume 3 No 4 August (2015); pp: 42-51

URL:http://dx.doi.org/10.14738/tmlai.34.1381 50

6 Conclusion

In this paper, we have proposed a new phishing websites detection model based on PRISM algorithm, the

prediction of phishing websites is essential, and this can be done using data mining classification

algorithms, our classification system automatically classify phishing pages. We have tested the phishing

detection model in terms of accuracy and error rate. The experimental results confirm the increasing

number of rules of the proposed method for phishing detection and show that we maintain a false positive

and false negative rate about (0.1%) which is reasonably low. The experiments have demonstrated the

feasibility, and effectiveness of using rule induction classification techniques in real applications involving

large databases. It has better performance as compared to other traditional classification algorithms with

accuracy rate of (87%). Due to the variations in the existing approaches, a generalized and formalized one

constitutes a future work.

REFERENCES

[1]. APWG. Phishing Activity Trends: Technical report, Anti Phishing Working Group, [online],

http://www.antiphishing.org/reports/apwg_trends, 2013.

[2]. Cendrowska, Jadzia, PRISM: An algorithm for inducing modular rules. International Journal of

Man-Machine Studies, 1987. 27(4): P. 349-370.

[3]. Medvet, E., Kirda, E., and Kruegel, C., Visual-Similarity-Based Phishing Detection. In Proceedings

of the 4th international conference on Security and privacy in communication networks, ACM

22, Istanbul, Turkey, 22 – 25, September, 2008.

[4]. Jain, A., and Richariya, V., Implementing a Web Browser with Phishing Detection Techniques.

World of Computer Science and Information Technology Journal (WCSIT), 2011. 1 (7):p. 289-

291.

[5]. Afroz, S. and Greenstadt, R., PhishZoo: Detecting Phishing Websites By Looking at Them. In

Proceedings of the Semantic Computing (ICSC), Fifth IEEE International Conference , 18-21

September, 2011, 368 – 375.

[6]. Xiang, G. and Hong, J.I., A Hybrid Phish Detection Approach by Identity Discovery and Keywords

Retrieval, In Proceedings of the 18th International World Wide Web Conference (IW3C2), ACM,

Madrid, Spain, 2009, p. 571- 580.

[7]. Kumaraguru, P. Rhee, Y. Acquisti, A. Cranor, L. F. Hong, J. and Nunge, E., Protecting people from

phishing: The design and evaluation of an embedded training email system. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems (CHI '07), ACM, New York, NY,

USA, 2007, p. 905-914.

[8]. Herzberg A. and Gbara, A Security and Identification Indicators for Browsers against Spoofing

and Phishing Attacks, Journal of ACM Transactions on Internet Technology (TOIT), 8(4): p. 1-36.

http://dx.doi.org/10.14738/tmlai.34.1381
http://www.antiphishing.org/reports/apwg_trends

Transact ions on Machine Learn ing and Art i f i c ia l Inte l l igence Volume 3 , Issue 4 , August 2015

Copyr ight © Socie ty for Sc ience and Educat ion Uni ted Kingdom 51

[9]. Ye Z. and Smith, S. Trusted paths for browsers, In Proceedings of the 11th Usenix Security

Symposium, ACM NY, USA, 2005, p. 263-279.

[10]. Wenyin, L. Huang, G. Xiaoyue, L. Min, Z. and Deng, X., Detection of Phishing Webpages based

on Visual Similarity, In Proceedings WWW '05 Special interest tracks and posters of the 14th

international conference on World Wide Web, ACM, May, 2005, p. 1060-1061.

[11]. Zhang, Y. Hong, J. and Cranor, L., CANTINA: A Content-Based Approach to Detecting Phishing

Web Sites. In Proceedings of the 16th international conference on World Wide Web, , ACM,

Banff, Alberta, Canada, 8-12, 2007, p. 639-648.

[12]. Woo, J. Choi, H.J. and Kim, H.K., An automatic and proactive identity theft detection model in

MMORPGs, .Applied Mathematics and Information Sciences, 2012, 6(1S) : p. 291S-302S.

[13]. Aburrous, M. Hossain, M. A. Thabtah, F. and Dahal, K., Intelligent Detection System for e-

banking Phishing websites using Fuzzy Data Mining, International Conference on CyberWorlds,

IEEE Conference Publications , 2009, 37(12): p. 265-272.

[14]. Abdelhamid,N., Ayash, A., Tabatah, F., Phishing Detection Based Associative Classification Data

Mining, Expert System with Application, 2014, 41: p., 5948-5959.

[15]. PhishTank, Out of the Net, into the Tank, http://www.phishtank.com/developer_info.php, 2012

[16]. Aburrous, M. Hossain, M. A. Dahal, K. Thabtah, F., Predicting Phishing Websites using

Classification Mining Techniques with Experimental Case Studies, In Proceedings of the 2010

Seventh International Conference on Information Technology: New Generations (ITNG '10),

IEEE, Las Vegas, Nevada, USA, April 2010, p. 176-181

http://www.phishtank.com/developer_info.php

